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Existence and stability conditions are determined for two-dimensional dissipative structures with 
the symmetry of a quasicrystal. The case when the symmetry of the quasicrystal axis is of twelfth 
order is investigated allowing for the presence of "resonant" triplets of the fundamental vectors q 
related by Zq = 0. The parameter space of the problem is divided, in the two special cases of 
eighth- and tenth-order symmetry axes, into regions in which various stable structures exist, 
including those where the amplitudes of some spatial harmonics vanish. An analysis is made of 
how corrections to the evolution equations which appear in higher orders of perturbation theory 
affect the structural stability of the boundaries between these regions and the partial lifting of the 
degeneracy of phason modes. The results obtained are used also to analyze the local stability of 
two-dimensional quasicrystalline phases which can form as a result of thermodynamic- 
equilibrium phase transitions of the weak crystallization type. 

1. INTRODUCTION tions are associated with inclusion of higher terms of the 

The analogy between a change in a steady state of a Landau 

dissipative system (dynamic phase transition) and a phase 
2. TWO-DIMENSIONALQUASIPERIODIC STRUCTURES AND 

transition in a system in thermodynamic equilibrium is well 
known (see, for example, Ref. 1). In terms of this analogy 
the appearance of spatially periodic structures in a nonequi- We shall consider a dissipative effectively two-dimen- 
librium system can be linked to a perturbation of the transla- sional system described by a real scalar order parameter 
tional symmetry of thermodynamic-equilibrium states, an 
example of which is crystallization of quantum liquids u (I, t )  = 5 ak ( t )  exp ( ikr )  dk, ake=a-k, 

(weak crystallization) ,3  appearance of a charge-density 
wave,4 a nematic-smectic A t ran~i t ion ,~  etc. 

The theory of dissipative systems and equilibrium sta- 
tistical physics have been concerned mainly with spatially 
periodic"I0 or spatially disordered'1312 structures. Recent 
experimental results demonstrate the existence of three-di- 
mensionalI3 and two-dimen~ional'"'~ quasiperiodic crys- 
tals. It is natural to expect these quasiperiodic structures to 
appear also in dissipative systems. This hypothesis is sup- 
ported by the discovery of two-dimensional "quasicrystals" 
in biological optics." Another example of a dynamic struc- 
ture with the symmetry of a two-dimensional quasicrystal is 
represented by structures that appear in the phase space of 
some self-contained Hamiltonian systems (Ref. 18). 3' 

The present paper reports a study of the existence and 
stability conditions of two-dimensional dissipative struc- 
tures with the symmetry of a quasicrystal. The possible exis- 
tence of these structures has already been demonstrated in 
the literature (see, for example, Ref. 19). In some specific 
cases studies have also been made of their stability.2032' How- 
ever, a complete analysis of such a problem has not yet been 
carried out (at least, not to our knowledge). Such an analy- 
sis is provided below. The results are presented in the follow- 
ing order. A description of a class of these quasiperiodic 
structures is given in Sec. 2 together with the conditions for 
their existence and stability against "internal" perturba- 
tions. Some specific examples of dissipative quasicrystals 
differing from one another in their symmetry are discussed 
in Secs. 3-5 and transitions between them as a result of 
changes in the parameters of a system are studied. The re- 
strictions on the phases of individual spatial harmonics, 
which when superimposed form the investigated quasiperio- 
dic structure, are discussed in Sec. 6. As a rule, such restric- 

where r and k are two-dimensional vectors. It is assumed 
that the spatially homogeneous state of this system, which 
corresponds to u =O, now becomes unstable in the presence 
of perturbations characterized by a finite wave number when 
the order parameter exceeds a certain threshold value. This 
situation is typical of a number of cases of instability of 
planar layers and phase boundaries. Examples of these are 
the convective i n ~ t a b i l i t y , ~ - ' ~ ~ ~ ~  the Couette flow instabil- 
ity,19 the instability of gas flames,22 and of laser evaporation 
of condensed matter,23 a model Turing instability of bio- 
physical systems,24 etc. 

The general evolution equation for the amplitudes 
a, ( t )  can be represented in the f ~ r r n ~ . ' ~  

where the instability growth rate y (k)  is approximated by 
the expression 

7 ( k )  =yo-y, (k2-k,Z)' (2 )  

( yo-, and ko are certain constants), and the explicit form of 
the real matrix elements a,,,,? and B,,,,,,, is governed by 
the actual formulation of the problem. 

The right-hand side of Eq. ( 1 ) represents expansion in 
powers of the order parameter, analogous to the familiar 
expansion of Landau in his theory of equilibrium phase tran- 
s i t i o n ~ . ~  Inclusion in Eq. ( 1) of terms which are not only 
quadratic but also cubic in a, is due to the fact that in some 
specific applications the matrix element a,,,,: is either iden- 
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tically zero (this happens if the evolution equation contains 
even powers of a, so that the invariance under the substitu- 
tion a, - - a, breaks down; in some cases the existence of 
such invariance follows from the symmetry of the problem) 
or is a small quantity. For this reason it is found that, in spite 
of the smallness of the amplitudes a,, both nonlinear terms 
in Eq. (1) can be of the same order of magnitude. This is 
precisely the situation in the case of weakly supercritical 
convection.63s However, if a is not small and yo > 0, such a 
system exhibits an explosive instability and Eq. ( 1)  rapidly 
ceases to describe the real situation.' 

