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We derive the relativistic kinetic equation for the one-particle distribution function of 
gravitationally interacting particles to second order in the coupling constant. The interaction is 
described within the framework of general relativity. The kinetic equation for gravitationally 
interacting particles has a great deal in common with the Belyaev-Budker relativistic kinetic 
equation for plasma; the only difference consists of a change in a scalar factor that occurs in the 
kernel of the collision integral and depends on the momenta of the interacting particles. In the 
relativistic limit, the equation is the same as the equation derived by Bisnovatyi-Kogan and 
Shukhman [Soviet Phys. JETP 55, 1 ( 1982) ] for Newtonian gravitation. We discuss the 
application of the kinetic equation to a system containing two types of particles-nonrelativistic 
massive particles and ultrarelativistic massless particles. 

INTRODUCTION 

To deal with cosmological problems, it is necessary to 
have a proper understanding of the kinetic equation with 
gravitational interactions included. This equation was de- 
rived by Bisnovatyi-Kogan and Shukhman' for a nonrelativ- 
istic, uniformly expanding gas in the context of Newtonian 
gravitation. If a large number of collisions take place during 
the lifetime of the universe, so that 

( ( 0 )  is the mean thermal velocity of the particles, t is the 
cosmological time, and r,,,,,, is the separation at which the 
kinetic energy of the particles equals their interaction poten- 
tial energy), then the collision integral for the gravitating 
particles' will take the same form as the Landau collision 
integral obtained for a plasma.' Taking the expansion of the 
universe into account has made it possible' to eliminate the 
divergence of the collision integral at large impact param- 
eters. 

In this paper, we derive the relativistic kinetic equation 
for a system of particles whose mutual interaction falls with- 
in the purview of general relativity. Introducing a set of ran- 
dom functions,' we construct a sequence of coupled equa- 
tions for the one-particle, two-particle, ..., distribution 
functions. We go on to show that the derivation of the kinetic 
equation to second-order in the interaction requires only the 
linearized Einstein equations; three-particle correlations 
can be neglected. 

In deriving the equation, we have assumed that the 
"average gravitational field" engendered by the particles' 
may (like the distribution function') be regarded as con- 
stant over the region determined by the correlation length 
and the corresponding correlation time. In obtaining the 
right-hand side of the kinetic equation (the collision inte- 
gral) in an expanding, spatially flat Friedmann space, the 
temporal dependence of the scale factor may therefore be 
neglected: the Einstein equations, whose solution is prereq- 
uisite to finding the "microscopic" gravitational fields creat- 
ed by the particles, has been linearized in the metric of flat 
Minkowski space, rather than in the Friedmann metric. As 
in plasma theory, this leads to divergence of the collision 
integral at large impact parameters, a situation that can be 
rectified by dealing with the averaged gravitational field in 

solving the Einstein equations. A similar situation is encoun- 
tered in deriving the kinetic equation for gravitating nonrel- 
ativistic particles in the Newtonian gravitational theory. ' If 
we ignore the expansion of the universe and replace e2 with 
Gtn', the collision integral is the same as the Landau colli- 
sion integral. Introducing a cutoff at  distances of order ( u ) t  
in the Coulomb logarithm yields the result obtained by Bis- 
novatyi-Kogan and Shukhman,' which was derived by tak- 
ing account of the effect of the expansion of the universe on 
individual particle collisions. 

The collision integral derived in the present paper also 
turns out to be proportional to an analog of the Coulomb 
logarithm, in which we assume a cutoff at distances of order 
( o ) t .  After this procedure has been carried out, the kinetic 
equation can be used to describe a system of particles in an 
expanding Friedmann universe. 

Not only is the kinetic equation that is obtained applica- 
ble to the case in which the average field represents an ex- 
panding Friedmann universe, but it can be used in other si- 
tuations as well, where the average field can be treated as 
constant within the region defined by the correlation length 
and corresponding correlation time. It is only in the latter 
instance that it is necessary to investigate the whole question 
of introducing a cutoff at large impact parameters. 

