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Glauber's theory of photocounts leads to violation of the most important principle in physics- 
causality. This breakdown is especially notable for short observation times and short 
(femtosecond) optical pulses. We analyze the origins ofthis violation of causality, and present an 
alternative, corrected theory ofphotocounts. An n-photon state is used to demonstrate the 
differences between the two theories. 

1. INTRODUCTION 

Glauber's widely known theory of photodetection (see 
Refs. 1-3, for example) enables one to calculate photon 
counting statistics for different states of the radiation field, 
and is in good agreement with experimental  result^."^ Spe- 
cifically, it yields a Poisson distribution for photocounts 
from a coherent state of the electromagnetic field. In those 
cases to which the semiclassical formalism of Mande15 ap- 
plies, fluctuations in the number of photocounts must be at 
least as great as for a Poisson distribution. For states of the 
field that are highly nonclassical, however (for example, 
states with a definite number of photonsh or squeezed 
states7), fluctuations can be smaller (sub-Poissonian statis- 
tics). In principle, this situation cannot be accounted for by 
Mandel's semiclassical formula. Interest in such states has 
recently experienced an upsurge: for instance, the coordi- 
nates of an oscillator in a squeezed state can be measured 
much more accurately than they could be otherwise.' 

In a previous note,9 we pointed out that Glauber's theo- 
ry of photodetection has a fundamental problem-it violates 
causality: in other words, there is a nonzero probability of 
recording the arrival of a photon before it has reached the 
detector. Bykov10 subsequently noted that there is an analo- 
gous virtual breakdown of causality involved in the trans- 
mission of an excitation between atoms. Normally, when the 
duration of a light pulse (signal) is much greater than the 
period of oscillation, this virtual advance, while somewhat 
puzzling, is nevertheless of little practical import, since it 
only amounts to approximately one period. But for short 
(femtosecond) pulses, this defect of the theory also be- 
comes significant in practical terms. 

In this paper, we analyze the premises underlying Glau- 
ber's theory that lead to the violation of causality, formulate 
an emended theory free of this drawback, and examine the 
resulting changes in the photocount probability distribution. 
It turns out, as might be expected a priori, that substantial 
changes become manifest only when the signals involved are 
sufficiently brief. These changes, however, can be quite sig- 
nificant. For example, photocount fluctuations that are pre- 
dicted to be sub-Poissonian by the Glauber theory can be 
larger than for a Poisson distribution. This must be borne in 
mind when one studies the states of highly nonclassical 
fields. 

In the Glauber theory of photodetection, the electro- 
magnetic field is described by a set of quantum correlation 
functions of the form 

Here x = (r,t), j is the operator descr$ing the photon sta- 
tistics (density matrix), and the field E ,' - ' (x )  is the posi- 
tive-frequency part of the transverse electric field operator: 

In Eq. (2) ,  k = Ikl,e, ( k )  is the ith component of the polar- 
ization vector e, (k ) ,  a = 1,2, which satisfies the relations 
ke, ( k )  = O,e,ej, = Sii - kikj/k '; 2, ( k )  is the annihila- 
tion operator for a photon with polarization e, and wave 
vector k: 

[&a (k) , dp+(kl) ] =GagS (k-k'). (3)  
h 

The negati~e~frequency pa? of the electric field Ej  + ' ( x )  is 
defined by E , ' + ' ( x )  = ( E , ' - ' ( x ) )  +, and the operator 
yielding the transverse part of the electric field is 

Ei (x) =Ed(+) (x) +E,( - )  (x) . (4)  

According to the Glauber theory, if a group of isolated 
atoms, with dipole moments lined up in the direction of the 
unit vector n, are located at the points r,...r,, the joint 
probability of detecting at photon at r ,  in the time interval 
(t,, t l  + dt , ) ,  ... and one at r, in the interval (t,,t, + dt,) 
is 

In this formula, Y is the quantum efficiency of the sensor, 
which depends on how large a dipole moment the atom has. 
Specifically, the probability of detecting a single photon at 
the point r in some infinitesimal time interval is 

