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It is shown that smooth and rough phases are defined at the boundary of a smectic liquid crystal, 
despite the fact that the absolute position ofthe boundary fluctuates without bound in each phase. 
A phase transition between the two falls in the usual Kosterlitz-Thouless class. Long-range elastic 
correlations in a smectic film of thickness h cause an attraction of the film boundaries which falls 
off ash - ' . It is because of this attraction that the wetting of the free surface of the isotropic phase 
by the smectic is observed to be incomplete. Layer-by-layer growth of such a film may persist at 
temperatures well above the temperature of the roughening transition ofan isolated boundary 
between a smectic and an isotropic phase. 

1. INTRODUCTION 

There is a fairly well-developed theory for the roughen- 
ing transition at the surface of an ordinary ~ r y s t a l ' . ~  and for 
wetting transitions and layered growth of crystalline334 and 
liqUid3.5,6 wetting films. On the other hand, the extent to 

which these effects are specific to boundaries and films of 
smectic liquid crystals7 has not been studied, to the best of 
my knowledge. This is a timely problem, particularly in con- 
nection with the development of the method of grazing-an- 
gle x-ray reflection, which has made it possible for Als-Niel- 
sen, Pershan, er ~ 1 . ~ 3 ~  to study the wetting of the free surface 
of a liquid in the nCB (cyanobiphenyl) homologous series. 
Near the lineof the bulk first-order Z-A transition (Fig. 1 ), a 
wetting A-phase film forms at the free surface of the I phase. 
The A-phase film undergoes a layered growth as the transi- 
tion line is approached. The wetting is incomplete; the maxi- 
mum thickness is five 1ayers.Q~ the triple point is ap- 
proached (Fig. 1 ), the layering transitions weaken. Near the 
second-order transition (Fig. 1 ) , one observes a critical wet- 
ting3 of the free surface: The film thickness h is proportional 
to the correlation length of the interior, tb,  and increases 
without bound9 (h oc t, - cc ) . 

In this paper I examine certain aspects of roughening 
and wetting effects in smectic liquid crystals which are asso- 
ciated with the particular nature of their long-wavelength 
Hamiltonian (elastic theory)': 

He,  ( { u ) )  =l l ,  J d 3 r [ B ( 8 ~ I a ~ ) 2 + K 1  ( A l ~ ) 2 ] .  (1)  

Here u = u( r i  is the local displacement of the layers of the 
smectic, which are oriented parallel to the x,y plane on the 
average; A, ,  - ( a  /ax)' + ( a  /ay)'; and% theelasticmodu- 
lus of the smectic, which vanishes in the nematic phase, in 
contrast with the first Frank constant K,, which is a measure 
of the stiffness corresponding to distortions of the nematic 
order. 

The absence of terms - (VII u)* from the Hamiltonian 
He, leads to strong fluctuations of the field {u): In the long- 
wavelength limit, the integral 

r-r' = (x,y,z, - ~ ( r )  ). For this reason, a dislocation in a 
smectic is defined as a topological structural defects7 A sur- 
face topological defect, an elementary step,' is defined in a 
corresponding way: As a state of a semi-infinite smectic 
which corresponds to a minimum of the free energy under 
the condition that in the limit x - - w its boundary is local- 
ized near smectic layer j, while in the limit x-  + oo it is 
localized near layer j f 1. A step defined in this manner is 
stable if the number of particles in the smectic is fixed. In the 
low-temperature phase, in which the boundary is smooth, 
the free energy per unit length of the step, y, is positive, so 
loops of steps of only finite size arise. The boundary is ac- 
cordingly characterized by a long-range topological order: 
Being localized at some point xil  = (x,y) near layer j, the 
boundary will follow this layer even off to an infinite dis- 
tance from xll  . The surface fluctuates along with the layer. 
As the temperature rises, y may vanish at the point of the 
Kosterlitz-Thouless transition.'.* The steps which are creat- 
ed spontaneously in the high-temperature rough phase des- 
troy the long-range topological order. Evidence for the exis- 
tence of a smooth phase of the surface of the smectic in this 
sense comes from observations of macroscopic steps on the 
surface of a drop of smectic spreading out on a solid sub- 
strate. ' 