The relativistic kinetic equation for gravitationally in- 
teracting particles has much in common with the Belyaev- 
Budker relativistic kinetic equation for plasma.4 The differ- 
ence is that the factor (ec)"u:u')' in the Belyaev-Budker 
collision integral is replaced by the factor 

where u, and u,' are the four-velocities of the colliding parti- 
cles, p ,  andp: are their momenta, e is the charge on a parti- 
cle, and G is the gravitational constant. 

We conclude by considering some applications of the 
theory, involving the interaction of the microwave back- 
ground radiation with large-scale agglomerations of matter. 

1. RANDOM FUNCTION IN THE LlOUVlLLE EQUATION 

Consider a system consisting of several types of parti- 
cles (individual types will be denoted by Roman letters, a,  b, 
c,  ... ) .  We also make use of the following notation: nu is the 
number of particles of type a, the q' are particle coordinates 
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(go = v), and the p, are the covariant components of the 
momenta measured in the metric g,, , which we represent as 
the sum of an "averaged" metric g,, and a contribution Sg,, 
due to particle interactions (i, j, k = 0,1,2,3). 

We now introduce a random f ~ n c t i o n ' . ~  for particles of 
type a: 

where S is the canonical parameter along the trajectory, and 
qil , ,  p;'I' are given by the equations of motion (p' = g-9,) 

As a consequence of Eq. ( 1.2), the function Ru satisfies the 
equation 

Here TI, ,  is a Christoffel symbol of the second kind, calcu- 
lated in the metric gi,. 

In addition to the momenta p;,,  = mucdqi,, /dS, we 
shall also make use of the momentap' in the metric g,, : 

p(:)=a-' (9, P )  ~ : l , ,  a(g, p )  =ds/ds"= (g i ,p ipJ)  " (HlgIP'ph)--. 

(1.4) 
Heres is the canonical parameter introduced with the aid of 
the metricg,, . We transform fromp, top,  using the relation 

Next, we compute the Jacobian of the transformation 
(1.5), which is equal to the determinant of the matrix 

where 

The vectors uh and u, are orthogonal ( u'u, = O), so the deter- 
minant of the matrix St, + uhu,, is equal to unity, where- 
upon 

As a consequence of ( 1.7), the random function RU (q,?) 
may be expressed in terms of the random function 

as follows: 

The functions q;,, andp;" in (1.8) can be determined using 
the equations obtained by substituting ( 1.5) into Eq. ( 1.2) 
(P' = g"p, : 

Here 

is the difference between the Christoffel symbols of the sec- 
ond kind for the metrics g,, and g,, . By virtue of ( 1. lo ) ,  the 
function No ( q g )  must satisfy the Liouville equation 

or, making use of the identity 

the equation 

Equation (1.1 1) can also be obtained directly from 
(1.3) by making the substitutions (1.5) in (1.9).  

The energy-momentum tensor of the particles may be 
written in terms of Ru as 

If we transform to momentap, and the function N , ,  we ob- 
tain 

2.THE EINSTEIN EQUATIONS 

The quantities Rj; on the right-hand side of the Liou- 
ville equation ( 1.1 1 ) may be determined from the Einstein 
equations ( N  = 8n-G /c4) 

where G 'I is the Einstein tensor, calculated in the metric g,, , 
and T" may be expressed in terms of N,, through Eq. ( 1.13 ). 
If particle interactions are weak, then the Einstein equations 
can be linearized with respect to the "averaged" metric g,, 

(g,, = g, + Sg,, : 

Here f : is the "averaged" distribution function. The "aver- 
aged" field g,, is determined by the energy-momentum ten- 
sor calculated with f :, and the SG " are perturbations of the 
components of the Einstein tensor, up to terms linear in the 
Sg,,, while 

