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The final stage of evolution of a three-dimensional Langmuir caviton is investigated by particle 
simulation. A clear picture of collapse is obtained. The main characteristics of the caviton and its 
interaction with electrons differ significantly from the analogous quantities obtained in two- 
dimensional calculations. The large minimum size of the caviton ( - 16 r, ) and its degree of 
anisotropy are in agreement with those obtained experimentally. The burnout of the very intense 
structures is accompanied by the formation of vortices in phase space and multiflows, and the 
expulsion of an appreciable number of particles from the caviton. 

1. INTRODUCTION 

The phenomenon of the collapse of Langmuir waves 
predicted theoretically' in 1972 and recently verified experi- 
mentally2 has a fundamental significance for contemporary 
plasma physics. Specifically, collapse, the formation in plas- 
ma of catastrophically deepening regions of lower density 
containing trapped Langmuir waves, is the basic collision- 
less mechanism for dissipation of wave energy. It is also the 
natural structural element of strong Langmuir turbulence 
both in space and laboratory plasmas. For more than 15 
years collapse of Langmuir cavitons has been subjected to 
intense analytic and numerical study (see the  review^^-^ and 
the literature cited in them; the latest papers are Refs. 7-16). 
It should be noted that beginning with Ref. 1, wave collapse 
became a generally accepted concept of contemporary phys- 
ics: possibilities are various types of self-focused quasi-mo- 
nochromatic waves, collapse of electromagnetic and lower 
hybrid waves, and other forms of wave collapse." 

The general picture of Langmuir collapse now has the 
following general features. Cavitons are formed in turbulent 
plasma filled with oscillations as a result of the development 
of the modulational instability. The initial energy density in 
the caviton W is of the order of the average turbulence level 
Wo and the characteristic size of the caviton 
1 -r,(nT/W) The process of caviton compression 
quickly enters the self-similar regime and the caviton takes 
on a universal significantly oblate form. During the collapse 
the energy of oscillations trapped in the caviton is conserved. 
In the final stage wave-particle interactions become impor- 
tant and the oscillations trapped in the caviton burn out, 
accelerating the plasma electrons. As a result the energy is 
transferred to a small group of fast particles. 

Right up to the final evolutionary stage the caviton is 
described by a system of dynamic equations averaged over 
the fast time obtained using a hydrodynamic description of 
the plasma' : 

Here T is the average potential of the high frequency field 

E= 8 [I$ enp (-io,t) + c . c . ] / 2 ,  

and 6n is the quasi-neutral variation of the plasma density. 

These equations conserve the following integrals of motion: 
number of quanta 

and Hamiltonian 

and have collapsing solutions in two- and three-dimensional 
problems. The most important properties of Langmuir col- 
lapse in the inertial range follow from Eqs. ( 1 ) in dimension- 
alities d = 2, 3. A sufficient condition for collapse is for the 
Hamiltonian to be negative, which is too strong a condition 
in the three-dimensional case where collapse occurs even 
with initial conditions such that3 

where ro is the characteristic size of the initial perturbation. 
One can neglect the finite speed of sound in Eq. ( lb)  for 

an intensity W/n T >  m/M and the collapse enters the super- 
sonic regime. Supersonic collapse is self-similar asymptoti- 
cally for t-to: 

where to  is the time of singularity formation. 
The collapsing caviton has an isotropic oblate form 

with the electric field in the center of the caviton directed 
along its short axis. The caviton asymmetry is connected 
with the unrealistic character of the spherically-symmetric 
collapse model. In such a model the field in the center of the 
caviton is zero, there are no pondermotive forces, and a den- 
sity hump forms at the center of coordinates. As shown by 
calculations a dipole charge distribution in the caviton is 
more realistic. Equations ( 1 ) have been repeatedly solved 
numerically (see the references cited in Ref. 3). The results 
of calculations corroborate the caviton properties listed 
above and, in particular, demonstrate a transition from quite 
arbitrary initial conditions to the self-similar regime ( 5 ) . 

