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The local and integral electrical characteristics of a piecewise-homogeneous binary medium with 
a checkerboard structure are studied. This system is studied as an exactly solvable model of plane, 
heterogeneous, isotropic systems with equal concentrations of components. A physical 
interpretation is offered for the symmetry transformations of such systems. The form of both the 
known symmetry relations and the generalizing expressions for these relations derived in the 
present paper is shown to be determined primarily by the conditions for the flow of an external 
current in the system. 

1. INTRODUCTION 

In a study of the effective conductivity and average elec- 
trical characteristics of binary thin films with equal concen- 
trations of randomly arranged inhomogeneities, Dykhne' 
found that such systems have an exact analytic description if 
their components are under geometrically equivalent condi- 
tions. The method for solving the problem turned out to be 
comparatively simple because the 2 0  equations for the 
steady-state electric field for media with the specified prop- 
erties allow certain linear symmetry transformations. These 
transformations were interpreted as reciprocity relations for 
the two systems, which can be obtained from each other by 
interchanging the resistivities of the corresponding cells2: 

P l tP2 .  
Falling in the category of these heterogeneous systems, 

as was pointed out by Dykhne,' is a piecewise-homogeneous 
medium with a regular, periodic arrangement of compo- 
nents in a regular checkerboard structure. The black and 
white squares of the checkerboard are identified with differ- 
ent values of the resistivity. This medium is of interest be- 
cause it has a clearly defined structural symmetry, which 
substantially simplifies the study of its local and macroscop- 
ic properties. It thus becomes possible to point out a fairly 
simple and completely transparent method for finding sym- 
metry transformations of field quantities and to show how 
they depend on the orientation of the external current vector 
in the system. The physical meaning of the local symmetries 
of the field is determined in the process. These local symme- 
tries are actually linear relations between the vector current 
densities (or the vector electric fields) at complex-conjugate 
points in adjacent cells. 

Since the inhomogeneous medium is isotropic on the 
average, its effective parameters do not depend on the direc- 
tion in which the external current flows in the system. This 
cannot be said of the average characteristics of the distribu- 
tions of the currents and fields with respect to components, 
in particular, the energy dissipation and dispersion of the 
fields. For example, Joule energy is evolved at equal densi- 
ties in the black and white cells, regardless of their resistivi- 
ties, and the system as a whole is heated uniformly. This 
result is correct for a current distribution such that the exter- 
nal current in the medium is directed along any one of the 
diagonals of the squares. 

These and certain other properties of the system can be 
established in two independent ways: through the direct ap- 
plication of local symmetry transformations and their aver- 

age analogs; or through the use of the results of a solution of 
the boundary-value problem on the current distribution. 
The two approaches complement each other. The second 
approach makes it possible to lay a rigorous foundation for 
the existence of generalized symmetry transformations. 

The inhomogeneous medium in which we are interested 
will be discussed below in terms of its electrical properties. 
However, a completely analogous approach could be taken 
to calculate the thermal, diffusive, magnetic, and other phys- 
ical fields in such a medium. The formulation of the bound- 
ary-value problem for these other fields is mathematically 
equivalent. 

2. BASIC EQUATIONS 

It is thus assumed that the continuous, piecewise-ho- 
mogeneous binary medium consists of square cells in which 
the resistivityp takes on different values in a doubly periodic 
alternation: p = b, ,p2) .  

The steady-state current flow in this conducting medi- 
um is described by the equations 

rot E=O, div j=0, E=pj, (2.1) 

where E = {E,,E2) and j = G,,j,) are the piecewise-uni- 
form vector electric field and vector current density, respec- 
tively (the subscripts 1 and 2 specify that the corresponding 
quantities pertain to cells with the resistivity values p ,  and 
~ 2 ) '  

Consider a 2 0  electric field in the xy plane, which coin- 
cides with the medium. In this case one can use a complex 
representation of the field and current vectors: 

According to the original equations, (2. I ) ,  these quantities 
are analytic functions within the cells (at the boundaries of 
the cells, their analyticity is disrupted, since the relations 
curlj # 0 and divE # 0 hold the contour lines). 

For complex vectors ( 2 . 2 ) ,  Ohm's law remains the 
same in form: 

Going over to the plane of a complex variable simplifies 
the calculations, and in the solution of the boundary-value 
problem it accordingly becomes possible to apply the effec- 
tive methods of the theory of analytic functions. It should be 
kept in mind here that while the complex vectors E ( z )  and 
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j (z)  are equal to the actual vectors E and j in magnitude they 
do not have the same direction. They specify the field pattern 
which is the mirror image of the physical field and which 
transforms into the latter if the operation of complex conju- 
gation is carried out on the complex vectors (2.2). 