We shall consider structures with a discrete set of Four- 
ier components of the type 

The structure described by Eq. (3)  is spatially periodic for 
N = 1 (banks), for N = 2 (rectangular cells), and also for 
N = 3 when the fundamental vectors q, satisfy the relation- 
ships (q, / = (q, ( = (q, (; q, + q, + q, = 0 (hexagonal cells). 
In the remaining cases the function u (r,t)  is generally quasi- 
periodic along at least one of the spatial coordinates. 

For simplicity, we shall consider only the structures for 
which all the vectors q, have absolute value k ,  and the angle 
between any two adjacent vectors q, and q, + , is the same 
and amounts to TIN. Such structures are analogs of two- 
dimensional quasicrystals investigated in Ref. 25 (some ex- 
amples of structures with different angles between the fun- 
damental vectors are given in Secs. 3 and 4 below). 
Substituting Eq. (3)  into Eq. ( I ) ,  we can show that for 
N + 31, where Zis a positive integer, the evolution equations 
become 

N 

5 = [~0 -48  (0) 1 a,, 1'-8 p (en.) lami ' "n, at (4)  
m=l  

where On, - ~ ( n  - m)/N is the angle between the vectors 
q, andq,:P(O,,) -b'qnq,q,-q,;n = 1,2,...,N. 

The functionP(8) should satisfy the following obvious 
relationships: 

Equation (4)  is meaningful only if Nis not too large, so 
that the angle between two adjacent fundamental vectors 
considerably exceeds the relative width of a wave packet of 
interacting modes occurring in Eq. ( 1 ), i.e. 

If N = 31 then the right-hand side of Eq. (4)  should be 
supplemented by a term quadratic in amplitudes and 
amounts to 4aa, + ,,a, + ,, . Here, a = a,nqn + 2An + 4,. 

We shall first consider the case N f 3 1 .  We assume 
P (0 )  > 0 [ifP(O) < 0, the amplitudes increase without limit, 
which corresponds to the case when Eq. (4)  cannot be used 
to describe the resultant dissipative structure]. If we assume 
that 

we can rewrite Eq. (4) in the form 

Here, n = 1 ,..., N; To = 1; Tm - , =2fl(Qnm )/P(O) if m#n.  
The system (5)  can be represented in the form 

where the Lyapunov function F i s  described by 

(8) 
Since 

the only possible limiting cases corresponding to the state of 
such a dissipative system in the limit t-  co are stationary 
states. Only the states which correspond to local minima of 
the Lyapunov function are stable. 

Apart from the trivial solution characterized by A, 
= 0, where n = 1, ..., N, corresponding to a spatially homo- 

geneous state, Eq. (5 ) has a set of stationary solutions differ- 
ing in the indices { n )  for which A,, #O.  The solution with the 
maximum possible number of nonzero components is 

The condition for "soft" branching of this structure (i.e., the 
condition of its existence when yo > 0)  reduces to 

For N>4, the solution described by Eq. (9)  represents a 
"two-dimensional quasicrystal." It is clear from Eq. (6)  that 
the quasicrystalline state is degenerate [in terms of Eq. ( 1) ] 
with respect to arbitrary changes in the Nphases pn . Two of 
these N degrees of freedom correspond to spatial transla- 
tions, whereas the other N - 2 represent "phason" modes.26 
The phason mode degeneracy may be lifted partly or com- 
pletely in higher orders of perturbation theory, i.e., when the 
evolution equation includes the higher terms of the expan- 
sion on the right-hand side in powers ofa, (as shown in Secs. 
5 and 6 below). 

Next we consider the stability of quasiperiodic struc- 
tures. Within the framework of the system of equations (5)- 
(6) ,  a local instability of the stationary solution (9)  is gov- 
erned by the specltrum of growth rates uof amplitude pertur- 
bations SA, = A, exp(ut) , because all phase perturbations 
are neutrally stable: according to Eq. (6) ,  they correspond 
to zero values of the increments. The spectrum of amplitude 
perturbations is found by solving the eigenvalue problem 
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where 

The solution of this problem is given in the Appendix. It 
follows from this solution that the spectrum of the growth 
rates is of the form 

The structure (9)  is stable against this type of perturbation if 
u, < 0 for all values of I. 

Equation ( 13) allows us to write down the explicit mo- 
bility conditions for any value of N. However, an analysis of 
these expressions in the case of high values of N is very diffi- 
cult. We therefore consider only the three simplest cases for 
which N = 4, N = 5, and N = 6. 

We conclude this section by noting that a general ap- 
proach to an analysis of the stability of two-dimensional qua- 
sicrystals on the basis of a grid model was proposed recent- 
l ~ . ~ '  It was concluded in Ref. 27 that a minimum of the 
effective Hamiltonian (in our case the Lyapunov function) 
can be reached in a quasicrystalline lattice only for the three 
values of N given above. It should be noted that although in 
what follows we limit ourselves to a discussion of these val- 
ues of N, the arguments used in Ref. 27 are clearly inapplica- 
ble to the case when the effective Hamiltonian can be ex- 
panded in powers of a small order parameter. 

3. OCTAGONAL STRUCTURES (N=4) 

If N = 4, the system (5)  contains only two independent 
parameters representing a nonlinear interaction of the fun- 
damental amplitudes: 

In this case, in addition to the trivial solution A,,  = 0 which 
is unstable when yo > 0, the system (5)  has five more station- 
ary solutions listed below. 