The applicability of Eqs. ( 1 ) is limited to small levels of 
high frequency (HF)  energy W/nT< 1 and large caviton 
sizes kr, < 1. Many effects not taken into account in Eq. ( 1 ) 
become important with caviton compression and the growth 
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of field intensity. First among them are the interaction of 
electrons with Langmuir oscillations and electron nonlin- 
earities. Saturation of nonlinearity, change of the dispersion 
law, hydrodynamic nonlinearities of ions, and other effects 
may also play an important role. Systematic and consistent 
inclusion of all these effects with the aim of obtaining suffi- 
ciently simple improved dynamic equations adequately de- 
scribing the final stage of collapse is impossible. Of course, 
the inclusion in the model ( 1 ) of specific effects (Landau 
damping,'~14 the self-nonlinearities of the field, and the qua- 
si-one-dimensional approximation,13 saturation of nonlin- 
earity, and ion kineticsI5 ) carried out in a series of numerical 
experiments are of considerable interest. However, an ade- 
quate description of the general physical nature of the final 
stage of collapse is given only by the full system of kinetic 
equations 

Moreover, it is the relatively short final stage of collapse 
of Langmuir cavitons in which the transfer of oscillation 
energy to electrons occurs that is of the greatest practical 
and scientific interest. Thus numerical modeling of the final 
stage of collapse taking into account the most important 
nonlinear and kinetic effects, i.e., solution of the kinetic 
equations (6 )  by the particle method, is of crucial impor- 
tance. One can answer the important problems on the degree 
of anisotropy and caviton sizes at the final stage of their 
development, the time of caviton burnout, the fraction of 
energy transferred to the electrons, the distribution of accel- 
erated particles, etc. only by use of such modeling. 

Such research was recently carried out in two-dimen- 
sional geometryI2.l5 in which, in the absence of previous 
work, a continuous calculationi5 and aprioriinclusion of the 
most important effects of cavitons was realized. This pro- 
vided a description of their evolution in a fairly wide inertial 
range and a conclusive picture of the final stage of two-di- 
mensional collapse. 

There are, however, serious reasons to consider that sig- 
nificant qualitative differences exist between two- and three- 
dimensional collapse. 

1)  I t  follows from Eq. ( 5 )  that in the three-dimensional 
case the level of H F  energy grows considerably faster than 
the characteristic values of wave vectors of trapped oscilla- 
tions and may exceed the thermal energy density in the pro- 
cess of evolution. This was demonstrated, for example, with 
calculations using averaged equations.' Large values of en- 
ergy density may change the character of transfer of wave 
energy to particles, the character of electron acceleration, 
and the fraction of energy transferred to them. 

2) I t  was shown in Refs. 12, 15 that a cessation of col- 
lapse and formation of quasi caviton structures was charac- 
teristic for two-dimensional weakly supercritical cavitons. 
In the three-dimensional case this phenomenon should be 
absent. 

3) It follows from Eqs. ( 1 ) and ( 5 )  that the ratio of ion 
kinetic energy no u, /2 to potential energy c, no (&/no ) 2  

varies as (to - t)4'd- 2 .  Thus in the three-dimensional case 
the ion kinetic energy grows faster than the potential energy 
and the density profile in the caviton is determined by ion 
inertia and not by thermal motion. Hence even if inclusion of 
additional nonlinear mechanisms in the final stage could 
stop collapse, the ion inertia should squeeze the caviton 
down to the point at  which the electrons begin to interact 
with the oscillations. In this case the density depression will 
continue to deepen followed by burnout of a part of the plas- 
mon energy. Thus density variations in three-dimensional 
cavitons could be significantly larger than in two-dimen- 
sional ones. 

These discussions clearly illustrate the significance of 
solving the three-dimensional problem. In  this work the fi- 
nal stage of evolution of three-dimensional cavitons is stud- 
ied by the particle method. Such modeling is at  the limit of 
possibilities of contemporary computer technology. A pre- 
liminary report on the results so obtained has been pub- 
lished.16 Features of the numerical model and the organiza- 
tion of calculations are given in Refs. 18 and 19. 