3. BOUNDARY CONDITIONS 

If there is an ohmic contact at a boundary between the 
unlike electrically conducting media, the normal compo- 
nents of the current density vector and the tangential com- 
ponents of the electric field vector are continuous: 
j,+ = j n ,  E ,+ = E ; . By virtue of the symmetry, it is suffi- 
cient to calculate the field in two adjacent cells, S, and S2 
(Fig. 1 ). The field pattern is reproduced in a double periodic 
fashion in the other squares. 

For the piecewise-analytic vector j (z)  = (j, (z), j2(z))  
in cells,, the boundary conditions can be written in the form 

where n ( t )  is the outward unit normal to L, which is the 
contour bounding region S,. 

The boundary conditions (3.1) will be used in a sub- 
stantial way below in the derivation of the symmetry trans- 
formations of this system, so the representation of these con- 
ditions will be discussed in somewhat more detail. 

In expanded form, conditions (3.1 ) become 

t= L", 

where the superior bar means complex conjugation, and L, 
and L, are respectively the horizontal and vertical parts of 
the contour L = L, UL,. 

After one of the vectors, e.g., - j, ( t ) ,  is eliminated 
from each pair of equalities in (3 .2) ,  and after the relative 
resistivity 

is introduced, the boundary conditions become 

The local boundary equalities must be supplemented 
with the integral relations 

FIG. 1. 

which specify the vector external current J = J, - iJ, on a 
step of one cell. 

Equations (3.4) have been written for contour L, which 
bounds region S,.  Boundary conditions on boundary line L ' 
of cell S2 (Fig. 1 ) are written in a corresponding way: 

(1.-A) j 2 ( t ) = j l ( t ) + b 1 ~ ~ ,  i ~ L g l ;  

Here L ', and L ', are respectively the horizontal and vertical 
parts of contour L '. 

4. SYMMETRY TRANSFORMATION 

The primary distinguishing feature of a heterogeneous 
medium with a checkerboard structure is the presence of a 
variety of symmetries, which reflect its structure and color 
image. The symmetry is obviously also reflected in the for- 
mation of physical field in the system. To determine the sym- 
metry, it is necessary to try to find the relation between the 
current distributions in two adjacent cells with different re- 
sistivities, p ,  and p, (Fig. 1 ). 

The vector current densities j, (z) and j2 (z) at complex- 
conjugate points with respect to the z axis can be compared 
by means of the linear transformation 

where Tis, generally speaking, some complex function of the 
variable z which is to be determined. 

The transformation (4.1 ) means that the vector j, (z) is 
mapped in a mirror fashion out of region S2 to the point in 
region S ,  at which the vector j, (z) is taken stretched out in 
modulus by an amount / T I, and rotated through an angle arg 
T, being brought into coincidence with the vector j, (z). 

The transformation which is the inverse of transforma- 
tion (4.1 ) is written 

Remarkably, under certain conditions, which are deter- 
mined exclusively by the nature of the flow of the external 
current in the system, the value of Tremains constant for all 
points in each cell. 

To find an explicit expression for T i t  is necessary to 
make use of the boundary conditions (3.4) and (3.6). When 
transformations (4.1) and (4.2) are used, these conditions 
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transform into each other, thereby reflecting the fact that the 
field patterns in adjacent cells are linearly similar. 

For example, the boundary conditions on the horizon- 
tal lines of square S,  [the first equality in system (3.4) ] are 
transformed by (4.1 ) and (4.2) to the form 

or, equivalently, 
- - 

(I+-A) TTj2(t) =j,(t)-ATT-'j,(t), t=L,'. (4.3) 

The last equality is the same as the corresponding condition 
in (3.6) if 

It follows that 

The same expression for T could be derived from the 
transformations of the boundary conditions on the vertical 
lines. 

The relationship between the current density vectors in 
adjacent cells, (4.1 ), is thus as follows according to (4.4) 
and (4.4'): 

The sign in front of the square root in (4.4) and (4.5) is 
important and absolutely must be taken into account in the 
calculation of the electric field. As will be shown below, the 
choice of sign is determined by the direction in which the 
average (or external) current flows in the system. 

The transformation (4.5) was derived in vector form by 
Dykhne, who employed considerations different from those 
used here. He did not take account of the presence of two 
signs on the square root.' His approach is legitimate if the 
calculations are restricted to the effective properties of the 
inhomogeneous medium. 

