
Theory of recombination radiation in 2 0  systems 
Yu. A. Bychkovand E. I .  Rashba 

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR 
(Submitted 13 March 1989) 
Zh. Eksp. Teor. Fiz. 96,757-765 (August 1989) 

A theory is derived for recombination radiation from a quasi-two-dimensional ( 2 0 )  system in a 
strong magnetic field for the case of a three-electron cluster in a short-range model (the first two 
quasipotentials are taken into account). In the recombination process, one of the electrons is 
captured by a local center. The latter accordingly acquires an electric charge, and the two other 
electrons move in the field of this charge. Since the competing energies are all on the same order of 
magnitude, the intensities ofthe tranSitions to the ground state of the system and to its excited 
states are comparable. The intensity distribution in the spectrum depends on the initial angular 
momentum and spin of the cluster; it also depends on the interaction of the electrons with the 
center in the final state. For numerical reasons, the transition to the ground state of the system is 
usually the strongest, but the intensities of the other transitions may be comparable in magnitude. 
Under these conditions the transmission band must be asymmetric, with a more gently sloping 
low-frequency side. The event in which light is emitted is accompanied by a strong interaction of 
the internal angular momentum and the angular momentum of the center ofmass of the cluster. 
Trial functions with an arbitrary spin are proposed for a hard-core potential. There is the 
possibility of pronounced fluctuations in the spin ordering of the electrons, as a result of 
fluctuations in the Coulomb potential with a length scale on the order of several times the 
magnetic length (magnetic polarons). 

Recent years have seen additions to the list of the sys- 
tems and phenomena in which the electron-electron interac- 
tion in a 2 0  electron phase dominates. Coming under study 
in addition to Laughlin's spin-polarized liquid' have been 
spin-unpolarized or partially polarized  phase^,^-^ whose for- 
mation in n-GaAs is promoted by the small value of the g- 
factor.' There are pieces of experimental evidence based on 
transport measurements which point to the appearance of 
such phases.s99 Optical methods which have recently been 
developed for studying the effects of electron-electron inter- 
actions in 2 0  s y s t e m ~ ' ~ - ' ~  are opening up some new oppor- 
tunities for observing restructuring of spectra near critical 
values of the filling factor v, for measuring gaps, for observ- 
ing the competition between the Zeeman and Coulomb in- 
teractions (which is manifested in a field dependence of the 
g-factor enhancement), and for determining the energies of 
elementary excitations from the spectra of recombination 
luminescence. 

A circumstance of much importance for spectroscopic 
experiments of this type is that in a quantizing magnetic field 
H all the electron-electron interaction energies are of the 
same order of magnitude: e 2 / x l ( ~ ) ,  where x is the dielectric 
constant, and I (H)  the magnetic length. In a situation of this 
sort, the shake-up processes which accompany an optical 
transition in the electron gas are strong and cannot be dealt 
with by perturbation theory (in contrast with the case 
H = 0, when one can carry out an expansion i r ~ ' ~ . ' ~  EL I ,  

of fractional quantization by the presence of a condensate 
and gaps in the spectrum. 

So far, there has been no comprehensive theoretical 
study of these questions, which pose some major difficulties. 
The spectral pattern should obviously depend very strongly 
on Y.  In this paper we examine the emission spectrum on the 
basis of a model of a three-electron cluster. The optical tran- 
sition involves the capture of one of the electrons by a center, 
which is neutral in the initial state and has an electric charge 
in the final state. An advantage of this extremely simplified 
model is that it can be solved analytically, so explicit expres- 
sions can be found for the transition intensities and frequen- 
cies. From this model we can draw several qualitative con- 
clusions regarding the first two of the questions formulated 
above; the third requires further study. Some of these con- 
clusions appear to be of general applicability. This is true, for 
example, of the construction of trial functions with various 
degrees of spin ordering and also of the conclusion that the 
spin ordering in the 2 0  phase is highly sensitive to variations 
in the electric potential. 