The three-dimensional kinetic calculations carried out 
provide a clear picture of collapse. In  this case the caviton 
parameters, the density variations, and the maximum oscil- 
lation energies differ considerably from the corresponding 
results of two-dimensional calculations. The character of 
electron acceleration is different from that obtained in the 
two-dimensional case. 

2. FORMULATION OFTHE NUMERICAL MODEL 

The difficulties of numerical modeling of the kinetics of 
Langmuir collapse have been repeatedly discussed in the li- 
t e r a t ~ r e . ~ ~ ' ~ ' ~ ~ l *  The extremely large core requirements of 
the problem require careful consideration in the numerical 
model of a priori information on the physics of cavitons, on 
the one hand, and peculiarities in the computers used, on the 
other hand. In a series of calculations carried out with inade- 
quate computational resources (see, for example, the three- 
dimensional calculation in Ref. 20 and the literature cited in 
Ref. 15) the physical properties of cavitons were not taken 
into account sufficiently, which led to inadequate modeling 
of the collapse of cavitons as a whole. We note some impor- 
tant factors. 

1)  An optimal choice of initial conditions is extremely 
important. Thus for the choice of a homogeneous initial ion 
distribution an initial fractionation of this distribution into 
localized cavitons occurs. This is accompanied by a drastic 
reduction in the efficiency with which the computational 
volume is used. 

2)  Excessively low particle mass ratios (for example, 
M / m g 2 5 )  artificially reduce the role of ion inertia and lead 
to a compression of the inertial range. 

3 ) The use of periodic boundary conditions is quite inef- 
fective from the point of view of the expenditure of computa- 
tional resources and (without taking special measures for 
the generation of the zero field harmonic) is physically in- 
correct for considering one caviton in the computational re- 
gion. In this case due to the nonzero jump of the potential 
along the small axis of the dipole caviton there is an inevita- 
ble production of nonphysical cavitons, satellites, that spoil 
the characteristics and (when the resolution is inadequate) 
reduce the accuracy of the description of the basic caviton to 
an unacceptable level. 
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A physically correct and at the same time quite eco- 
nomical approach to the formulation of modeling the evolu- 
tion of cavitons was proposed and executed in Refs. 12, 15, 
16. In this case the properties ofcavitons described above are 
exploited to the maximum extent. Suppose a dipole caviton 
is flattened along the z-axis. Then the electric field potential 
in it is antisymmetric along the dipole axis and symmetric in 
the perpendicular direction: 

The symmetry properties allow us to consider only a portion 
of the caviton. For modeling three-dimensional cavitons by 
the particle method it is sufficient to carry out the calcula- 
tion in the region 

containing a quarter of the caviton. A still greater gain can 
be achieved by solving the averaged equations ( 1 ), for which 
the region O<x,y<L,, O<z<L,/2 containing one-eighth of 
the caviton is sufficient with the subsidiary boundary condi- 
tion $I 1, = , = 0. Unfortunately, a corresponding boundary 
condition for particles is absent in particle models and the 
kinetic description must be carried out in region (8) .  

Because the minimum periodic spatial cell contains two 
complete cavitons in which the field changes in opposite 
phase, this formulation reduces the expenditure of computa- 
tional resources for solving the averaged equations by a fac- 
tor of 16 and for the particle method by a factor of 8 in 
comparison with the equivalent problem with periodic 
boundary conditions. 

The optimal relation between linear region sizes is de- 
termined by the caviton anisotropy which depends on time 
and can become either larger or smaller than the initial val- 
ue. Thus it is reasonable to take L, = L, = 15, which corre- 
sponds to an initial anisotropy of order two. Such a value was 
observed approximately in the two-dimensional calcula- 
t i o n ~ ' ~ . ' ~  and in laboratory experiments2 In agreement with 
these considerations we carried out three-dimensional kinet- 
iccalculations in thecubic regionOGx,y<L, - L /2<z<L /2 
containing a quarter of the caviton (Fig. 1 ) with reflection of 
particles at the boundaries where the normal component of 
the field is zero. 