1. Banks: 

2. Square cells: 

3. A lattice of rectangular cells with a ratio of side equal 
to t a n ( ~ / 8 )  (a  unit cell in the k space is a rhombus with the 
vertex angle ~ / 4 ,  so that such structures are called rhombic 
in Refs. 10 and 21 ) : 

4. An octagonal quasiperiodic structure: 

5. A structure quasiperiodic in the direction of the wave 
vector q, and periodic in the direction q, : 

All these structures appear as a result of "soft" branch- 
ing of the trivial solution A ,  = 0 at the point yo = 0: they 
exist only if y,, , 0, i.e., they appear in the instability region 
of the trivial solution, and their amplitude increases with yo 
as Y;'~. 

In studies of the stability of the structures described by 
Eqs. (14) and (15) in terms ofthe system (5)-(6) it is suffi- 
cient to consider pure amplitude perturbations, as was done 
in the case of Eq. (9).  It is convenient to divide such pertur- 
bations into external, corresponding to the values of n char- 
acterized by A ,  = 0, and internal, corresponding to the val- 
ues of n characterized by A,, #O. 

It follows from Eq. (5)  that the dispersion equation for 
external perturbations is of the form 

The dispersion relationship for internal perturbations is 
obtained by solving the appropriate secular equation, whose 
order is equal to the number of nonzero values of A,, in the 
stationary solution ofthe system (5),  the stability ofwhich is 
being investigated. In this case when the secular equation is 
of higher order, the stability conditions can be determined 
conveniently by applying the Routh-Hurwitz criterion, 
which guarantees the absence of roots with a positive real 
part in the case of the relevant polynomial. Bearing this 
point in mind and using the expressions labeled ( 14), we 
obtain the following stability criterion. 

Banks: 

Square cells: 

Rectangular cells: 

Octagonal quasiperiodic structure [Eq. ( 14d) ] : 

The solution ( 15) is unstable throughout the range of 
its existence. 

The conditions labeled ( 16) should be supplemented by 
the obvious inequalities ensuring the existence of a given 
structure, i.e., ensuring that the argument of the square root 
in the relationship ( 14) is positive. The whole diagram of 
stable stationary states in the ( T , , T , )  plane appears as 
shown in Fig. 1. The thick lines represent the boundaries of 
the regions of existence of the investigated structures. The 
denominators in the expressions ( 14) vanish on these lines. 
Since in this approximation the amplitude of a structure 
should be small. it follows that near the boundaries of the 
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FIG. 1 .  Diagram of states obtained for the case when N = 4. The numbers 
in the circles denote the regions of stability of the various structures:. 1 )  
banks [Eq. (14a)];2)  squarecells [Eq. (14b)I; 3 )  rectangular cells [Eq. 
( 14c) 1; 4) octagonal quasiperiodic structure [Eq. ( 14d) 1 .  The thick lines 
are the boundaries of the ranges of existence; the shaded region represents 
an explosive instability. 

various regions the initial equation ( 1 ) loses its validity and 
we have to refine this equation by including higher nonlin- 
earities. The shaded region Fig. 1 represents those values of 
T, and T2 which correspond to explosive instability of the 
system. 

It should be stressed that the boundaries between the 
various regions shown in Fig. 1 are structurally unstable and 
become "smeared out" when higher nonlinearities are in- 
cluded. We illustrate this by considering the example of the 
boundary T2 = 1 between regions corresponding to stable 
banks ( T, > 1 ) and square cells ( T2 < 1 ). The system (5 )  
then becomes 

For T2 = 1, Eq. ( 17a) has a continuum of neutrally stable 
solutions 

Al=p cos $, A3=p sin $, (18a) 

where p2 = yo and Jt is an arbitrary phase. However, this 
expression becomes invalid in terms of higher order if the 
amplitudes A,,, are included in Eq. (17a). In general, the 
system ( 17a) written down to within terms of the order ofA7 
becomes 

where the C, and Dj are constants. 
The system ( 17b) still has a stationary solution of the 

type ( 18a), but we now have 

where 1C, and T2 are related by 

where 

Depending on the sign of the constant K, the branching pat- 
tern assumes the form shown in Fig. 2a (K>O) or that 
shown in Fig. 2b (K < 0).  For K > 0, then in a narrow range 
of T2 there is a hysteresis between structures in the form of 
banks and squares; however, for K <O, then in a narrow 
range of T, a stable structure is intermediate and it is de- 
scribed by Eq. ( 18) : it represents a superposition of two per- 
pendicular systems of banks with different amplitudes. 

Similar effects occur also on the remaining boundaries: 
allowance for higher nonlinearities "smears out" these 
boundaries and, depending on the sign of the relevant con- 
stants, we can observe either hysteresis or a continuous tran- 
sition between structures of different symmetries via an in- 
termediate structure which is a superposition of the other 
structures. 

More complex and richer in opportunities is a situation 
which appears in the vicinity of the point with the coordi- 
nates ( 1, I ) ,  where the stability boundaries of three struc- 
tures meet (Fig. 1 ). However, a detailed analysis of this situ- 
ation is outside the scope of the present paper. 

We complete the analysis of the diagram of states by 
noting, as demonstrated by direct calculation, that the abso- 
lute minimum of the Lyapunov function (8)  corresponds to 
each structure in the region where it is stable. 