In Sec. 2, which follows, this physical picture is realized 
on the basis of a sine-Gordon model, which has been used 
successfully to describe roughening transitions in ordinary 
crystals2 and which is also exceedingly convenient for incor- 
porating size effects in studies of layering transitions in thin 
films.436 We know2 that this model is valid on sufficiently 
large longitudinal length scales for TZ T,, where the right 
side is the temperature of the roughening transition, while 
for a diffuse boundary, for which the width of the transition 
layer satisfies 6, s d ,  it is valid on all length scales 26, . We 
will show that both below and above the temperature of the 
roughening transition the boundary of the smectic under- 
goes unbounded logarithmic fluctuations, which are charac- 
teristic of the rough phase of the boundary of an ordinary 
 crystal,'^^ but the macroscopic stiffness of the boundary, 
which determines the amplitude of these fluctuations, is dis- 
continuous at the point of the transition. 

diverges, and there is no translational order. Nevertheless, a In Sec. 3 we then examine the size correction to the free 
long-range topological order does exist in the smectic. The energy of phonon fluctuations in a thin smectic film bounded 
ideal layered structure is restored by the smooth mapping by homeotropic surfaces, i.e., by surfaces which are parallel 
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FIG. 1. Topology of the phase diagram of the nCB (cyanobiphenyl) ho- 
mologous system. Solid lines-First-order transitions; dashed line-sec- 
ond-order transition; TP, TCP-triple and tricritical points, respectively. 

to the smectic layers. We have shown previously that the 
corresponding correction V,,, (h)  for a liquid film5 and an 
ordinary crystallo falls off as the reciprocal square of the 
thickness: V,,, ( h )  a h -2 ,  i.e., in the manner of a Van der 
Waals (photon) correction. In a smectic, however, accord- 
ing to ( I ) ,  the dispersion relation for long-wave phonons, 
w2 a ( k  2 + R 2k f ) differs qualitatively from that for phon- 
ons in ordinary crystals in liquids, w2 a (k  + k ). We will 
show that the corresponding size correction satisfies 
V,,, a h - ' and it is therefore the longest-range correction 
in systems without free charges (cf. Ref. 3 ). 

In the final section of this paper (Sec. 4), we take a 
qualitative look at the relationship between the layered 
growth of a thin smectic film and the smoothness of the sur- 
faces bounding it. We will show that a smectic film, in con- 
trast with a film of an ordinary crystal,4 can undergo a 
layered growth above the roughening temperature of one of 
its boundaries. 

2. ROUGHENING TRANSITION 

The assertion above that there are no qualitative differ- 
ences between the fluctuations in the smooth and rough 
phases at the boundary of a smectic is actually contained in 
the book by de G e n n e ~ . ~  It was pointed out there that in the 
limit of an infinitely strong coupling of the surface with the 
smectic layers, i.e., under the assumption that the displace- 
ments of the surface layer, u,(x) [x  = (x,y) is a vector in the 
plane of the boundary], are equal to the boundary displace- 
ments z,(x) and that a capillary wave Sz,exp(ikx) causes 
elastic distortions which decay slowly into the interior, 

u ( r )  =6zo exp (ikx)exp(-hkZz) 

with an energy E, = ( B K , )  k *~SZ , )~ .  The strong coupling 
of the boundary with the bulk structure (which is equivalent 
to the assumption y = UJ implying that steps are impossi- 
ble) leads simply to a finite renormalization of the surface 
stiffness, 

which appears in the Hamiltonian of the capillary fluctu- 
ations, 

and which does not alter the form of the logarithmic correla- 
tion function which follows from (3),  

In particular, the boundary remains delocalized: (Sz: ) 
= co. Here a, is the free surface energy of the boundary. 