The initial conditions for the system (6 )  are clear. The 
distribution of particles should be Maxwellian with param- 

eters corresponding to a self-similar solution developing in 
the inertial range according to Eqs. ( 1 ) .  Simulations with 
such initial conditions, providing a preliminary solution of 
the averaged equations (1 )  which corresponds to a direct 
calculation, were carried out in two-dimensional geometry 
in Refs. 12, 15. Of course, for a computer with capacity ap- 
proaching infinite size one can complete the establishment of 
a self-similar regime in the purely kinetic regime. However, 
first of all this is unrealistic for contemporary computer 
technology for multi-dimensional calculations and second- 
ly, it is simply quite irrational in comparison with direct 
simulation. Even the continuous calculation is a quite time- 
consuming two-step simulation, especially in the three-di- 
mensional case. Its performance should precede kinetic cal- 
culations of the final stage of collapse which are of 
independent interest. There is considerable arbitrariness in 
the initial conditions for solution of the pure kinetic prob- 
lem, but they should satisfy some general requirements. 
Namely, the initial plasma state should contain small pertur- 
bations of ion density Sn and charge density p = eSn: 

initiating a density depression with HF filling for which the 
conditions of the description in the inertial range W/nT& 1, 
&/no g l,kr, 4 1, and the condition for collapse (4 )  are sat- 
isfied. 

With the aim of minimizing the effect of the superposi- 
tion of frequencies and increasing the inertial range we chose 
the initial distribution of charge in the caviton as a combina- 
tion of characteristic functions of the boundary problem 

with a minimum value of the wave vector k = T/L:  

p (r) =p,(l+cos kx) (I+cos ky )  sin kz .  ( 10) 

The plasma density variation Sn was given by the condition 
of gas kinetic and HF pressure balance 

where the constant on the right-hand side corresponds to the 
unavoidable vanishing of the integral in the region of density 
variation in particle models. The initial particle velocity dis- 
tribution was taken as Maxwellian with the ion temperature 
and velocity equal to zero. 

For the specified initial plasma state calculation of inte- 
grals (2 )  and ( 3 )  leads in dimensionless variables to 

Here N a n d  H are normalized by the total thermal energy 
L 3n0Te, the amplitude of the charge density p,,, and the 
length L described in units en, and r , ,  respectively. Then, 
supposing r,, = L /2 in the estimated condition ( 4 )  we have 
for the amplitude of the initial perturbation taking into ac- 
count W/n, T, 4 1 

FIG. 1. The simulation region containing one-quarter of a caviton. 35.9/L2=po'kpo<<4.99/1;. (13 )  
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In the calculations we used the dipole particle meth- 
Od18,19,21.22 employing fast Fourier transforms for finding 
the field on the grid of 333 points. The choice of linear size L 
was made as a reasonable compromise between the require- 
ment of a sufficiently broad (for heavy ion acceleration) 
inertial range and the limitations of using the EC-1037-EC- 
2706 multiprocessor computer facility of the Institute of 
Space Research.18 For the standard linear size of a cell 
A = r ,  the size of the computational region was L = 32 r D .  
However, taking into account that according to the results of 
two-dimensional calculations and laboratory experiments 
the minimum caviton size is quite large [Imin - 10 r ,  (Refs. 
12, 15), lmin - 20 rD (Ref. 2) 1,  we used a coarser grid with 
A = 2rD.  In this case the dipole method was modified: an 
unconventional smoothing was used in k-space, also correct- 
ing wave dispersion in the long wavelength part of the spec- 
trum.19 Thus, in effect the whole caviton was modeled in the 
regions 64 X 64 x 32 rD (L = 32 r, , standard method) and 
1 2 8 ~  128 x 6 4  r D 3  ( L  = 64 r D ,  modified method). 