We now consider the stability of an octagonal "quasi- 
crystal." We note that the conditions ( 16) are only neces- 
sary. A complete analysis of the local stability of such a 
structure against all possible small perturbations should be 
based on linearization of the initial equation (1) near the 
solution described by Eq. ( 14d). Such a complete investiga- 
tion of the stability of an octagonal quasicrystalline struc- 
ture was reported in an earlier paper by the present au- 
t h o r ~ . ~ '  It showed that the conditions of Eq. ( 16) should be 
supplemented by two additional conditions 

where the following notation is introduced: 

T-2[B (n112) +B(n/6) +p(n/3) +P (5~112)  l / P  ( O ) ,  

FIG. 2. "Smeared out" boundaries between walls and square cells in se- 
venth-order perturbation theory; ST2 = T2 - ( 1 + y$).  The thick curves 
correspond to stable structures and the thin ones to unstable structures: I )  
banks; 2) square cells; 3 )  intermediate structure [Eq. ( 18) 1; a )  K >  0; b) 
K<O.  
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The inequality (20) should be satisfied for all values of 8. 
In the case of square and rectangular cell structures an 

expansion of the spectrum of possible perturbations on tran- 
sition from the system (5)  to the initial equation (1)  also 
gives rise to similar additional stability criteria. *,'O 

It should be noted that for a # 0 ,  the stability region of 
an octagonal quasiperiodic structure of Eq. ( 14d) may over- 
lap the region of stability of a hexagonal s t r~c ture .~ '  

4. DECAGONAL STRUCTURES (N=5) 

For N = 5, thesystem (5)  also hasjust two independent 
nonlinear interaction parameters: 

T,=T6=2/3 ( ~ 1 5 )  //3 (O), TZ=T3=2/3 (2n/5) //3 (Oj . 

The exhaustive list of possible stationary solutions of the 
system (5) is as follows. 

1. Banks: 

2. Rectangular cells of the first type: 

3. Rectangular cells of the second type: 

4. A decagonal quasiperiodic structure: 

5. Three "nonsymmetric" structures of the type 

The ranges in which these structures exist are governed 
by the conditions which require that the respective argu- 
ments of the square roots should be positive. It should be 
noted that the structures described by Eqs. (21e) and (21f) 
are quasiperiodic in the direction q, [structure (2 1e) ] or q, 
[structure (21f) 1, and are periodic in the perpendicular di- 
rections. The structure described by Eq. (21g) is quasiperio- 
dic along all directions. 

An investigation of the stability of these solutions 
against small perturbations can be made exactly as in the 
preceding cases. Such an investigation yields the following 
stability criteria. 

1. Banks (21a): 

2. Rectangles (2 lb) :  

3. Rectangles (2 1c) : 

4. A decagonal "quasicrystal" ( 2  Id)  : 

2n 5'"-1 n 5'"+1 
o i = 2  cos - = - 0 =2cos--=- 

5 2 ' 2 -  5 2 '  

5. Structure (21e): 

6. Structure (21f): 

Finally, a study of the stability of the structure (21g) 
demonstrates that it is always unstable. 

The set of stability criteria given by the equations (22) 
is supplemented by restrictions that follow from the condi- 
tions for the existence of these structures, so that the dia- 
gram of states assumes the form shown in Fig. 3. As in the 
case when N = 4, the boundaries between regions are struc- 
turally unstable and they "smear out" if we include higher 
nonlinearities. 

The regions corresponding to stable rectangles or to a 
decagonal quasicrystal do not share boundaries. Therefore, 
when the parameters T,,, are varied, periodic cell structures 
first change to one-dimensional quasicrystals of the type de- 
scribed by Eqs. (21e) and (21f), which retain the spatial 
periodicity along one of the directions, whereas a two-di- 
mensional quasiperiodic structure (21d) appears as a result 
of the next bifurcation. 

A general analysis of the stability [based on the initial 
equation ( 1 ) ] of the investigated stationary structures leads 
to the appearance of additional stability criteria similar to 
those described by Eqs. ( 19) and (20) and having the same 
physical meaning. 

5. DODECAGONAL STRUCTURES (N=6) 

If we substitute a -0  in the initial equation (2),  we find 
that the N = 6 case is completely analogous to that obtained 
for N = 4 and N = 5. However, for a # O  a new type of non- 
linear ("resonant") interaction appears for N = 6, which 
gives rise to a number of qualitatively new effects. This oc- 

FIG. 3. Diagram of states for the case when N = 5; 1 )  banks [Eq. (21a) 1; 
2 )  rectangular cells [Eq. (21b)l; 3)  rectangular cells [Eq. (21c)l; 4)  
decagonal quasicrystal [Eq. (21d)l;  5) structuredescribed by Eq. (21e); 
6) structure described by Eq. (21f). The thick lines and the shaded region 
have the same meaning as in Fig. 1. 
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curs because for N = 6, a set of the fundamental vectors {q,,) 
can be used to compose two resonant triplets which combine 
the vectors linked by the relationship Zq = 0:  

In this case the substitution of Eq. ( 3 )  into Eq. ( 1) yields the 
following equations [compare with Eqs. ( 5 )  and (6)  1 : 

A n - = -  a% vA.+,A.+. sin @., 
dt 

( 2 5 )  

where 

( p a  ~ p , ,  -. for n > 12).  We consider the specific case Y > 0  
(for Y < 0, the problem reduces to the one under considera- 
tion if we make the substitution p,  - p ,  + a ) .  