1. THREE-PARTICLE SYSTEM IN A PERFECT CRYSTAL 

The coordinate part of the wave function of the three- 
particle system in a strong field H can be written in the form 

where EF is the Fermi energy). An important question in this F z )  = c m z l m z z m 2 z 3 m 3 ,  m1+m2+m,=M, mi>O, ( 2 )  
connection is the relation among the intensities of the optical ,... . 

lln, 

transition to the ground state ofthe system and of the tiansi- 
tions which are accompanied by Auger processes. Also of wherez; are the complex coordinates of the particles. A sym- 
importance are the specific differences in the emission from metric gauge has been adopted for the vector potential; the 
spin-polarized and spin-unpolarized (or partially polar- charge of the particles is e > 0; the particles are in the lower 
ized) state. Finally, there is particular interest in the struc- Landau level; and [(HI = 1. The Zeeman energy has been 
tural features which are caused in the spectrum in the region omitted, in accordance with a smallg-factor (the situation in 
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the case of n-GaAs). As in Ref. 15, in the construction of an 
equation for the coefficients q,), the matrix elements of the 
binary-interaction potential, 

written in the basis 

are conveniently rewritten through the introduction of a rel- 
ative coordinate (z, - z,) . quasi potential^'^^'^ correspond- 
ing to various angular momenta of the relative motion of the 
two particles then arise in a natural way: 

V,=<cp,l V(Iz1) lcp,), cpm= (nm!)-"2-(m+1)2m e x p ( - ( ~ ( ~ / 8 ) .  

(4) 

For a Coulomb potential we would have 
Vm = (2m - l)!!/m!2" + ' ; in particular, 
V,, = 1r1/2 / 2 ~ 0 . 8 9  and V, = /4=0.44. The basic re- 
sults can be derived through the use of only the two lowest 
angular momenta, i.e., through the retention of only 5, and 
V,. We then write 

where m; + mi = m, + m,, and the two similar terms, dif- 
fering through a cyclic permutation (c.p.), have not been 
written out explicitly. 

A spin-polarized system ( S  = 3/2) has been studied for 
short-rangei5 and Coulombi7 potentials. The quasipotential 
V, drops out by virtue of the Pauli principle, and from ( 5) 
we find 

Here J and Mc are the angular momenta of the internal mo- 
tion and of the center-of-mass motion, 
Z = (z, + z2 + z3)/3, Zi = zi - Z, and there is degeneracy 
with respect to Mc . The function FM is found from the Fok 
determinant for a spin-polarized gas, and it is proportional 
to the Vandermond determinant W(z,, z,, z,) by virtue of 
the well-known theorem." The energy spectrum is de- 
scribed by 

The levels oscillate as functions of& there is degeneracy with 
respect to Mc . 

In the state S = 1/2, S, = 1/2 the coordinate wave 
function multiplying the spin factor a(  1 ), a ( 2 ) 8 ( 3 )  is 

The function F, is related to f, as in (6) ,  and v = Vi/V,,. A 
dispersion relation follows from this system: 

{h-Vo[l- (-2)-'1 }ao-3(-2)-J(Jv)'"Voai=0, (9)  

For J < 3  there is a single polynomial which satisfies the sym- 
metry conditions of the permutation group. Accordingly, 
the two terms in (8)  are the same, and there is a single energy 
level: 

For J >  3 the number of levels increases to two in accordance 
with the general properties of a system with N = 3, S = 1/2 
( N  is the number of particles; $63 in Ref. 19). The existence 
of an incompressible fluid results from the behavior of the 
hard-core potential,16 which reduces, roughly speaking, to 
the dominance of the V, with the smallest m. For a Cou- 
lomb potential V( Izl), this condition actually holds. We ac- 
cordingly assume V,,> V,. We see that for J < 3  we have 
A :1/2' - Vo for all J. At J)4, however, the smaller of the 
roots is 

and the corresponding wave function is 

To leading order in u< 1, the function f, thus has a first- 
order zero in terms of all differences lz, - z, 1, regardless of 
the spin state of the corresponding electrons. In contrast 
with the S = 3/2 case, the appearance of W here is not dic- 
tated by the permutation-symmetry conditions. The scale 
value A - V, arises because of the zeros in (12) with 
respect to all differences (z, - z, I .  The upper root of Eq. (9 )  
is described by A,( '/*) - V,,. 