The particle mass ratio was taken to be quite large: 
100<M/m<400, and the general number of modeled parti- 
cles was - 1.8 x lo6. The control of the correctness of the 
calculations was the total energy in the system: nonconser- 
vation of total energy was less than several percent. More- 
over, at the initial stage of caviton evolution (for small levels 
of long wavelength oscillations) we always have strict con- 
servation of the total field energy. 

3. RESULTS OF CALCULATIONS AND THEIR EVALUATION 

We note that for all simulation cases the coordinates of 
the maximum of the HF field corresponded with the coordi- 
nates of the minimum of the ion density depression in the 
process of evolution and coincided with their initial position 

(initial coordinate). The initial series of calculations carried 
out for a region of size L = 32 rD demonstrated a picture of 
collapse such that the maximum intensity of the HF field 
grew -2 times, accompanied by a deepening of the ion 
depression by - 1.5 times. However, the narrowness of the 
inertial range due to the small size of the initial perturbation 
led to rapid absorption of the average energy of HF oscilla- 
tions by electrons due to inclusion of Landau damping. 

Significant progress was made by doubling the linear 
region size L = 64 r , .  The collapse threshold measured ex- 
perimentally according to the amplitude of the initial den- 
sity perturbationp, * = 0.009 practically coincided with the 
one calculated from Eq. (13) for whichpoth = 0.0088. For 
values p, >po * focusing of the field in the center of the ini- 
tial density perturbation was observed along with deepening 
of the ion depression leading to burnout of the energy of HF 
oscillations (the spatial distributions of fixed caviton char- 
acteristics for one of the typical variants is given in Fig. 2).  A 
choice of perturbation amplitudep, <p* led to destruction 
of the initial field and density distribution. It is convenient to 
introduce as was done in two-dimensional c a l~u l a t i ons '~~ '~  a 
supercriticality parameter E = W(po )/W(po*) 
= (Po/po')2 equal to the increase of initial intensity over 
the threshold intensity for collapse. Below we present results 
of calculations for which the energy density of the initial 
distribution of the H F  field in the center of the caviton varied 
from 0.135G Wm,,/no T, G0.485; the average value of the 
HF field energy in the region varied in the range 
0 . 0 2 4 ~  W/n, T, G0.080. 

The time dependence of the average energy of the HF 
oscillations W/n, T,, the maximum energy of the HF oscil- 
lation W,,, /no T, , and the depression depth (n,,, 
- n,,,,, )/nu for four model variants corresponding to var- 

FIG. 2. Spatial distribution of HF field energy 
density EZ /8nn, T, (dark parallelopipeds) and 
the ion density n,/n, (light parallelopipeds) for 
thecasep, = 0.015 and M / m  = 400; ( a )  initial 
condition, (b)  time of field maximum in the ca- 
viton ( t  = 139.2 o, - '), and ( c )  time of maxi- 
mum caviton depth ( t  = 284.0 o, - ' ) .  On the 
left is the whole region and on the right is a 
cross-section through the z = 0 plane. 
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ious values of physical parameters are presented in Fig. 3. In 
cases of large increases over the threshold valuesp, = 0.02, 
E = 5 and M/m = 100 (Fig. 3, curve 1 ), and p, = 0.15, 
E = 3, and M/m = 100 (Fig. 3, curve 2), a clear picture of 
collapse is observed with growth of field energy at the maxi- 
mum by approximately 6 times (to W,,, /no T, - 3) ,  deep- 
ening of the ion depression by 3-5 times (to n,,, 
- n,,,)no -0.7), and absorption of a significant part 
( - 70% ) of the H F  oscillation energy with characteristic 
dissipation time zz 8-9 w,, - I .  In the two-dimensional 
c a ~ e ' ~ . ' ~  in the supercritical region 2 < E < 6 a "prolonged" 
regime of collapse occurred and the regime of "clear" col- 
lapse occurred only for E > 6. Even in the case of the near- 
threshold regime p, = 0.01, E = 1.1 and M /m = 100 (Fig. 
3, curve 4) we observed after a time - 30 w,, - a growth of 
field energy at the maximum of approximately 3 times and a 
deepening of the density depression more than 2 times; the 
average oscillation energy was not changed. In the two-di- 
mensional case for E exceeding 1.25 at the same times the 
formation of a caviton structure took place.I5 