In deriving Eq. ( S ) ,  Glauberl carried out his calcula- 
tions to the first nonvanishing order of perturbation theory. 
To find the probability of detecting n photons in a finite time 
T, we proceed as follows. Let the field be in a coherent state 
Iz) for which 
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According to (2), we then have 

where 

Making use of Eqs. (9) ,  ( 1 ), and (5),  we finally obtain 

Equation (10) holds, in particular, for 
r ,  = r, = ... = rN = r, meaning that the probability d W, of 
detecting Nphotons at the point r  during a set of nonoverlap- 
ping time intervals is equal to the product of probabilities of 
those same events, or in other words, the individual detec- 
tions are statistically independent. Inasmuch as d W ,  -dt, 
fundamental probability theory says that the probability of 
detecting m events in a finite time T is given by the Poisson 
distribution 

x exp [-v J lnV(r, t) I z dl]. 
0 

Taking advantage of Eq. (8) ,  this expression can be rewrit- 
ten in the form 

- ( 0 )  W, (z, T )  = ( z  1 @,? 1 z ) =  Sp (pzWm 1, (lib) 

where 
T 

E(*) (t) =niEi(*) (r, t) (13) 

(the supe~cript  G refers to the Glaubef: theory) and the 
notation: 0 :  signifies that the operator 0 is in normal-or- 
dered form. 

The preceding argument identifies Eqs. ( 1 lb)  and ( 12) 
as the probability of detecting m in a finite time given a field 
in a coherent state. In order to proceed to the general case, 
we represent the arbitrary statistical operator i? in terms of 
j3, , using the so-called Glauber-Sudarshan P-representation, 
which takes the form 

In the Glauber theory, one makes the valid but never- 
theless supplementary assumption that even for an arbitrary 
state of the field, the probability W,,, (T)  of recording the 
arrival of m photons in a time Tmay be expressed in terms of 
this same quantity W ,  (z,T) for a coherent state: 

as in Eq. ( 14). Here W ,  (z,T) is to be interpreted as the 
conditional probability of detecting m photons for the case 
in which the field is in a coherent state 6, , and according to 
( 14), P(z) is the probability density of the system being in 
the stateb, . In fact, however, it is a quasiprobability, and can 
even be negative (see Ref. 13, for example). In the Glauber 
theory, therefore, the route from (1 lb)  to (15) actually in- 
volves an arbitrary assumption. It would be a difficult one to 
justify if, for example, P ( z )  were to take on negative values. 
Nevertheless, following the usual practice, we shall use Eq. 
( 15) as a vehicle with which to exhibit the modifications to 
the conventional theory necessitated by the violation of cau- 
sality. 

Substituting ( 1 lb)  into ( 15) and making use of ( 14), 
we arrive at the central equation of the Glauber theory for 
the probability of detecting m photons in time T: 

xerp[-v ~ + ) ( t )  E(-)(t) d t ]  :). (16) 
0 

We have reproduced one of the possible derivations leading 
to Eq. ( 16) because we shall shortly follow a similar line of 
reasoning as it applies to a slightly different situation. 

At first glance, it might seem that the derivation of ( 16) 
to be found in Ref. 3 [Eqs. (8.96)-(8.100) ] does not rely on 
the assumption ( 15). This is in fact not the case, as instead of 
Eq. (8.98) of Ref. 3, which in the notation used in that book 
appears as 

the correct expression is 

These two expressions are identical if the field is in a coher- 
ent state. Equation (8.100) of Ref. 3 is therefore valid only 
for such a state, and the assumption ( 15 ) is necessary if one 
is to generalize it to an arbitrary state. 

2. CAUSALITY VIOLATION IN GLAUBER'S THEORY OF 
PHOTODETECTION 

We now show that the probability d W ,  ( t )  given by (6)  
violates causality (according to ( l o ) ,  this is a problem 
shared by all of the probabilities d WN ). Making use of ( 1 ) 
and (8),  we have for a coherent state / z )  

dW,(t) =7ninj<z lE,(+)(r, t)Ej(-)(r, t) \z>dt. 
=vninjVi.(t)Vj(t)dt=vl V ( t )  I2dt 

=v [(Re V)2+(Im V)']dt, V(t)=niVi(r, t). (17) 

Here we point out that according to (9) ,  the function 
V(t) is expanded as a Fourier integral solely over positive 
frequencies w = ck>O. Thus, if t = t ' - t ", where t " >0, 
there will be an additional damping factor exp( - ckt " )  in 
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the integrand appearing in (9).  Since the integral in Eq. (9) 
converges when t " = 0, it also converges for all t " > 0, i.e., 
V(t) is an analytic function of t  in the lower half of the com- 
plex t plane. Then12 Re Vand Im Vare related by a Hilbert 
transform: 

(the bar through the integral sign denotes the Cauchy prin- 
cipal value). 