In addition to this symmetry, of the reflection of the 
field pattern in each cell, there is one more symmetry, which 
can be expressed by relations of the following type: 

j , ( z ) = ~ j , ( F ' ) ,  jz(z) =Q~,(E') (zb=*iz), (4.6) 

where the complex numbers Pand Q are determined with the 
help of the boundary conditions. The transformations (4.6) 
demonstrate a reflection symmetry with respect to the dia- 
gonals of the square cells. They send the boundary condi- 
tions on the horizontal lines into conditions on the vertical 
lines, and vice versa. For example, substitution of (4.6) into 
the first equality in (3.4) puts the latter in the form 

which can be written 
- -  

(I+A) j,(t) =P ' - iQj2( t ) -~~- '~ j , ( t ) ,  EL,.  

This equality is the same as the second condition in (3.4) if 

i.e., if the numbers P and Q have the values 

Here, as in the earlier equations, the particular sign is deter- 
mined by the choice of the direction in which the external 
current flows in the system. 

A similar result is found if the boundary conditions on 
the vertical lines are sent by rotation transformations (4.6) 
into conditions on horizontal lines. 

An inhomogeneous system with a checkerboard struc- 
ture thus allows reflection symmetry transformations of the 
following type: 

- 
jk(z)=*ijk(Ft) ( l ~ = l , 2 ) .  (4.9) 

The symmetries which we have identified show that lin- 
early similar field patterns are formed in adjacent cells. A 
current distribution of this sort is established, however, only 
for a completely definite direction of the external current 
flow in the system, a will be shown below. 

5. AVERAGING OFTHE ELECTRIC FIELD 

By virtue of the periodicity of the structure, the field 
averaged over the entire inhomogeneous medium can be 
found by simply averaging the local field in two adjacent 
cells: 

where S is  the sum of the areas of cells S ,  and S,: S = S,  US, 
(Fig. 1). The field averaged in this fashion consists of the 
sum of fields of two cells, differing in resistivity: 

The average field in the cells is uniform; by virtue of 
(5.2) the average field in the system is then seen to be uni- 
form also. Accordingly, with the piecewise-homogeneous 
medium is associated a medium with some constant effective 
resistivity p,, : 

<E>=pet,<j>. (5.3) 

The resistivityp,, is found by means of average symme- 
try transformations. The application of averaging operation 
(5.1 ) to expressions (4.5) and (4.9) within a single cell, e.g., 
S, ,  leads to the relations 

Hence 

and also, by virtue of Ohm's law, 

Averaging in cell S, again leads to expressions (5.5) 
and (5.6). 

From (5.2), (5.3), (5.5), and (5.6) one finds 

pt'jj= (p1pz)". (5.7) 

The effective conductivity or the system is determined by the 
expression 

which is of the same form as the preceding expression, from 
which it was found through an inversion of the resistivities 
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( a  = l /p).  These results were derived by Dykhne in Ref. 1 
by a different method, which also made use of the symmetry 
properties of the system. 

Relations (5.4) can be used to find the meaning of the 
different signs on the square root in symmetry transforma- 
tions (4.5) and (4.9). Taking the positive value of the root, 
for example, one finds 

We thus see that the average current (which has the same 
direction and the same magnitude as the external current, as 
we will see below) flows along diagonals in one direction in 
all of the square cells. 

If one takes the negative root, from (5.4) one obtains 
the equalities 

~ixl )=(~z/pi ) 'h( juz) ,  (jylj=(p2/pi)'(js2), (5.10) 

In this case the average current in the system is directed 
along the other diagonal of the squares. 

The existence of two signs in the symmetry transforma- 
tions does not affect the calculations of the effective resistiv- 
ity, since the inhomogeneous medium is isotropic on the 
whole, and its (electrical) conduction properties do not de- 
pend on the direction in which the average current flows. It 
is important, however, to take the signs into account in these 
transformations from the standpoint of the completeness of 
the solution of the boundary-value problem of the current 
distribution in the system and its average characteristics. 