It follows from Eq. ( 2 5 )  that in the stationary solution 
corresponding to a dodecagonal quasicrystal 
( A ,  = A ,  = ... = A,=A) the phases p,  are related by two 
independent relationships of the type 

sin cD,=O, ( 2 7 )  

which are satisfied independently by the sublattices with 
even and odd indices. For this reason the number of indepen- 
dent phason modes increases by two. 

The amplitude A  is readily found from Eq. ( 2 4 ) :  

where 

~ ~ - - 1 + 2 2 ' ~ 1 2 T z f  T3; 

here, T I  = T 5 = 2 f l ( a / 6 ) / f l ( 0 ) ;  T, = T4=2b' (a /3 ) / f l (0 ) ;  
T 3 - 2 f l ( a / 2 ) / p ( O ) ;  the quantity s-cos @, = + 1 has the 
same value for both sublattices. 

The resonant interaction has the effect that the solution 
given by Eqs. ( 2 7 )  and ( 2 8 )  is characterized by hard excita- 
tion: it appears for yo < 0, i.e., in the stability range of the 
trivial solution A ,  = 0  and immediately reaches a finite am- 
plitude A ,  = v/2Q0 (the case when Q, > 0  is illustrated in 
Fig. 4  ). It is well known that in the class of periodic cell 
structures similar properties are exhibited by a hexagonal 
structure, which is also due to the resonant interaction of the 
modes.6 

We consider the stability of a quasiperiodic structure 
described by Eqs. ( 2 7 )  and ( 2 8 ) .  The system of linearized 
equations splits into two independent subsystems represent- 
ing amplitude and phase perturbations. In turn, the system 
of equations for the phases splits into two identical subsys- 
tems describing the evolution of perturbations with even and 
odd indices, each of which is analogous to the corresponding 
equations for the hexagonal structure. As in the case of hexa- 
gons, the branch with s = - 1 is unstable, so that we shall 
assumes= + 1. 

The problem of amplitude perturbations is stilJ de- 
scribed by Eq. ( 11 ), but the elements of the matrix M are 
different: 

FIG. 4. Dependences of the amplitude of a dodecagonal quasicrystal 
( N  = 6 )  on the supercriticality parameter yo (bifurcation diagram). The 
thick curve represents the stable region; s is unity for branches I and 2 and 
s = - 1 for branch 3. 

Equation ( 13) then yields the following expressions for the 
growth rates: 

where Qo is defined by Eq. ( 2 9 )  and Q,,,,, by 

An analysis of the expressions for u,, shows that the struc- 
ture under consideration is definitely unstable if at least one 
of the quantities Qo and Q, is negative. For Q , ,  > 0, the 
stability conditions become 

i.e., only the segment 1 of the amplitude curve (Fig. 4 )  can 
be stable. 

It is clear from the expressions for a,,,,+, that Q  ,,, > 0  
that these increments are always negative, i.e., the corre- 
sponding fundamental modes cannot give rise to an instabil- 
ity. However, if at least one of the coefficients Q,, ,  is nega- 
tive, the conditions u , , ~ , ~ , ~  < 0 lead to an additional stability 
criterion which limits the amplitude of the investigated 
structure from above. For example, if Q, and Q,  are nega- 
tive, the corresponding restriction is of the form 

If only one of these coefficients is negative, it is this coeffi- 
cient that determines the value of A,,, . 

The requirement that the upper and lower bounds be 
compatible leads to certain relationships between the coeffi- 
cients Q,,,,,,, . We can easily show that these relationships 
are 

The resonant interaction in the N = 6  case alters the 
properties also of other structures formed on the same basis. 
In particular, there are no stationary solutions of Eqs. ( 2 4 )  
and ( 2 5 )  in which the amplitude of the Fourier component 
corresponding to any one vector of a resonant triplet would 
vanish, and the amplitudes of the components correspond- 
ing to the other two vectors of the same triplet would be 
different from zero. For a#O it therefore follows that 
among the stationary spatially periodic solutions of the 
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problem only the following types of the structure are possi- 
ble: banks (A,#O, ,,,, = 0) ,  rectangular cells of the 
type A ,  = A,#O, = 0, as well as square cells 
(A, = A,#O, A, ,,,,, , = 0) .  All these structures are charac- 
terized by soft excitation, since in the case of these structures 
the quadratic term describing the resonant interaction drops 
out of Eqs. (24) and (25) and these equations reduce to Eqs. 
(5 )  and (6) .  

The last of the possible types of structure are those of 
the form A , ,  = 0 and A ,,,,,, , #O. Such structures are peri- 
odic in one direction and quasiperiodic in a perpendicular 
direction (in the example selected here these directions are 
along the vectors q, and q,, respectively). Such structures 
are characterized by hard excitation. 

An investigation of the stability of all these stationary 
solutions can be carried out by the same methods as before. 
It should be pointed out that in this situation the ranges of 
stability of the structures characterized by soft and hard ex- 
citation may overlap and this gives rise to multistability and 
hysteresis, similar to that in the case of spatially periodic 
~ t ruc tures .~  

6. PHASE RESTRICTIONS 

The role of higher orders of perturbation theory in lift- 
ing the degeneracy of phase and modes has already been 
discussed in the literature. For example, it was pointed out in 
Ref. 28 that in the case of a two-dimensional quasicrystal 
with N = 5 the number of independent phason modes is 
four, whereas in Ref. 29 it is shown that a matrix element of 
the sixth order exhibits a resonance in the case of a triplet 
forming a hexagonal structure for a = 0. This problem has 
been tackled also elsewhere (see, for example, Ref. 30). The 
present section gives a more detailed analysis of the problem. 