According to (4)  and ( 13 ), the electric field E( t) takes 
the form 

From Eq. (9),  we see that V(r,t) and E(r,t)  satisfy the wave 
equation. We examine a plane-wave solution of this equation 
for the electric field, where the wave has a sharp leading 
edge: 

1, x>O, 
E(r ,  t )  =€I ( c t - z )  f ( z - c t ) ,  (20) 

Equation ( 18) then yields 

Clearly, Im V(t) is then nonzero for any t, including t <z/c. 
Since according to ( 17), d W, ( t )  contains a term propor- 
tional to ImV(t) 12, the probability of detecting a photon be- 
comes nonzero even before the arrival of the electric field at 
the detector. Figure 1 shows the value of dW,(t)  corre- 
sponding to a finite-duration wavetrain of the form 

E (z, t )  =8(~t-z)8(~-ct+l)sin(k~-~t+~) 

for kl = .rr and kl = 4 ~ ,  with p = 0, q, = ~ / 2 .  We have plot- 
ted < = kz - wt along the horizontal axis; the signal occu- 
pies the segment f<O.  it is quite evident that d W, > 0 for 
5 > 0-i.e., prior to the arrival of the wave at the detector. 
The shorter the wave, the stronger the virtual precursor, and 
the amount of advance is in order of magnitude, equal to the 
wavelength (in space) or period of oscillation (in time). 

Note that there is a second relation analogous to ( 18) 
that expresses Re V in terms of Im V, so that if Im V is local- 
ized, ReVmust necessarily turn out not to be, and the proba- 
bility d W, ( t )  defined by ( 6 )  cannot in principle be localized 
in time. Only the electric field E and functions thereof can be 
specified by local quantities. 

Mathematically, the structure of ( 18) is reminiscent of 
the Kramers-Kronig dispersion relation. The latter applies 
to the spectral components &(a) and results directly from 
the causality requirement, however, while (18) applies to 
the time-dependence of the fields and results from artificial 
constraints imposed on the spectrum of the signal. 

3. ELIMINATING THE BREAKDOWN OF CAUSALITY FROM 
THE THEORY OF PHOTOCOUNTS 

Let us now analyze the derivation of the equations of 
the Glauber theory in order to ascertain where it is that the 
assumptions leading to the violation of causality are being 
made. Clearly even Eq. ( 1 ) suffers from this problem. If we 
turn to Glauber's derivation' of Eq. ( 1 ), we see easily that 
the original field operators appear in the form 

FIG. 1. Photon counting rate as a function of 5 = kz - wt for different 
pulse lengths: 1 ) kl = T, and 2) k l =  4.7. a )  Pulse with no jump at 5 = 0 
(q,  = 0); b )  pulse with ajump at 5 = 0 (q ,  = n/2). A nonzero photocount 
rate for J >  0 represents a nonphysical precursor that violates causality. 

h h A 

E = E' + ' + E' - ' , along with the atomic dipole moment 
operator 2. If an atom in a lower level Ig) makes a transition 
to an upper level le) due to interaction with the field, a tem- 
poral phase factor exp ( h o t )  will appear; w, > 0 is the fre- 
quency of the atomi5transition. At the same time, the expan- 
sion of thz operator E' + ' contains the factor exp(ickt), and 
likewise E' - ' contains the factor exp( - ickt), k > 0. Obvi- 
ously, %ere wil!be a factor exp[i(o, + ck)t] in the expan- 
sio2ofE' + ' (eld Ig), and exp [i(wo - ck)t] in the expansion 
of E' - ' (el2 Ig). If the kteracti? is prolonged (woT, I ) ,  
integration of the term E' + ' (eld Ig) with respect to t will 
therefore yield small quantities; these have been discarded 
from the Glauber theory, which is equivalent to working in 
the "rotating wave" approximation. 

This is precisely the point at which the violation of cau- 
sality makes its way into the theory. For woT$ l ,  the wave 
advance that results is relatively insignificant (compared to 
T), but if ooT- 1, it can be of the same order of magnitude as 
the signal duration. This can occur, for example, in the realm 
of femtosecond optical pulses. 

One more i ~ p o r t a n t  point must ̂ be n$ed hereA Elimi- 
nating the term E' + ' from the sum E = E' + ' + E' ' in 
the interactio~Hamilto$an automatically guarantees that 
the operators E' - ' and E' + ' in Eq. ( 1 ) appear in normal- 
ordered form. Thus, in addition to the convenience that this 
provides in calculating mean values for coherent states of the 
field, it also gets rid of infingies a~oc ia ted  with the diver- 
gence of the commutators [E ! ' ; E j  + ' ] .  
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This makes it clear how the calculations must be modi- 
fied inzrder to avoid problems with causality violation. The 
terms E' + ' must be retained, and the correlation functions 
( 1 ) must be replaced by functions which, up to a multiplica- 
tive factor to be specified later, are of the form 

Gi, . . . i,, (21, . . . , ~ 2 % )  =cn Sp { ; E ~ ,  (xi) . . . Ei,, (~2")  :) . 