Since it is assumed that the layers fluctuate along with the 
boundary, the anisotropy of the surface energy" does not 
contribute to the stiffness. In a crystal, the corresponding 
bulk elastic energy has the behavior E, = const.kbak in 
the limit of small k. Accordingly, in the theory of the rough- 
ening transition of ordinary  crystal^'.^ the crystalline layers 
are assumed to be immobile, and (62:) turns out to be finite 
in the smooth phase. 

In general we would have uo#zo and the interaction of 
the boundary with the smectic structure would lead to a peri- 
odic variation of the free energy of the boundary in the direc- 
tion of the relative coordinate y = zo - u, 

where Sa(x  + 1 ) = Sa(x)  and d is the period of the smectic 
structure. Since the modulation of the density of the smectic 
is described well by a single h a r m ~ n i c , ~  it is reasonable to set 

i.e., (cf. Ref. 2), 

Having assumed relative fluctuations z, and u,, we 
must also take account of the sensitivity of a to the relative 
orientation of the boundary and the plane of the layers, ex- 
pressed by the angle p: 

where W is the energy of the homeotropic ~rientat ion.~ Us- 
ing the expression a = a + 2a/dp to convert from the sur- 
face energy to the stiffness," we find the following Hamilto- 
nian for surface fluctuations: 

Our analysis is meaningful only at length scales greater 
than the bulk correlation length cb (i.e., the short-wave lim- 
it of the configuration integral A =:& ; I). We will ignore the 
probability for the creation of dislocation loops with a length 
scale greater than 6,. Correspondingly, we will describe 
bulk effects by means of the elastic Hamiltonian He, in ( 1 ). 
Since this Hamiltonian quadratic, the configurational inte- 
gration over all u other than u, reduced to a minimization of 
He, with respect to u under the condition u, = const. In the 
leading order in Vu, we find [cf. (2)  and (3)  ] 

H,= j ' / z ~ a ( ~ ~ o ) ~ d ~ ~ ;  ( 7 )  

incorporating the surface irregularity in the order parameter 
contributes only to the higher-order terms of the expansion. 

The sum ao(Vzo) + ab (VU,) in H,,, + Hb is conve- 
niently transformed by analogy with the two-body problem 
of classical mechanics,I2 by going over to y = zo - u, and 
R = ( U Z , + U ~ U ~ ) / ( U ~ + ~ ~ ) .  Summing (4),  (6),  and 
(7 ) ,  we find H = H, + Hi,  where H, is the Hamiltonian of 
the free field, (3),  with the stiffness a = a, from (2) ,  and 
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is the Hamiltonian of the sine-Gordon model2 with the stiff- 
ness 

The coordinate R is thus always characterized by logarith- 
mic correlations,' causing a delocalization of the boundary 
as a whole (in general, this is a natural result, since we have 
(u2) = co in the interior). 

On the other hand, Hi describes an ordinary Kosterlitz- 
Thouless roughening transition in terms of the relative coor- 
dinate.' In the smooth phase we have (y2) < 00.  The step is 
defined as a topological defect; the macroscopic sample 
grows in a laminar fashion.'." On macroscopic scales we 
have y = 0, z, = u, = R, and the observable stiffness if a , ,  
given by (2). In the rough phase, the renormalization erases 
the periodic potential and maps Hi into HR -the Hamilto- 
nian (3) with a = a, > 6. Correspondingly, we have 
(y2) = C C ,  and there are no macroscopic steps or laminar 
growth. The stiffness of the boundary observable at macro- 
scopic scales is determined by a minimization of H, + Hi 
with respect to u,(x) at a given z,(x): 

The value of UR at the point of the transition on the side of 
the rough phase is related to the temperature Tc by the uni- 
versal relation'f2 

in the smooth phase we have a, = C C .  The observable stiff- 
ness a thus has a discontinuity h a  at Tc , given by 

This discontinuity becomes progressively more noticeable as 
a, /ao, increases. The general expression for the tempera- 
ture dependence a ( T )  with allowance for the square-root 
singularity ls2 

is shown in Fig. 2. 