It is interesting to note that according to ( 1 1 ) the quan- 
tity A 1/2 oscillates as a function of J; the oscillations in ( 7 )  
and ( 11 ) are out of phase. At a given value of J ,  the energies 
are very different; for example, A :"') -- 3A :I /" .  If, however, 
we compare the minimum values 0f/2('/~' and A"/2' , name- 
ly A L3/" = 0.5625 and A = 0.6136, we find that the dif- 
ference between them is considerably smaller. We also need 
to allow for the circumstance that a difference in J indicates 
a difference in the average densities of these states, as follows 
from an estimate based on the customary formula 
v = N ( N  - 1)/2M. If we equate the values of M and v, con- 
sidering a state S = 1/2 with J = 5, M, = 1, and M = 6, we 
find that the difference remains at a level - 10%. If, how- 
ever, we assume Mc = 0 and adopt a dependence A cc v " ~ ,  
we find that, by virtue of the value (6/5) i / 2 A  ?/') = 0.6162, 
the difference from /2 :I/'' decreases to -0.5%. Remark- 
ably, for homogeneous systems the typical difference in the 
energies between states with different spin orderings is - 1 % 
(Refs. 5 and 6).  In all of these comparisons one must of 
course bear in mind that for a cluster, which is a highly inho- 
mogeneous system, the reduction to an average v is extreme- 
ly arbitrary. Furthermore, one should not underestimate the 
pronounced difference between /2 and A $'/2) at a given 
value of J. It seems natural to suggest that this difference 
indicates a pronounced change in the magnetic order in re- 
gions with a significant short-range change in the Coulomb 
potential, which leads to the formation of clusters. We are 
essentially talking about the formation of magnetic polarons 
in such regions. 

The observation above that it is possible to represent the 
wave functions of the low-lying states as in ( 12) can be gen- 
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eralized to systems with an arbitrary number of particles N 
and an arbitrary total spin S. Such states of course exist un- 
der the condition Y <  1; for N =  3, this condition corre- 
sponds to J>4 .  We construct the functions in accordance 
with the customary Young tableau.19 We assume that the 
determinant W(z) of all arguments appears in f as a factor. 
We denote the coordinates z, which correspond to the first 
column of the Young coordinate tableau by x,, while those 
corresponding to the second column are y, . The function of 
N arguments (for definiteness, we let N be even) 

is symmetric with respect to all rows. This symmetry follows 
from the antisymmetry of Wwith respect to all arguments. A 
subsequent antisymmetrization in both columns leads to the 
expression 

N 
(z) a w (z) (-1)' (2S+k) ! (- - S-k) ! o r , 2 - ~ - k  ($1 ok (Y). 

h 
2 

where u, are symmetric polynomials of degree k; e.g., 

With S = 0, expression ( 14) reduces to 

The permanent (per) in (16) differs from a determinant in 
that a symmetrization instead of an antisymmetrization is 
carried out in it. Function ( 14) describes a state with a spin 
S, an energy R - Vi and Y < 1. Since the degree of W(z) is 
N ( N  - 1 )/2, while the degree of the second factor in ( 14) is 
( N / 2 )  - S, in the macroscopic limit N- cc the filling factor 
approaches unity, v - +  1. The function given by ( 16) (multi- 
plied by WZP , wherep is an integer) was recently proposed4 
as a trial function for the state S = 0, Y = 1/ (2p + 1 ). Its 
accuracy for a many-electron system can be judged to some 
extent on the basis of the results for N = 3. V,, = 2V,, then 
the exact value is R :"" = 1.125 V,. The use of ( 12) as a trial 
function yields A :"" = 1.25; i.e., the error is =: 10%. The 
approximate expression ( 11 ) leads to R --, 1.35. A con- 
siderably poorer result, R :"'=: 1.5, is found if we omit the 
first term in (8) .  That term corresponds to configurations 
which are unfavorable from the energy standpoint, in which 
two particles are simultaneously in an m = 0 orbital. The 
mechanism for the lowering of the energy by --, 30% asso- 
ciated with the incorporation of this term might be interpret- 
ed in terms of resonant m i ~ i n g . ~  The incorporation of unfa- 
vorable configurations makes possible a resonance 
z:z: zz:z2, which results in a substantial lowering of the 
total energy. 