In order to clarify the role of ion inertia for amplitude 
po = 0.015 the calculations were carried out twice, for 
M /m = 100 and 400. Comparison of the temporal depen- 
dences of basic caviton characteristics for these cases on an 
ion time scale (with argument a,, t )  showed that the curves 
approximately coincide with a shift in time by -4-5 w,, ' 
due to ion immobility at the initial moment of time; the 
burnout time in units w,, - ' did not depend on the mass ratio 
M/m. This provides a means of generalizing the modeling 
results to a real mass ratio. 

Consistent with qualitative ideas about the role of ion 
inertia in the three-dimensional case for the clear collapse 
cases the basic deepening of the ion density depression oc- 
curred after the H F  field reached its maximum (see Fig. 3 
and also Fig. 2 of the short note16 ). The levels of H F  energy 
and plasma density variations reached exceed considerably 
(by more than a factor of two) those observed in the analo- 
gous two-dimensional c a l c u l a t i ~ n s . ~ ~ ~ ' ~  

FIG. 3. Temporal dependence of characteristics of the collapsing caviton: 
( 1 )  p, = 0.020 and M / m  = 100; ( 2 )  p, = 0.015 and M / m  = 100; ( 3 )  
p,, = 0.015 and M / m  = 400: ( 4 )  p,, = O.OlOandM/m = 100. Part ( a )  is 

Analysis of the spatial dependences of field intensity 
and density variations along and perpendicular to the dipole 
axis showed that in the process of caviton collapse the oblate 
form is preserved with a tendency to some flattening. Thus 
for the casep, = 0.15, E = 3, and M / m  = 400 the anisotro- 
py (ratio of the large caviton dimension to the small one) at 
characteristic times t , = 0, t ,  = 139.2 w, ' (time of field 
maximum), and t ,  = 284 w, ' (time of maximum density 
deformation) was 1.65, 2.1, and 2.3 for field intensity and 
1.65, 2.3, and 2.2 for density depressions, respectively. 

An important result observed for all clear collapse cases 
is the large ( - 14-1 6 r, ) minimal caviton size which in two- 
dimensional geometry reached a value - 10 r ,  (Refs. 12, 
15). This result agrees with the data of laboratory experi- 
ments2 which previously seemed difficult to explain. The 
explanation is that due to the higher level of W,,, /no T, in 
comparison to the two-dimensional situation the interaction 
of electrons with oscillations is considerably modified by the 
strong nonlinearity. This supposition is also supported by 
the analysis presented in Fig. 4 of the (z, v, ) phase plane (z is 
the direction of field oscillations with the pattern averaged in 
the perpendicular direction) in which the presence of vorti- 
ces is clearly traced which indicate wave-breaking in the ca- 
viton. The final electron velocity distribution (see Fig. 3 of 
Ref. 16) is characterized by considerable anisotropy (the 
maximum electron acceleration occurs along the dipole 
axis) and the presence of strongly accelerated electrons to 
u = u,,, = 9 u, [in the two-dimensional calculations 
u,,, = 5 UTe (Ref. 15) 1. This means, in particular, that col- 
lapse is a more effective method of generating fast electrons 
than one could have expected on the basis of the model two- 
dimensional calculations. 

We present in Fig. 5 the fraction of the total number of 
electrons whose speed exceeds 3,5, and 7 u, as a function of 
time. One can see that the energy of H F  oscillations is trans- 
ferred to a small fraction (about 0.3% of the total number) 
of the electrons in the tail of the distribution. Initially the 
growth of the number of accelerated particles corresponds to 
the attainment of the H F  field maximum which evidences 
the cessation of collapse with the beginning of effective elec- 
tron acceleration. 