We recognize that hereinafter we only require the quan- 
tities RJh within the region delimited by the correlation 
length and corresponding correlation time. If g,, can be con- 
sidered constant within this region, then as we indicated in 
the Introduction, g,, is effectively the Minkowski metric. 
Terms containing derivatives of g,, , particularly the quanti- 
ty Q", which is a linear function of the Einstein tensor ( ~ n  
the metric g,, ), may be neglected. In that case, (2.1 ) takes 
the form of the Einstein equations linearized with respect to 
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the Minkowski metric. With the notation (a,P,y, ... = 1,2,3) 

these equations become 

Here a prime denotes a derivative with respect to 7 = ct, and 
a superscript or subscript comma denotes a conventional 
derivative with respect to the spatial coordinate q". Raising 
and lowering of spatial indices is accomplished with the 
Kronecker delta: h "" = S""Sobh,,, . Repeated indices are 
summed over-h = h :: and in addition 

(Db (q, pbr) = N b  (9, pbr) -nbfbO ( ~ b ' ) .  

We also make use of the identity 

= (2rc)-'J d3qf J d3k exp [ -ik(q-q') I m b  (q, qrl pb'). 

where k .q  = S,,/, k "q? We seek solutions for the unknowns 
p, $,, , hCrp in the form 

1 
hap (q, q) = 7 5 hpb' .f d3qr j d3k exp[-ik (p-q') ] 

(2n) b 

X hasb(q, q', pbr, k). ( 2 . 4 ~ )  

Substituting (2.3) and (2.4) into (2.2), we obtain the fol- 
lowing equations for the Fourier transforms of the perturba- 
tions: 

1/2(k2h-kak8hae) =xmbc2(ubs') @b(q, q', pbP). (2.5a) 

i/2 (k2$a-kaks$B) +'/,i (k8hea-kah) ' 

= ~ r n ~ c ~ u ~ ~ ' u ~ ~ ' ~ b ( q ,  q', pb'), (2.5b) 

Here we have omitted the superscript b from the unknowns 
y, h, $:, and h !/,. Where there is no danger of confusion, we 
shall continue below to omit the index b. Furthermore, we 
shall separate all perturbations into three types: scalar, vec- 
tor, and tensor.' To do  so, we represent u"' in the form 

where ui; = (k,, uU')/k, k,, u, "' = 0. We introduce the nota- 
tion uiZ = S , , p ~ ,  u, 8' = u'* - u;', u ' = Scr0 u " ' u ~ ~ '  and the 
unit vector S"' directed along u;": 

We also introduce the tensor 

with the properties 

The tensor u"'ur" can be expanded in a set of linearly 
independent tensors: 

We may express both ICl: (rl,qr,pi ,k)  and h (v,ql,p;,,k) as 
sums of scalar, vector, and tensor perturbationsh: 

Substituting (2.6), (2.10), and (2.1 1) into (2.5) and 
equating coefficients of the linearly independent spatial ten- 
sors 1/3SUB, 1/36,,,, - k, k,/k ', 1/2(S;:'k" S f ' k  ")/k, 
Q g"' and of the independent vectors k ", S E' on both sides of 
Eq. (2.5), we obtain three independent systems of equations 
for the scalar, vector, and tensor perturbations. 

I. Scalarperturbations: 

2. Vector perturbations: 

3. Tensor perturbations: 

As corollaries of the system of equations (2.12) we have 
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These corollaries are none other than the conservation law 
for the energy-momentum tensor, T y  = 0. As a result of 
( 2 . 15 ) ,  the solutions ofthe system (2.12)  allow for two arbi- 
trary functions. 