Using (5.2)-(5.6) and the average Ohm's law in the 
cells, relations between the electric fields and the currents, 
averaged over the individual cells and over the system as a 
whole, are easily found: 

A measure df the dispersion of the field dan also be deter- 
mined: 

The local and average symmetry transformations in 
(4.5) and (5.4) make it possible to prove that the values of 
the Joule dissipation are equal at complex-conjugate points 
in adjacent cells: 

pljl(z)j,(Z) =pziz(f m) . (5.13) 

It can also be shown that, on the whole over the cells we have 

Relations (5.1 1 )-( 5.14) were derived by Dykhne. ' We wish 
to stress that in the system under consideration here these 
relations hold only if the external current is flowing along a 
diagonal of the squares, i.e., only under the reflection sym- 
metry transformation (4.5). For all other directions of the 
external current in the system, neither the symmetry rela- 
tion (4.5) nor relations (5.1 1 )-(5.14) hold. 

As a characteristic of the overall properties of the sys- 
tem, the symmetry transformation (4.5) allows one to dis- 
tinguish the quantity 

which is, for arbitrary values of the resistivities of the com- 
ponents, always equal to the ratio of the effective parameters 
of their average values: 

This result involves, along with quantities already intro- 
duced, the use of 

In this sense, In is an invariant of the system. This quan- 
tity has the range 

The value In = 0 corresponds to the case in which the resis- 
tivity of one of the components of the inhomogeneous medi- 
um is finite, while that of the other is zero (or tends toward 
infinity); i.e., a medium of this type is an insulator (or an 
ideal conductor). Here one has I Al = 1. If In = 1, then the 
medium is homogeneous: p,  = p2 and A = 0. 

6. STUDY OFTHE BOUNDARY-VALUE PROBLEM 

The reflection symmetry transformation (4.5) is valid 
only if the vector external current is directed along a diag- 
onal of the squares. This transformation is therefore a partic- 
ular transformation. It is natural to ask whether it is possible 
to derive a general expression for this transformation which 
would be valid for any direction of the external current in the 
system. Apparently the simplest way to find the answer is to 
work from a complete analytic solution of the original prob- 
lem. 

The standard approach to the solution of the Marku- 
shevich boundary-value problem with boundary conditions 
as in (3.4) and (3.5) requires some rather lengthy calcula- 
t i o n ~ . ~  It becomes a substantially simpler matter to solve this 
problem by making immediate use of the symmetry transfor- 
mation (4.5). Boundary relations (3.4) then transform into 
the boundary conditions of the ordinary two-element Rie- 
mann problem, and its solution can be constructed by known 
methods. It is necessary to recall that (4.5) contains two 
signs. Considering each of them separately simply leads to 
particular solutions; the general solution of the problem is 
found as the sum of these particular solutions. 

For example, in the case in which the positive sign is 
taken in the transformation (4.5),the boundary conditions 
(3.4) become 

A direct check shows that a solution of this problem is given 
by the expression 
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where C ,  is a real constant; sn, cn, and dn are the elliptic 
functions; K is the complete elliptic integral of the first kind 
(for a square, K = 1.854); h is the side of a square; and the 
parameter y is defined by 

1 
y = - arctg 

A 
X 

)= srctg ( p1-p2 ( ( l-A2)112 n 2 ( ~ 1 ~ 2 )  

Thecurrent distribution in theadjacent cell is found with the 

jz(z)  = c ~  (%)'la exp {;( tl)j ( cn ) . (6 .4)  s n u d n u  
In these expressions, the constant C ,  is found from the 

integral conditions (3 .5 ) ,  in which the vector J i s  treated as 
given. Calculations lead to 

Here I is a definite integral, given by 

where is the gamma function. 
In place of the vector external current J i n  this problem 

one could specify the potential drops over an interval equal 
to the cell size: 

h h 

Calculations reproducing the derivation of ( 6 . 5 )  lead to 

The external current and potential drops are related by the 
integral Ohm's law: 

From ( 6 . 5 ) ,  ( 6 . 6 ) ,  and ( 6 . 7 )  the known result 
pen- = ( p , p 2 )  follows. 

The effective resistivity of this inhomogeneous medium 
can thus in principle be determined in two ways: first, by 
means of average currents and fields, with the help of the 
symmetry transformations which have been established; sec- 
ond, from the integral Ohm's law, in which the external cur- 
rents and potential drops are calculated from the results of 
the solution of the boundary-value problem. 

The solution found for the boundary-value problem 
shows that the current distribution in the present heterogen- 
eous system has the following features. The flow of current 
from one square cell and to another is accompanied by a 
concentration of the current near two corners which lie on 
the same diagonal of each square. Directly at this points, the 
current density vector increases without bound. Near the 
two other corners of the square the current density vector is 
bounded and right at the corners it vanishes. The average 
current in the system, which is also the external current 
flowing in the medium, is directed along the corresponding 

diagonal of the squares. The currents averaged over the 
black and white cells are not the same in magnitude. 