The results obtained in three-dimensional kinetic mod- 
eling are a high level of the local values of H F  oscillation 

. . 
the average energy W/n, T, of ;he H F  field in the caviton; ( b )  i's the 
maximum field energy Wm,,/n, T ,  in the caviton; and ( c )  is the overall FIG. 4. Electron phase space ( z ,  u, ) (pattern averaged in the perpendicu- 
maximum value of the caviton depth ( n  ,,,, - n ,,,, )/n,,. lar direction) for the case M / m  = 400 andp,, = 0.015 at t = 284 w, ' .  

338 - Sov. Phys. JETP 69 (2), August 1989 Zakharov etal. 338 



FIG. 7. Electron phase space for t = 4.8 o, - ' in the one-dimensional 
experiment. 

FIG. 5. Time dependence of the fraction of the total number of electrons 
whosespeed exceeds ( I ) 3 u f i ;  ( 2 )  5 u,; ( 3 )  7 u,, for thecasep, = 0.015 
and M /m = 400. 

energy, a quasi-one-dimensional tail of the electron distribu- 
tion function, and caviton flatness. These make subsidiary 
one-dimensional calculations attractive for a qualitative 
analysis of the general physical picture of the final stage of 
collapse which follow the burnout of structures with large 
values of HF energy over ion density depressions by the par- 
ticle method. We note that kinetic calculations of the evolu- 
tion of one-dimensional waves of large amplitude were car- 
ried out, for example, in a series of papers of Buchel'nikova 
and co-authors (see, for example, Ref. 23). In contrast to 
these papers we studied the process of damping of the distri- 
bution obtained as a result of the three-dimensional evolu- 
tion. The subsidiary one-dimensional calculations were car- 
ried out for simplicity with periodic boundary conditions, 
i.e., two cavitons with fields in opposite phase were consid- 
ered. 

This field structure in cavitons was modeled by an ini- 
tial distribution of soliton type: 

with parameters (L is the length of the region, Eo is the 
amplitude, and il is the inverse size) corresponding to pa- 
rameters of the three-dimensional caviton at the initial mo- 
ment of field burnout. The value of ion density deformation 
was determined by balancing high frequency and gas kinetic 
pressures 

where a is a coefficient allowing one to select the necessary 
value of the depth of the ion density depression for a given 
field amplitude. 

After assigning as initial conditions the caviton param- 
eters W,,,,,/no T, = 1.8, - Sn/no ~ 0 . 5 ,  and the depression 
half-width 15 r ,  , corresponding to the three-dimensional 
casep, = 0.01 5, E = 3, and M / m  = 400, we observed rapid 
(2-3 plasma periods) burnout of this structure accompanied 
by the formation of a tail of accelerated particles of the elec- 
tron distribution function; the profile of the ion depression 
during this. time remained practically unchanged (Fig. 6 ) .  
On the phase plane corresponding to this case one can see the 
formation of features with successive excitation of multi- 

FIG. 6. Spatial dependences of the oscillation energy 
density E '/8an, T'., density variation &/no, and elec- 
tron distribution function (above) in the one-dimen- 
sional experiment: (a )  t = 0; (b)  t = 6.4 o, - '; ( c )  
t = 1 2 . 8 0 , ' ; a n d ( d ) t = 1 9 . 2 0 p  '. 
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streaming (Fig. 7) .  Calculation of the case with zero tem- 
perature electrons and the same initial conditions (whose 
phase space evolution is presented in Fig. 8) gave an even 
clearer picture of the excitation of multi-streaming. 

The physical process of energy transfer to electrons is 
the following. The electric field of the caviton changes direc- 
tion during a time T- .rr/w,. If a significant number of elec- 
trons succeeds in traveling through the caviton during this 
time, they carry away a significant part of the energy lost by 
the waves. In our numerical calculations the electric field of 
the oscillations is so large that even the initially stationary 
particles can be accelerated and leave the caviton during the 
time r. In this case part of the particles are reflected back and 
create a multi-streaming motion which can be seen clearly in 
Fig. 7. Finite temperature blurs the pattern, but the basic 
features in phase space appear fairly well. 