If we assume that 

hb=O, .IPllb=O, (2 .16)  

then 

x @b (q ' ,  q f ,  ~ b ' )  (2.18)  

Here & + & ' I ,  71 = ct. 
Likewise, the system (2 .13)  for the vector perturba- 

tions has the corollary 

~ b ~ ' ~ ~ b ' d @ b / d ~ - i k ~ ~ ~ b ' ~ l b ' @ b = O ,  

so the solution of the system of equations ( 2 . 13 )  contains 
one arbitrary function. Putting 

we obtain 

The solution of (2 .14)  may be written in the form 

Let us calculate the quantities on the right-hand side of 
Eq. (1 .11) :  

Substituting p ", $j:, and h (:I, in the form ( 2 . 4 )  and making 
use ofthe expansion (2.1 1 ) and the solutions (2 .16) - (2 .21) ,  
we find 

4( PC d4pbfj  d3qr J d3k J dq f  exp [ -ik (q-q') ] 

x ~ , ? ( q ,  q r ,  pb', k )  a)6 ( q f ,  q), pbl ) ,  (2.23)  

where the f2:: ( v , ~ ' , p b  ,k)  take the form 

ika ( ~ 0 , ' 2  + ~ b ~ ~ - 3 ~ ~ ~ b ~ ~ )  6 ($+&-q), 
(2.24b) 

012 
-Ub 6ae,6'-2i (Sab'kpSSabf  k,) UbO'ulbf 6 

-2ik s i n [ k ( q f - q )  ] [ Q ~ ; ' ~ ~ - Q ~ ~ ~ ~ ~ , - Q ~ '  kg]uibf2). 

( 2 . 24 f )  
Here 

3. THE KINETIC EQUATION 

We now substitute ( 2 . 23 )  into ( 1 . 1  1 ):  

Here and henceforth we denote the set of all variables 
(v ,q ,p)  by x ,  and the set (7 ' ,q ' ,p1)  by x ' .  We denote the 
momenta p; simply by p', and p:' by p".  We average (3.1 ) 
over the set of systems7: 

Multiplying (3.1 ) by @, ( x ' )  and averaging, we obtain 

Equation ( 3 . 3 )  is the equation for the second moment 
( N o  ( x ) N ,  ( x ' ) ) .  Another equation for this same moment 
can be obtained from ( 3 . 3 )  with the replacement a e b ,  
x x ' .  

We now introduce one-, two-, and three-particle distri- 
bution functions: 
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Here, as before, we use the notation 

For the moments of the random functions, we have' 

(N. (x) Nb (x') NC(x") >= (nanbnC-n,nb6,,-~nbsb. 

In these expressions x ,  ( s / x )  denotes a particle trajectory 
passing through a point x of phase space. 

Taking into consideration the relationship between N, 
and @, (@, = N, - nu f lj ), and bearing in mind that f is 
not a random function, it is straightforward to obtain expres- 
sions for the mean values 

Substituting (3.4) into (3.2),  (3.3) and analogous 
equations, we obtain an infinite succession of kinetic equa- 
tions for the distribution functionsf, ,f,,,,f,,,, , etc. 

To derive the kinetic equation for the one-particle dis- 
tribution function f, to second order in the interaction, we 
terminate this chain, taking 

f a b  (2, xr)=fa(z) fb (xr) +gab (x, 5') 
(3.5) 

fabc ($7 2 ' 7  x") =fa (x)fb ( X I )  fc (x") * 

As a result, we have an approximate system for f, ( x )  
and g,, (x,xf  ) with n, 3 1: 

In deriving (3.6) and (3.7), we have assumed that 
x l # x ,  (s/x) -that is, there is no trajectory followed by par- 
ticles of type a that passes through the phase-space point x.  
The expression a{',,, on the left-hand side of (3.6) describes 
the self-consistent gravitational field: 

In view of the weakness of the interactions, we can con- 
sider the trajectory of a type-b particle in the integral over s" 
in (3.7) to be a geodesic in Minkowski space: 

where 

v ' = c u ~ ' / u ~ ~ ' ,  ubf= (ub1', ub2', ub3'). 