As demonstrated in the preceding section, the existence 
of a resonant interaction in the N = 6 case results in partial 
lifting of the phason mode degeneracy. The state of neutral 
equilibrium then splits into stable ( s  = 1) and unstable 
(S = - 1 ) states. We can easily show that similar effects 
should occur also for other values of N. The exceptional na- 
ture of the situation which appears for N = 6 (in the more 
general case for N = 31) lies in the fact that the resonant 
interaction is predicted even if we use just Eq. ( 1 ). However, 
in the case of other values of N the lifting of the degeneracy of 
the phason variables requires inclusion of corrections in Eq. 
( 1 ) and due to higher nonlinearities. 

We now show this by considering the example N = 5. In 
this case the problem is characterized by a resonant quintet 
of vectors: 

[the sum of vectors with even indices does not form a quintet 
independent of Eq. (30) because, according to Eq. (3) ,  we 
have q,, + = - qn ) 1. Therefore, the phason mode degener- 
acy is first lifted in the fourth order of perturbation theory. 
The corresponding term in the evolution equation for the 
amplitude of the nth Fourier component a, ( t )  is given by 

It is important to note that in this approximation the real 
constant (representing a matrix element of the fifth or- 
der) is independent of n. This follows from the symmetry of 
the problem under cyclic transposition of the indices {n). 
For this reason inclusion of such terms does not affect the 
gradient form of the evolution equations which can still be 
represented as 

[see Eq. ( 7 )  1. The correction to the Lyapunov function cor- 
responding to Eq. (31 ) is of the form (see Ref. 30) 

where 

The stable state corresponds to a local minimum of the 
Lyapunov function. The amplitudes A, of the stable station- 
ary states are found by minimization of the lowest ( -A4) 
terms of the expansion of F in powers of A [see Eq. 81. The 
phase restrictions appear only as a result of minimization of 
the term (33).  For this reason we can assume that the ampli- 
tudes in Eq. (33) are known since they are given by Eq. 
(21d). 

Extrema of Eq. (33) occur at 

where the integer 1 has two inequivalent values I = 0 and 
1 = 1. Depending on the sign of C',', one of these values 
corresponds to the stable stationary state and the other to the 
unstable stationary state. 

If the symmetry of the problem does not permit the 
existence of terms with even powers in the evolution equa- 
tions, i.e., if CC5) 0 ,  then the degeneracy of the phason vari- 
ables is lifted for N = 5 if the expansion of F in powers of a 
includes terms of the tenth order. The corresponding correc- 
tion is then 

Extrema of Eq. (35) correspond to the values of @ ' 5 )  which 
are given by 

Then a quartet of inequivalent values of 1 (0; 1;2;3 ) splits into 
two pairs (0;2) and (1;3). Depending on the sign of C"", 
one of these pairs corresponds to a minimum and the other to 
a maximum of the Lyapunov function. 

We can thus see that the inclusion of terms of the fifth 
(tenth) order in the expansion of the Lyapunov function in 
powers of the amplitude in the case when N = 5 gives rise to 
a new invariant of the problem, which takes the form of a 
sum of all the independent phases. This results in partial 
lifting of the degeneracy of the phason variables: the number 
of independent phason modes decreases by unity. It should 
be stressed that these phason restrictions exhaust the possi- 
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bilities. The higher orders of perturbation theory do not give 
rise to new phase restrictions, because the problem does not 
have nontrivial resonant combinations of the fundamental 
vectors different from those given by Eq. (30). 

We can easily see how to generalize the results obtained 
for the case of an arbitrary N. If N is a simple number added 
to 2, then (as before) we have just one phase restriction of 
the type given by Eq. (34) or (36), where cP'5' should be 
replaced with cP'N' and 

For N = 2", where w is a positive integer, there are no phase 
restrictions at all. For N = 2"p, "'p,"' ... p, w" and 

wherep, > 2 represents different simple numbers, there are 

restrictions of the @rm' = nl type, where 

[see Eq. (26) ] if the evolution equations include even pow- 
ers of the amplitude, or of the @, 'Pm' = nL /2 type if these 
equations do not have such powers. For example, for N = 6, 
there are two phase restrictions (see Sec. 5 ) ,  for N = 9 there 
are three restrictions, for N = 15, there are eight restric- 
tions, etc. 

By analogy with Eqs. (34) and (36), the nontrivial val- 
ues of 1 corresponding to a minimum of the Lyapunov func- 
tion are governed by the sign of the matrix element C'N' (or 
C'2N') .  Therefore, such values of I are the same for all the 
phase restrictions. 

For 

the number of phase restrictions is N - 2. The degeneracy is 
lifted completely. The phason modes disappear and two ar- 
bitrary phases correspond to two degrees of freedom related 
to spatial translations. However, this situation corresponds 
to very similar values of N (N>3.5.7.11.13.17 

19.23.29~3.23. lo9) and is therefore of no practical inter- 
est. 

We now consider the case when the local values of the 
combinations of cP change at large (compared with k ; ' ) 
distances. In this case the Landau expansion for the Lya- 
punovfunction has gradient terms of the type (VcP)*, SO that 
the Euler-Lagrange equations for the quantity cP reduce to 
the standard sine-Gordon equation: 

where A is a two-dimensional Laplacian (the coefficient in 
front of sin cP can be reduced to unity by a scaling transfor- 
mation and its sign can be altered if necessary going over to 
a'= cP+  n) .  