Similar behavior of the phase space is displayed in 
three-dimensional modeling. The absence of a break in the 
region of small velocities is explained by the fact that the 
pattern shown in Fig. 4 is averaged in the perpendicular di- 
rection and particles from the periphery of the caviton where 
the field is small fill the break. We also note that the burnout 
energy fraction in the one-dimensional calculations was 
about 80% which agrees well with the 70% burnout in the 
three-dimensional modeling. 

With increase of the initial size of the caviton, transfer 
of energy to particles decreases sharply which also leads to a 
decreased level of the HF field in the caviton. To model this 
effect we take into account that in the real three-dimensional 

FIG. 8. Phase space evolution in the one-dimensional experiment for 
T, = 0: ( a )  the initial state ( t  = 1.2 w, ' ) ,  ( b )  wave breaking ( t  = 3.2 
o, - ' ), and (c)  multi-streaming ( t  = 6.0 w, ' ). 

situation, until absorption of H F  energy caviton begins, col- 
lapse occurs with conservation of plasmon number 
N- W,,, 1 3, where lis the characteristic size and W,,, is the 
maximum value of H F  energy in the caviton. Thus the scales 
r, and r, , corresponding to W,,,, and W,,,, , are connect- 
ed by the relation r, = r, ( W ,,,, / W,,,, ). This provides a 
means of modeling damping of such a caviton at an earlier 
stage. For the previously considered example W,,,, /no T, 
= 1.8 and r, = 15 r, , the scale r = 24 r, corresponds to the 

value W,,,,,/n,T, = 0.5. Calculation of the case with initial 
conditions W,,, /no T, = 0.5 and r = 24 r, shows a practi- 
cally unchanged energy content in the caviton over several 
plasma periods. This emphasizes the threshold character of 
the HF energy burnout process with the amplitude of the 
field and the size of its localization. 

4. CONCLUSION 

Study of the final stage of evolution of three-dimension- 
al Langmuir cavitons by the particle method demonstrated a 
clear collapse picture. The basic characteristics of cavitons 
and their interaction with electrons, maximum levels of H F  
energy, ion density deformation amplitude, limiting electron 
velocity, and minimum final caviton size considerably ex- 
ceed the analogous values obtained in two-dimensional ki- 
netic calculations. The geometrical characteristics of cavi- 
tons, the large minimum size ( - 16 r, ) and the degree of 
anisotropy agree with those observed experimentally.2 
Burnout of the high intensity structures is accompanied by 
formation of vortices in phase space, the production of 
multi-streaming, and the ejection of a significant fraction of 
particles from the caviton. 

We note that observation in the stable case of a large 
minimum caviton size means, in particular, that one of the 
most important caviton parameters, the characteristic wave 
vector of trapped oscillations, remains small (kr, -0.2) to 
the end of the evolution. This circumstance may be impor- 
tant for constructing a simplified description of collapse. On 
the other hand, the large value of the minimum caviton size 
may mean that in real plasma experiments the inertial range, 
the ratio of initial to final caviton sizes, is not too large. It is 
necessary to take this into account in interpreting the experi- 
m e n t ~ . ~ ~  

In a series of papers (see Ref. 25 and the literature cited 
there) attention was drawn to initiation of collapsing cavi- 
tons, i.e., formation of new cavitons predominantly in the 
places of burned-out ones. This phenomenon depends con- 
siderably on the structure of the density depression formed 
at the location of the burned-out caviton. Two-dimensional 
modeling was carried out in Ref. 25 using dynamic equa- 
tions. Our calculations indicate a significant difference in 6n 
profiles for two- and three-dimensional calculations. The 
large value of density variation makes a dynamic description 
of Sn inapplicable which should be taken into account in 
modeling of turbulence. 

We modeled the final stage of collapse with fairly arbi- 
trary initial conditions. Performance of a three-dimensional 
continuous calculation is undoubtedly of interest. U7e hope 
that this problem will be solved in the near future. 

The authors are grateful to A. I. Dyachenko for interest 
in the work and help with the correction of the dipole parti- 
cle method, and also to I. B. Petrov for participation in the 
programming. 
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