2. TWO-PARTICLE SYSTEM IN THE FIELD OF A DEFECT 

If there is a three-particle system in the initial state, and 
if one of the particles recombines with a neutral center, than 
the final state will have a two-particle system which is mov- 
ing in the field of a charge center ( a  situation analogous to 
that of Refs. 10 and 11). The system of equations corre- 
sponding to (5)  is 

+ (um,+umJ Cmtm2. 

Here 

U( I z I  ) is the potential of the charge center, and the functions 
$, are determined by (3) .  If we assume that U ( / z / )  is the 
potential of a Coulomb center which is lying in the plane of a 
2 0  layer, then we have Urn = 21/2 V,,, ; i.e., the potential of 
the defect is not small. This potential does weaken if the 
defect lies outside the 2 0  layer. We will restrict the discus- 
sion below to the first two pseudopotentials, U,, and U,. 
When there is a symmetric defect, the only quantum number 
is the total angular momentum M. In the triplet state ( a  spin- 
polarized system) we would have 

The dispersion relation for the higher-order angular 
momenta is 

At M < 4  there are only two independent functions which 
satisfy the antisymmetry condition, so the number of roots of 
Eq. ( 19) is two (the trivial root R = 0 has no physical mean- 
ing). A third root appears at M = 5. The wave functions are 

In the S = 0 singlet state at M>3 the dispersion relation 
takes the form 

and the wave functions become 

The fact that the dispersion relation for a spin-unpolarized 
state contains V, alone (not V, ) for all values of M i s  a specif- 
ic feature of the two-particle problem. If the number of parti- 
cles were large, the lower part of the spectrum with R - V, 
would have developed, in total analogy with Sec. 1. This is a 
significant limitation of this model, which may leave its im- 
prints on an analysis of the emission spectrum (Sec. 3). 

I t  is convenient to write the eigenfunctions in terms of 
the coordinates of the particles [ (8 ) ,  (20),  and (22) ] be- 
cause the expressions will then hold for arbitrary M. Practi- 
cal calculations are often more conveniently carried out in 
terms of relative coordinates. 
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3. OPTICAL TRANSITIONS 

Here are the basic assumptions which we will make be- 
low in the calculation of transition probabilities: Transitions 
are allowed; the spatial size of the wave function of the impu- 
rity center at the point z = 0 is small in comparison with 
I ( H ) ;  the Zeeman splitting at the impurity center can be 
ignored; and M is conserved by virtue of the presence of a 
symmetry axis. The probability w for a transition from the 
state M, J, Si of the three-particle system to the state M, S of 
the two-particle system satisfies the proportionality 

where \V:)( 1,2) is the complete coordinate-spin wave func- 
tion of the final state. In order to find from the complete 
wave function of the initial state, \V,E: ( 1,2,3), we need to set 
Z ,  = 0 in the latter and discard the spin wave function of the 
corresponding electron. The wave functions \V:) and Y:: 
are constructed in the standard way from the functions FM 
and f, given in Secs. 1 and 2. We adopt states which are low 
on the energy scale, with a fixed value of J, as initial states. 