It is well known that in addition to a spatially homoge- 
neous solution Q, = rrl, Eq. (37) has a solution of the type 

@=4 arctg [exp(*x) ] (38) 

(kink). The extremal value given by Eq. (38) corresponds 
to a local minimum of the Lyapunov function obtained for 
two-dimensional variations of @. Therefore, the solution 
(38) is locally stable. Such a solution describes a topological 
defect of the domain wall type, separating two regions filled 
with quasicrystalline structures for which the values of @ 
differ by A1 = 2 [in the absence of the fourth powers in the 
evolution equations, we have to modify Eqs. (37)and (38) 
by replacing cP with 2@]. There can also be more complex 
locally stable exact solutions of Eq. (37) describing an inter- 
section of two perpendicular kinks, lattices of intersecting 
kinks, etc. (for details see, for example, Refs. 3 1 and 32). 

An interesting question is the role of fluctuations in the 
formation of stability of dissipative structures."-" From 
this point of view, we can regard the appearance of struc- 
tures and transitions between them as first-order dynamic 
phase transitions. It should also be noted that the density of 
the Lyapunov Function corresponding to Eq. (37) is identi- 
cal with the density of the Hamiltonian of the two-dimen- 
sional sine-Gordon model. It is well known that such a mod- 
el describes e a s y - ~ l a n e ~ ~  and weak".3x ferromagnets. In 
systems of this kind a transition to an ordered state is a first- 
order phase transition. Therefore, in the problem under con- 
sideration we can expect a second-order dynamic phase tran- 
sition from a state with disordered phases to one with phase 
restrictions of the type given by Eqs. (34) and (36). 

It is important to stress that because this problem in- 
cludes expansions in powers of a small amplitude of the 
structure, the characteristic "energies" (i.e., the changes in 
the density of the Lyapunov function), corresponding to or- 
dering of the amplitudes, are much higher than the corre- 
sponding quantities in the case of phase ordering. For exam- 
ple, in the N = 5 case when the restrictions of Eq. (36) 
apply, the ratio of these "energies" is of the order of 
A -' o~ where y,, is a small parameter (supercritica- 
lity) defined in accordance with Eq. (2).  For this reason the 
"temperature" of a transition associated with phase order- 
ing should be considerably lower than the "temperature" of 
a transition to an amplitude-ordered state. 

We conclude by noting that the present results also ap- 
ply to the existence and stability of various quasicrystalline 
states in problems of thermodynamic equilibrium phase 
transitions of the weak crystallization type. 

The authors are grateful to A. B. Giveptal', G. M. Zas- 
lavskii, V. L. Pokrovskii, and A. A. Chernikov for discussing 
the results given above and their valuable comments. 

APPENDIX 

We consider the problem of the eigenvalues of Eqs. 
(1  1)  and ( 12). An importa~t  feature of this problem is the 
cyclic nature of the matrix M: the next row is obtained from 
the preceding one by cyclic transposition of its elements. We 
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A 

shall use this property of the matrix M to find the spectrum 
of its eigenvalues. A 

Let us assume that A:" is an eigenvector of the matrix M 
corresponding to an eigenvalue a,. We can easily show that 
the vector A:': , (A$: , -hi1)), obtained as a result of cyclic 
transposition oLthe components of the vector A:'), is also an 
eigenvector gf M corresponding to the same eigenvalue a,. If 
the matrix M has no multiple eigenvalues, we have A:':, 
= CIA:", where C, is a certain constant. Applying this rela- 

tionship N times and bearing in mind that Ah1:, =A:", we 
obtain C f = 1, i.e., 

whereI=0,1,2 ,..., N- 1. 
We now know the explicit expression for the compo- 

nents vector Ah" so that we can easily obtain Eq. ( 13) which 
gives a,. Finally, direct substitution of A:') and a, into Eqs. 
( 1 1 ) and ( 12) shows that Eq. ( 1 1 ) is satisfied identically for 
these values of Ah" and a, identically irrespective of whether 
the set defined by Eq. ( 13) has coincident values of a,. 

"P. P. Shirshov Institute of Oceanology, Academy of Sciences of the 
USSR. 
Institute of the Mechanics of Continuous Media, Ural Division of the 
Academy of Sciences of the USSR. 
A recent paper39 reported an investigation of such forced two-dimen- 
sional flow of a viscous liquid characterized by a quasicrystalline sym- 
metry. 

' H. Haken, Introduction to Synergetics: Nonequilibrium Phase Transi- 
tions and Self-Organization in Physics, Chemistry and Biology, Springer 
Verlag, Berlin ( 1977). 

2P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, 
Stability, and Fluctuations, Wiley-Interscience, New York ( 197 1 ). 

L .  D. Landau, Zh. Eksp. Teor. Fiz. 7,627 (1937); D. A. Kirzhnits and 
Yu. A. Nepomnyashchii, Zh. Eksp. Teor. Fiz. 59, 2203 ( 1970) [Sov. 
Phys. JETP 32,1191 (1971) 1; Yu. A. Nepomnyashchii, Teor. Mat. Fiz. 
8,413 (1971); S. A. Brazovskii, I. E. Dzyaloshinskii, and A. R. Mura- 
gov, Zh. Eksp. Teor. Fiz. 93, l 110 (1987) [Sov. Phys. JETP 66, 625 
(198711. 