A second particular solution of the boundary-value 
problem is found under the assumption that the current dis- 
tribution in the system has the same symmetry, given by the 
transformation (4 .5 ) ,  in which the negative sign is taken. 

In this case, the boundary conditions (3 .4 )  become 

These results differ from the corresponding conditions in 
(6.1 ) only in the coefficients of the vector j, ( t ) :  The moduli 
of the complex coefficients are the same in the two cases, 
while the arguments are opposite in sign. This difference is 
reflected in the form of the solution of the Riemann bound- 
ary-value problem, which is now 

c n u  -27  

i t  (2) =c2 exp{- +(a + 7 ) )  ( sn dn u )  , 
(6 .9 )  

j 2 ( z ) = ~ , ( ~ ) " e x P { $ ( - ~ + y ) } (  Pz s n u d n u  'nu 

Here C, is a real constant, determined by the integral condi- 
tions of the problem, (3 .5 ) ,  and the notation is otherwise the 
same as in (6.2)  and ( 6 . 4 ) .  

Although the particular solutions are given by superfi- 
cially similar expressions, they actually describe different 
field patterns. For example, while the first particular solu- 
tion is characterized by a concentration of the current, with a 
theoretically unbounded growth of the current at a certain 
pair of corners of the squares, lying on a diagonal, the second 
solution vanishes at these corners and increases without 
bound at the other pair of corners. In other works, the singu- 
lar and nonsingular points of the two solutions trade places. 

In both the first and second cases, the external current 
in the cells of the system is directed along diagonals of the 
squares-different diagonals for the two solutions. 

The sum of the particular solutions found is also a solu- 
tion of the boundary-value problem: 

cn u -'7 
+~,exp{--%(++y)}(  s n u d n u  ) , z=s1 ;  

(u=Kzlh)  . (6 .10)  
As is well known, under general assumptions a linear 

combination of particular solutions with arbitrary real coef- 
ficients is a general solution if the boundary conditions are 
satisfied. According to (6 .10) ,  with any prespecified vector 
external current J = J, - iJ, flowing in the system we can 
associate a sum of particular solutions for each of which the 
current is directed along a diagonal, and the given current J 
is found upon summation. 

The complete solution of the problem has some features 
which distinguish it from the particular solutions. While the 
latter are characterized by an unbounded growth of the cur- 
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rent density at one pair of corners of the square cells and by 
zero values of the current density and the other pair, in the 
complete solution the vector current density has integrable 
singularities at  all corners of the squares. This result means 
that in general the flow of a current out of a cell into the 
adjacent cells is accompanied by a concentration of the cur- 
rent near the corners of the square cells. The unbounded 
increase in the current at the corners of the squares results 
from the particular way in which the cells make contact at 
the corner points and the tendency toward a predominant 
current flow through the cells with the smaller resistivity. 

The constants C ,  and C?, which are determined by 
( 3.5), can be described by the expressions 

We thus see that when the components of the external cur- 
rent are equal ( J ,  = +_ J, ), i.e., when this current is flowing 
along one of the diagonals of the square cells, one of the two 
constants is zero, and the complete solution becomes the 
corresponding particular solution. 

7. GENERALIZED SYMMETRY TRANSFORMATION 

A general solution of the boundary-value problem for 
the spatial distribution of the current in the system is invar- 
iant under linear symmetry transformations similar to those 
characteristic of the particular solutions. I t  is not difficult to 
show that for a general solution the vector current densities 
in adjacent cells are related by the quadratic relation 

Pa - 12-1," jI"z) + - jz2 (Z) =4CiCz = 
Pi Z2( l+A)  ' 

which can be written in the equivalent form 

A relationship of this nature between the currents 
makes it impossible to extend to the general case the conclu- 
sion, which was drawn above for the particular solutions, 
that the Joule energy dissipation is the same in all the cells, as 
can be confirmed by direct calculation. 

Furthermore, relations (5.1 1 ) and (5.12) between the 
average currents and fields cannot be extended to the general 
solution of the problem. The derivation of those relations 
leaned heavily on linear symmetry transformations (4.5). 
For a general solution, the latter would have to be replaced 
by quadratic relations (7.1) and (7.2), which become linear 
when their right sides are zero. This situation is possible 
under the condition C ,  = 0 or  Cz = 0, i.e., under the equali- 
ties J, = + J,, which correspond to the particular solutions 
of the problem, as stated above. 
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