The initial state Si =3/2 

We set U, = 0, and for the moment we restrict the dis- 
cussion to the case M, = 0. Transitions are possible only to a 
triplet state. The behavior of u) as a function of J at J>3 
(average density v 2 1 ) is given by 

where 7 + = R + /(R + - U,) ,  and R + are the roots of Eq. 
( 19) ( 2  > A _  ) . The difference between the values of w for 
transitions to the levels R + is determined by the last factor. 
A calculation of the electron density at the point z = 0 on the 
basis of the function (20) yields 

Sincep increases monotonically with increasing 7, w reaches 
a maximum for that root for which p ( z  = 0)  is at a mini- 
mum. Since the capture by the impurity occurs at the point 
z  = 0,p ( z )  is lowered at this point, and the result found here 
shows that the transition probability is at a maximum for a 
transition to that state in which this dip cannot be "filled in" 
by the electron-electron interaction. Less definite is the an- 
swer to the question of which of the roots R + , R _ corre- 
sponds to the larger value of w. As a rule, w is larger for the 
transition to the lower level, R _ . The opposite situation is 
possible only if ( 1 - M /2M- ) V, > U,,. A necessary condi- 
tion for the satisfaction of this inequality is J> 5. In the most 
favorable case, J -  SJ,  the condition V, > U,, is sufficient. 
The comparative estimates of V, and U, given above show 
that in general we would naturally expect the opposite in- 
equality to hold. 

Figure l a  shows the behavior of the energy levels and of 
the intensities of the transitions to these levels from the 
5= 3, M ,  = 0 state as a function of the parameter 
u = U,,/V,. The intensity of the transition to level R + falls 
off rapidly with increasing u. Parts band c of Fig. 1 show the 
corresponding behavior for the cases in which the initial 
states are the M, = 1 and M, = 2 states. With increasing 
M,,  the relative intensity of the transitions to the excited 

FIG. 1. The energy levels A +  of a two-particle system in the field of a 
quasipotential U, in the S = 1 state and probabilities for transitions to 
these levels from the S = 3/2, J = 3 three-particle state versus the dimen- 
sionless potential of the defect, u = U J V , .  Solid lines-The lower level, 
A ; dashed lines-A + . The A scale is in units of V , ;  the intensity w is in 
arbitrary units, the same for all three parts of the figure. a) M, = 0; b) 
M, = 1; c )  M, = 2. 

state of the system increases; at M, = 2, these transitions 
dominate if u 4 1. Their relative importance falls off rapidly 
with increasing u, however, so that the relation between the 
intensities becomes the opposite at u 2 1. This behavior is 
also seen at larger values of Mc . If, for example, we adopt as 
the initial states the states with J = 3 and arbitrary M, then 
we have 

Determining 7 + from ( 19) with U, = 0, we see that the 
increase in w with Mc at small values of u which is evident 
from Fig. 1 gives way to a decrease in the limit Mc - a,. In 
this region the exponential decrease in w with increasing M, 
occurs over the entire range of values of u. For the stronger 
band the behavior is ( 2 / 3 ) M c ,  and that for the weaker band is 
(1/3lM'. In the region u < 1, the low-frequency band, which 
corresponds to a transition to the excited state of the center, 
is strong, while for u > 1 the high-frequency band, corre- 
sponding to a transition to the ground state of the center, is 
strong. 

Interestingly, in the course of the recombination at the 
defect there is an intense interaction of the angular momenta 
J and Mc , which correspond to the internal motion and to 
the center-of-mass motion. The two motions are coupled 
through the recombining particle, which is involved in both 
motions. This effect is general in nature. For example, in the 
macroscopic limit, in regions of fractional quantization, it 
corresponds to an exchange of angular momentum between 
quasiparticles and the condensate. 