3. HYDRODYNAMIC INTERACTION OFTHE BOUNDARIES OF 
ASMECTIC FlLM AND EQUILIBRIUM OF THIS FILM AT THE 
FREE SURFACE OF A LIQUID 

The behavior V,,, cc h ' for the size component of the 
free energy of the phonon excitations in a smectic film ori- 
ented parallel to molecular layers can be found on the basis 
of some simple considerations. In a film of infinite thickness, 
both .boundaries-which we assume for simplicity are 
smooth-fluctuate. They do so independently. They are 
characterized by stiffnesses a, = a, + ub [see (2)  1,  where 
a, is the free energy of boundary j ( j  = 1,2). In a film of finite 
thickness h, in contrast, at wavelengths greater than the 
characteristic crossover scale <, - (Ah)"', the spectrum of 
capillary fluctuations is completely different. A symmetric 
capillary mode corresponds to bending of the film as a whole 
and is characterized by a stiffness a, = a, + a2,  while the 
elastic energy -Klhk4<as k can be ignored in this - limit. 
On the other hand, elastic effects generate a gap E, - B /h in 

FIG. 2. Schematic temperature dependence of the macroscopic stiffness 
of the smectic boundary near a roughening transition. 

the spectrum of an antisymmetric mode. The contribution to 
the free energy which comes from these pronounced changes 
in the spectrum has the natural form 

In a quantitative calculation it is necessary to incorpo- 
rate the size quantization of the bulk acoustic mode in the 
film. Such a calculation can be carried out by the method of 
Ref. 5, with allowance for the particular nature of the bulk 
dispersion relation 

which follows from ( 1 ) . Matching the elastic wave in the 
smectic with a wave which is damped with distance into the 
interior of the bordering fluid at the boundary (on the basis 
of the equality of the pressures and the normal displace- 
ments; cf. 962 in Ref. 13), we find the conditions 

at the jth (smooth) boundary of the film. Here n is the in- 
ward normal to the boundary, and p, is the density of the 
bordering fluid (a  smooth boundary with a solid is modeled 
by the limit a, - C C ,  i.e., u, = 0). Following Ref. 5, we find 
from ( 14) the dispersion relation 

The free energy of the phonon excitations is 

The size correction to this free energy is the correction for 
the discrete nature in the sum over m. Applying the Poisson 
formulaI4 and transforming the integrals over k,  by parts, 
we find 

D m 

$1 Vh,=-kBT (2nil)-' 1 exp[2il  (k ,h  + arctg - 
1-1 - m kz 

+ arctg 2 ) ] d ln (Ao/kBT) d2kll 
dk, - 

kz d k z  (231) ' 

Closing the contour of the integration over k, in the upper 
half-plane, we find that the asymptotic expression for 
V,,, (h)  is determined by the pole in the integrand at 
k, = iAk i. Hence 
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+ arcth 

Substituting in 

from ( 14), we finally find 

Since the free energy a, of the A /Zboundary (and, especial- 
ly, the larger energy of the boundary with the gas, a,)  con- 
tains a contribution from nematic degrees of freedom, which 
is unrelated to the weak smectic order, and since we have 
a, rn B I / * ,  it is reasonable to assume a 2 % a ,  > a,, so that we 
have V,,, < 0. 

In the limit a , ,  a, %a, (near the tricritical point TCP in 
Fig. 1 ), the argument of Li, approaches 1, and we have 