Integrating over s", q", p"  in (3.7),  we obtain 

In Eq. (3.8) forg,, ( x , x l )  we have put T,,, = 0 on the 
left-hand side, since at the very outset we stipulated that 
inside the correlation radius the metric coefficients g,, be 
constant. 

The solution of this equation takes the form 

dr' 
x j fb (XI) n d b  (T, i, p J ,  kt) erp[-ik(q-qr) 
- m 

The subscript r here means that after taking the derivative 
with respect top, ,  the arguments 7 and q must be replaced by 
T and q + V ( T  - I ~ ) / c .  

The solution (3.9) only takes into account the effect 
that the trajectory of particle b has on particle a; the inverse 
effect is described by the solution to the equation obtained 
from (3.7) by the change of variables a e b ,  x*'. The solu- 
tion itself is obtained from (3.9) by making the same substi- 
tutions. The sum of these solutions then goes on the right- 
hand side of Eq. (3.6).  The net result is the desired 
relativistic kinetic equation to second-order accuracy in the 
interaction. 

To obtain the analog of the well-known Belyaev- 
Budker equation4 for relativistic plasma, we consider a dis- 
tribution function that varies so slowly in space and time 
that it can be considered constant within the region defined 
by the correlation length and the corresponding correlation 
time. In calculating the integrals over q', T' ,  T,  and 7' in ( 3.6) 
and (3.9),  we can neglect the space-time dependence ofA, 
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and f,. After integrating over q' and k', we arrive at the 
following equation for f, V; = f, (qi,p, ), f = f, (qi,p;) ): 

where 

We now transform to a seven-dimensional distribution 
function, which depends on the coordinates and the spatial 
components of the momentump, : 

The equation for F, is obtained from (3.10) by integrating 
both sides over p,, (we must also carry out the integration 
overp; in (3.11)).  

Next, we make use of the identity 

In calculating the derivative with respect top ,  on the left- 
hand side of this equation, all components ofp, are treated as 
being independent, and only then do we allow for the fact 
that pi, = (m'c' + p') "'. On the right-hand side of (3.13), 
this dependence is taken into account prior to calculating the 
derivative with respect to the spatial components of the mo- 
mentum p,. 

Taking advantage of (3.131, then, we obtain the kinetic 
equation for F, : 

where 
n 

i i 
x exp[-(kv) (r-q) + -(kvf) (ql-r') ] 

C C 

It only remains here to substitute the explicit expressions 
(2.24) for the ((77,7',p1,k) into (3.15) and carry out the 
integration over T ,  T', and 7'. 

The kinetic equation takes the form 

where 

v2  v f Z  (vv') v2v12 
taa=2G2(p0p0') ' [ I + ,  + - -4 - - - 

C c2 c2 c4 

Equation (3.16), with the kernel (3.17), is quite similar to 
the Belyaev-Budker equationJ as given in the representation 
derived in Ref. 3. The only difference is that the factor (ec)"  
(u , ' u ' )~  (see Eq. (22) ofRef. 3 )  in the kernel g<,, is replaced 
by 

v2  u ' ~  (vv') 
G2 (pop0') (uOuor) ' [1 f p;- + -4 - 

c2 

which can be rewritten in the form 

G2 [2(uiui') (p'p,') - (uipi) (uj'pj1 ) ]  ' .  (3.18) 

The reason for the difference is not particularly hard to un- 
derstand: electo-magnetic fields are produced by a current 
four-vector associated with particles, which is proportional 
to the integral of the distribution function over momenta, 
multiplied by the four-velocity u'. In general relativity theo- 
ry, gravitational fields are produced by the energy-momen- 
tum tensor, which is proportional to the analogous integral 
of the distribution function multiplied by u'u'. The upshot is 
that in a term that is second-order in the interaction (such as 
the collision integral), a quadratic function of the velocities 
( u , ~ " )  of the colliding particles in the collision integral is 
replaced by a fourth-order polynomial in the variables u'and 
u". Furthermore, it is quite natural that the square of the 
particle's electric charge, e', is replaced by Gp')p("/c2, inas- 
much asp0/c is the particle's relativistic mass. 