4W. L. McMillan, Phys. Rev. B 12, 1187 (1975). 
5W. L. McMillan, Phys. Rev. A 9, 1720 (1974). 
6A. Schliiter, D. Lortz, and F. H. Busse, J. Fluid Mech. 23, 129 (1965). 
7A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 203 (1969). 

'E. A. Kuznetsov and M. D. Spektor, Zh. Eksp. Teor. Fiz. 71,262 ( 1976) 
[Sov. Phys. JETP44,136 (1976) 1; Zh. Prikl. Mekh. Tekh. Fiz. No. 2,76 
( 1980). 

9J. E. Wesfreid and S. Zaleski (eds. ), Cellular Structures in Instabilities 
(Proc. Meeting, Gif-sur-Yvette, France, 1983), Springer Verlag, Berlin 
(1984) [Lecture Notes in Physics, Vol. 2101. 

'OB. A. Malomed and M. I. Tribel'skii, Zh. Eksp. Teor. Fiz. 92, 539 
(1987) [Sov. Phys. JETP 65,305 (1987) 1 .  

"A. V. Gaponov-Grekhov and M. I. Rabinovich, Nonlinear Waves: 
Structures and Bifurcations, Vol. 2, Springer, New York (1989); Izv. 
Vyssh. Uchebn. Zaved. Radiofiz. 30, 131 (1987). 

"P. Coullet, C. Elphick, and D. Repaux, Phys. Rev. Lett. 58,431 (1987). 
"D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 

1951 (1984). 
14T. Ishimasa, H.-U. Nissen, and Y. Fukano, Phys. Rev. Lett. 55, 511 

(1985). 
IsL. Bendersky, Phys. Rev. Lett. 55, 1461 (1985). 
16N. Wang, H. Chen, and K. H. Kuo, Phys. Rev. Lett. 59, 1010 (1987). 
I7N. Rivier, J. Phys. (France) 47, Colloq. 3, C3-299 (1986). 
I8G. M. Zaslavskii, M. Yu. Zakharov, R. Z. Sagdeev etal.,  Zh. Eksp. Teor. 

Fiz. 91, 500 (1986) [Sov. Phys. JETP 64, 294 (1986)l; Pis'ma Zh. 
Eksp. Teor. Fiz. 44.349 (1986) [JETP Lett. 44,451 (1986)l. 

I9H. L. Swinney and J. P. Gollub (eds. ), HydrodynamicInstabilities in the 
Transition to Turbulence, Springer Verlag, Berlin ( 198 1 ) . 
L. M. Pismen, Phys. Rev. A 23, 334 (1981); Dyn. Stability Syst. 1, 97 
(1986). 

21B. A. Malomed, A. A. Nepomnyashchii, and M. I. Tribel'skii, Pis'ma 
Zh. Fiz. 13, 1165 (1987) [Sov. Phys. Tech. Phys. 13,487 (1987)l. 

22G. I. Sivashinsky, Annu. Rev. Fluid. Mech. 15, 179 (1983). 
2'M. I. Tribel'skii, Izv. Akad. Nauk SSSR Ser. Fiz. 46, 1127 ( 1982). 
24A. M. Turing, Philos. Trans. R. Soc. London Ser. B 237,37 (1952). 
"D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477 ( 1984). 
"P. A. Kalugin, A. Yu. Kitaev, and L. S. Levitov, Pis'maZh. Eksp. Teor. 

Fiz. 41, 119 (1985) [JETP Lett. 41, 145 (1985)l. 
27L. S. Levitov, Europhys. Lett. 6, 517 (1988). 
"D. Levine, T. C. Lubensky, S. Ostlund et al., Phys. Rev. Lett. 54, 1520 

(1985). 
29M. Golubitsky, J.W. Swift, and E. Knobloch, Physica D (Utrecht) 101, 

249 (1984). 
'"P. Bak, Phys. Rev. Lett. 54, 1517 ( 1985). 
"G. Leibbrandt, Phys. Rev. B 15, 3353 (1977). 
"A. B. Borisov, G. G. Taluts, A. P. Tankeev, and G. V. Bezmaternykh, 

Modern Problems in the Theory of Magnetism [in Russian], Naukova 
Dumka, Kiev ( 1986), p. 103. 

"J. Swift and P. C. Hohenberg, Phys. Rev. A 15, 319 (1977). 
'4M. V. Feigel'man and I. E. Staroselsky, Z. Phys. B 62,261 (1986). 
15H. van Beijeren and E. G. D. Cohen, Phys. Rev. Lett. 60, 1208 (1988). 
I6U. Enz, Helv. Phys. Acta 37, 245 ( 1964). 
"A. K. Zvezdin, Pis'ma Zh. Eksp. Teor. Fiz. 29,605 ( 1979) [JETP Lett. 

29, 553 (1979)]. 
'". G. Bar'yakhtar, B. A. Ivanov, and A. L. Sukstanskii, Zh. Eksp. Teor. 

Fiz. 78, 1509 (1980) [Sov. Phys. JETP 51, 757 (1980)). 
39V. V. Beloshapkin, A. A. Chernikov, R. Z. Sagdeev, and G. M. Zas- 

lavsky, Phys. Lett. A 133, 395 (1988). 

Translated by A. Tybulewicz 

396 Sov. Phys. JETP 69 (2),  August 1989 Malomed etal. 396 