4. LAMINAR TRANSITIONS IN A THIN SMECTIC FILM 

The laminar growth of a macroscopic smectic film is 
equivalent to the smoothness of both of its boundaries: The 
lines of first-order transitions which correspond to a thick- 
ening of the film by one layer terminate at the critical points 
at the temperature T,,, = T,. In a film of finite thickness, 
the temperatures T,, , experience a size shift for two reasons. 
1. The surface energy a ( h )  given by (4 )  acquires a size com- 
ponent V(h) with d V/dh > 0 for thicknesses near equilib- 
rium. Under the condition 

the barriers which separate the thicknesses h, = j d  are sup- 
pressed, and the growth becomes continuous. This effect 
lowers the critical temperatures: T,, , < T,. I t  is apparently 
this situation which prevails in films of an ordinary c r y ~ t a l . ~  
2. A specific feature of a smectic liquid crystal is that (as is 
clear from Sec. 2)  the driving force for the transition to the 
rough phase consists not only of capillary fluctuations but 
also of elastic fluctuations of surface layers. Under the con- 
ditions a, <a,,- W, the presence of these fluctuations [i.e., 
the finite value of a, in (9)  ] reduces the effective stiffness 6 
in (8 )  from 5'' = W + a, to 6" = W + a,, i.e., possibly by 
severalfold. On the other hand, elastic waves with wave- 
lengths greater than the crossover length f, = are 
suppressed in the film according to ( 13). More precisely, 
minimizing the functional ( 1 ) in the film leads to a size de- 
pendence of the constant a, in (7 ) :  

~t thus increases from ab, = (K,B) at k  l l  f c  2 1 to 
at = a, % a," at k f c  < 1. Here we are considering fluctu- 
ations of the weaker boundary of the film ( A  /I in Ref. 8) ,  
and a, is the energy of the opposite boundary, which is 
stronger (A with the gas in Ref. 8 ) ,  so we have 
a , > a , (  -a,). At  k I I  -f; I, the stiffness 6 of the effective 
Hamiltonian (8 )  thus undergoes a crossover from 6" at 
large k , ,  toi?'%i?" at k l l .  

The critical point of the laminar transition is deter- 
mined qualitatively (cf. Ref. 6)  by the relations among four 
lengths: f, , the capillary length 

and the correlation lengths f and {i, which are deter- 
mined by Hamiltonian (8 )  with a, = ( K , B ) I / ~  (i.e., 
h = co ) and a, = co (i.e., h = O), respectively. The latter 
quantities increase near the corresponding critical points 
T f  < T: from their finite values in the smooth phase to infi- 
nite values in the rough phase. The laminar growth disap- 
pears when the length { ,, becomes greater than f,,, ; as f we 
must choose f ip if f,,, < f, or 4';; if fc,, > f, . 

Since we have V(h) = O(h-  ' ), the length fc,, 

= O(h 3/2 ) increases with increasing thickness more rapidly 
than f c  does. Accordingly, if the thickness of the wetting 
film is quite large, despite the incompleteness of the wetting, 
the film will grow in a laminar fashion up to Tc =. T:, which 
may be considerably higher than T:, the temperature of the 
transition to the rough phase of an isolated boundary. The 
limit h -+ co is ambiguous. In the interval T," < T <  T:, lami- 
nar transitions formally persist at any finite thickness, but 
they are exceedingly weak at large h. 

5. DISCUSSION AND CONCLUSIONS 

In summary, working in a model which incorporates 
the interaction of the boundary with a smectic structure 
through a periodic component of the surface energy, (4) ,  
and an orientation-dependent component, (5 ) , we have 
demonstrated the existence and nature of the smooth and 
rough phases of the boundary of the smectic and the transi- 
tion between these phases. Fluctuations in the absolute posi- 
tion of the boundary are not bounded in either phase, but in 
the smooth phase the boundary is localized with respect to 
the strongly fluctuating smectic layers. The roughening 
phase transition falls in the same universality class, the Kos- 
terlitz-Thouless class, as that for ordinary crystals.'r2 The 
correlation function for the displacements of the bound- 
a r y , ' ~ ~  

which is found experimentally from x-ray scattering by the 
boundary,I6 is of the same qualitative form in the two 
phases, but the macroscopic boundary stiffness a, which de- 
termines the amplitude ( 17), is discontinuous at the point of 
the roughening transition (Fig. 2) .  This discontinuity can 
also be observed in measurements of the frequency of long 
capillary waves at the surface of a smectic in experiments on 
inelastic scattering of light. In contrast, the vanishing of the 
free energy of the step and the transition from the laminar 
growth of a macroscopic sample to continuous growth occur 
extremely gradually, as in the case of an ordinary crystal',2 
(the linear energy of the step is 
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y a 6 ,i ' a exp [-const(T,-2')-'"1) , 

so these characteristics are not convenient for detecting the 
transition. 