The initial state S, = 1 /2, J= 4, M, =O 

We chose the J = 4 state as the initial state, since at this 
value of J the three-particle system first acquires levels with 
R - v,: A distinctive feature of this situation is that the emis- 
sion spectrum consists of two parts, which correspond to 

433 Sov. Phys. JETP 69 (2), August 1989 Yu. A. Bychkov and E. I. Rashba 433 



transitions to singlet ( S  = 0 )  and triplet ( S  = 1 ) final states. 
All the expressions for 2 ,  and w, can be derived on the 
basis ofSecs. 1 and 2. At M = 4, transitions to t h e S  = 1 state 
are allowed even in the very simple model with U, = 0. 
Transitions to the levels2 , with S = 0, on the contrary, are 
allowed only in first order in U,/V, and V,/V,,. For S = 0, 
U ,  = 0, however, there is in addition a strong allowed transi- 
tion to the 2 = 0 state, which acquires,for small U,, a finite 
energy /1 = 3 U l / 7 .  Figure 2 shows the level scheme of the 
two-particle system and the distribution of the amplitudes A 
corresponding to the intesities of transitions to the corre- 
sponding levels ( w  cc A 2 ,  for two sets of parameter values. 
We note the following aspects of these spectra. First, transi- 
tions to the singlet (spin-unpolarized) state are on the whole 
stronger than the transitions to the triplet state. This is true 
despite the fact that two of the three transitions to the singlet 
state are forbidden in the lowest-order theory. The param- 
eter values which allow these transitions, however, are actu- 
ally 1. Second, although the transitions to the states which 
lie low on the energy scale are the most intense in all of the 
spectra in Fig. 2 (at  any rate, within the "singlet" or "trip- 
let" series), transitions to excited states are fully competitive 
in terms of intensity. This tendency is particularly clear in 
the singlet spectrum in Fig. 2a, which corresponds to a real- 
istic relation among the values of the competing parameters. 
The distance between the frequencies of the individual bands 
is on the order of V,-the characteristic energy of the Cou- 
lomb interaction. 

We have one final comment, of a general nature. We did 
not introduce a Zeeman energy above, so we did not calcu- 
late the g-factor enhancement. It is nevertheless clear that 
since the frequencies of all the transitions include the differ- 
ence between the Coulomb energies in the initial and final 
states, it is this difference which will determine the g-factor 
enhancement which is optically measurable. The relative 
magnitudes of the various contributions depend on the spe- 
cific optical experiment. On the whole, however, we would 

not expect the results found in optical measurements to 
agree with those found in transport2' measurement, since 
the latter are determined by the exchange energy2' only in 
the state which is the initial state in a luminescence experi- 
ment. 

4. CONCLUSION 

In the problem of the spectroscopy of 2 0  liquids, it is an 
extremely complicated matter to describe optical transitions 
which involve a strongly interacting electronic system. For 
example, one cannot use the approximation of a self-consis- 
tent field here, in contrast with the spectroscopy of multiex- 
citon-impurity complexes in the Dean-Kirzhenov model. In 
contrast with the Mahan-NoziZres problem in the theory of 
x-ray spectra, we cannot ignore the Coulomb interaction of 
the electrons in this case. Our recourse in this situation con- 
sists of palliative approaches which start from an examina- 
tion of very simple models. Analysis of the model of a three- 
particle cluster leads to the following basic conclusions. 

In agreement with the fact that in a strong magnetic 
field all the competing energies in the electronic system are 
comparable in magnitude to the energy of the Coulomb (ex- 
change) interaction, the intensities of the recombination 
transitions to the ground state and to electronically excited 
states are comparable in magnitude. For numerical reasons, 
the energy of the transition to the ground state of the system 
is usually larger, but transitions to the excited states may be 
competitive in terms of intensity. One would thus expect an 
asymmetry of the emission band, with an extended long- 
wavelength side. The half-width of the band would be on the 
order of the characteristic energy of the electron-electron 
interaction. If the initial state of a cluster is spin-unpolarized 
( S  = 1/2), then the spectrum of transitions to the singlet 
final state will be the most intense. In the course of the emis- 
sion of light, there is a strong interaction between the inter- 
nal angular momentum of the cluster and the angular mo- 
mentum of the center of mass; the shape of the spectrum 
depends strongly on the magnitude of the latter angular mo- 
mentum in the initial state of the system. 
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