Integrating over k in (3.17), we obtain the following 
expression for gaI, : 
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P = v 2 + v f Z - ~ ( v v ' )  - C - ~ ( U ~ U ' ~ -  (vv') 2) 

In addition, %',,B : can also be expressed in terms of the spa- 
tial components u, of the four-velocity: 

where L = Sk - 'dk is the counterpart of the Coulomb loga- 
rithm. 

It is also straightforward to derive the covariant kinetic 
equation for the function f, of the eight variables q' and p, . 
This equation likewise differs from the analogous Belyaev- 
Budker equation in that ( e ~ ) ~ ( u ' u ; ) '  is replaced by (3.18): 

where 

&,,=2n~-'GZLnb [ ( u ~ u ~ ' ) ~ - I ]  -' [2(UkU;) (pip!') 

- (ukpk) (ul'pl') ] {-gv ( ukuA') Z-ll 
-u,u,-u~'u, '+(IL~u~') (u~u,'$.u, 'u~)) . (3.21) 

The collision integral obtained in this way diverges logarith- 
mically. Just as in plasma theory, it is possible to avoid this 
problem by introducing a cutoff in the expression for L. 

In Jk - 'dk, we assume an upper limit k _  equal to 1/ 
r,,, , where r,,, is the distance at which the kinetic energy of 
the colliding particles equals their potential energy. The low- 
er limit k,, is 1/R, where R = (v)t, (u) is the mean thermal 
velocity of the particles, and t is the age of the universe, since 
taking the expansion of the universe into account (see Refs. 
1,5, and 7 )  eliminates the divergences as k-0, the contribu- 
tion to the integral for L from the region k < 1/R being negli- 
gible. 

Note that, as expected, the right-hand side of the kinetic 
equation (3.21) that we have obtained vanishes when we 
substitute for f, the relativistic Maxwellian distribution 

Here A, is a normalization factor, ii, is the mean four-veloc- 
ity in the equilibrium state, T is the temperature, and k ,  is 
Boltzmann's constant. 

4. PHYSICAL APPLICATIONS 

We now use Eq. (3.16) with the kernel (3.19) to inves- 
tigate the interaction of the microwave background radi- 

ation with large-scale agglomerations of matter.' In this ap- 
plication, Fo becomes the photon distribution function, F,,, 
and F, is the distribution function appropriate to the large- 
scale agglomerations. Obviously, u-c and u'<c. Equation 
(3.19) therefore takes the form 

Substituting (4.1 ) into (3.16), ignoring the coordinate-de- 
pendence of F,,, and transforming to spherical coordinates 
in momentum space, we obtain 

Herep, = m,$d3p'F; is the matter density, and A,,, is the 
angular part of the Laplacian: 

1 1 a2 
Ae,q  = -- 

sin 0 dB 

We seek a solution of (4.2) expressed as an expansion in 
spherical harmonics: 

Substituting (4.3) into (4.2), it is not hard to show that all 
harmonics with I f 0  die out with time-that is, a homoge- 
neous, anisotropic distribution of ultrarelativistic particles 
becomes isotropic by virtue of their interactions with the 
large-scale agglomerations: 

L 

dt' 
fl.m(t, P)  (P)exp( - J -) 7 

10 

where r ( t )  = c3(8n-G2m,,p,l(I + I ) ) - ' .  
This effect is most significant as it relates to very small- 

scale fluctuations. Ignat'ev and PO~OV,' who first examined 
the interaction of ultrarelativistic particles with nonrelativ- 
istic massive particles and derived Eq. (4.2), reported that 
for m, - 10I6Ma, p- 10-30g/cm3 and t - 2 .  10lOyr. They 
also showed that the microwave background should be high- 
ly uniform on scales A0 < 10 arcmin. 
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