The possibility of diagonalizing the Hamiltonian of the 
problem, H = H, + Hi [ (3 )  + (8)  I ,  stems from the cir- 
cumstance that the Hamiltonians ( 7 )  and ( 3 )  are identical 
in form, i.e., from the circumstance that fluctuations in the 
elastic degrees of freedom of the smectic are qualitatively 
similar to capillary fluctuations of a free boundary: the cor- 
relations are logarithmic in each case. It is the case of frozen 
logarithmic distortions of a crystal lattice which was studied 
in Ref. 17, where a Kosterlitz-Thouless roughening transi- 
tion was also found. The question of whether a smooth phase 
of the boundary is possible and the question of the nature of 
the roughening transition in this case, in which there are 
fluctuations in the displacements of the bulk structure (ther- 
mal or frozen) which are stronger than logarithmic, remain 
open. Such fluctuations might be realized, for example, as 
frozen phasons in quasicrystals (cf. Ref. 18). 

It was then shown that the circumstance that the 
phonon correlations in smectics are of longer range then in 
ordinary crystals and liquids leads to a size correction to the 
free energy of a thin smectic film, Vhy ,  ( h )  a h  ' , given by 
( 13). This correction is the one of longest range among all 
known corrections in three-dimensional systems without 
free charges or dipoles. The quantity 0, a ' I2 , i.e., a quanti- 
ty determined by the weak smectic order, is apparently al- 
ways smaller than the surface energies a,,, , which contain 
components from other (stronger) degrees of freedom. We 
thus have V h y ,  < 0, and the wetting of the smectic is always 
incomplete (cf. Ref. 5) .  The long-range attraction of the 
boundaries limits the growth of the film toward the line of 
the first-order transition (Fig. 1 ), in agreement with experi- 
m e n t ~ . ~  The only exceptional case might be a smectic film 
bordered on one side by a nematic liquid crystal (near line 
TP-TCP in Fig. 1); the free energy of the extremely weak 
N /A boundary may be smaller than 0, . In such a case, V,,, 
would be positive and would promote complete wetting. 

In any case, as the tricritical point (TCP in Fig. 1)  is 
approached we have /Z a B ' I 2  - co and therefore V,,, -0, 
and the incomplete wetting gives way to a critical ~ e t t i n g . ~  

Finally, the interaction of elastic and capillary fluctu- 
ations in a smectic film may substantially raise the tempera- 
ture of the critical points for laminar transitions in a film 
from that of an isolated weak boundary of a film. The situa- 
tion here is opposite that in a crystalline film, in which lami- 

nar transitions disappear below the roughening temperature 
of the h a l f - ~ ~ a c e . ~  

Accordingly, the laminar growth of a wetting smectic 
film at the surface of an I phase8 is not equivalent to a 
smoothness of an isolated A /I boundary. The latter can be 
rough near the triple point T P  (Fig. 1) .  On the other hand, 
the continuous growth of an A film at the boundary of an N 
half-space899 is evidence that the A /Nboundary is in a rough 
state. In this connection, the continuous weakening of lami- 
nar transitions as the point T P  is approached from the side of 
the I phase may be evidence of complete wetting of the A / I  
boundary by the N-phase film, which thickens without 
bound as T P  is approached (cf. the corresponding situation 
at the boundary of a crystal with a gas which is undergoing 
surface melting6). 

I am deeply indebted to A. A. Chernov, M. A. Osipov, 
and E. M. Terent'ev for useful discussions and also to D. E. 
Khmel'nitskii for a discussion of this overall study. 
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