The n2rmalZrdering in (21 ) eliminates from the commuta- 
tors [ E  I - ' ;E j  + '1 infinite contributions that do not depend 
on the state of the field. 

In fact, we require only those correlation functions like 
(21) in which the arguments x are in pairwise correspon- 
dence: 

Consider now how replacing ( 1 ) with (21b) changes 
subsequent results of the Glauber theory. Most importantly, 
instead of (6),^we again for n = 1 (assuming c ,  = 1/2, so 
that the term E' + ' E' - ' enters with the same numerical 
coefficient as before) 

dW,=1/2vninj sp6:Ei(x)  E,(x) :)at 
=v S~~~[B~+)(X)E(-)()+'/~(E(+)(X))~+~/,(E(-)(X))~]) 

[in %e notation ~f ( 13) 1. There is an additional term here, 
+ [ ( E ' + ' ) ' +  (E'-')2],o~erandabovethoseappearingin 
(61, which has been discarded in the Glauber theory. Let 
6 = b, = Iz) ( z I  . Making use of ( 8)  once again, we obtain 

We see then, that the count rate d W,/dt is determined 
by the square of the (rea1)electric field, and satisfies the re- 
quirements of causality. Let us now turn to the probability of 
detecting n photons arriving in non-overlapping time inter- 
vals (t , ,  t, + dt , )  ,..., (tN,tN + dt, ) at a point r. 

Here Eq. (5)  must be used, with the function (21b) 
inserted instead of the Glauber correlation function ( 1 ) . 
Choosing the numerical coefficient accordingly, we obtain 

Now we again examine the case in which b =b,  
= I z )  (z l .  We may take advantage of the general formula for 

the mean of a normal-ordered operator over coherent states, 
which in the single-mode case takes the form 

<zl:F(d, ri+):Iz)=F(zm, z), 

which can be recast in an obvious manner for the multiple- 
mode case. Taking = V(r , t ,  ), we then obtain from (23) 

We have thus obtained a relation that is identical in 
form with ( 10): 

where d W, ( t )  is now given by Eq. (22). Clearly Eq. ( lo),  
upon which ( 16) is based, relies only on the normal ordering 
of the field operators, and is equally valid in the present case, 
which corrects the Glauber theory. Having traced out the 
path between Eqs. ( 10) and ( 16), we can be sure that the 
same considerations apply to the case at hand as well. We are 
left, then, with an equation analogous to ( 16): 

h 

In accordance with (22), instead of the operator w kGG' as in 
(12), we have the operator 

T 

where 

E (r, t)=n,Ei(r, t) =ni[Ei(+)(r, t)+Ei(-)(r, t) 1. 
Based on the foregoing discussion, it is easily appreciat- 

ed that Eq. (25) is free of the problems afflicting ( 16). We 
shall also have occasion to make use of the generating func- 
tion for the factorial moments: 

Q(h) = rn 2 = o (4-h)" W ,  = sp{p  ̂: exp (--Am) : ). (27a) 

Differentiating this equation with respect to A, we find that 

Taking A =  0, we have 

Q(k)(0)=(-l)k<m(m-l) . . . (m-k+l) > = ( - I ) ~  sp{p: $:I, 

i.e., the factorial moments of the number of photons detected 
equal thehmean values of the corresponding powers of the 
operator N: 

We shall demonstrate below that in the appropriate limiting 
case, Eq. (25) yields the same results as ( 16), but that for 
short pulses or brief observation times T, the results given by 
(26) can be vastly different. 

4. PHOTOCOUNT STATISTICS FOR DIFFERENT STATES OF 
THE RADIATION FIELD 

In deriving (25), we have actually relied on the fact that 
the photocounts for a coherent state of the field will conform 
to Poisson statistics. The only difference between the present 
and previous theories is that the parameter of this distribu- 
tion-the mean number of photocounts detected during the 
observation time-is given by 

N (T) = \I j E2(t) dt, 
2 0  

where the square of the electric field appears in the inte- 
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grand, rather than the absolute square of the analytic signal, 
as in the Glauber formula. 

Under other circumstances, however, the difference 
can be more substantial. As a second example, let us consider 
an n-photon state of the field: 

1. 
In)=-[J (n!) '" ~ , ( k ) & + ( k ) ~ k ] ~  1 0 ) .  

This is not the most general possible n-photon state, but it 
encompasses a wide range of electromagnetic fields, with the 
spectral function Fa ( k )  determining both the spatial and 
temporal shape of the field. Thus, if F, ( k )  is nonzero only 
within some sector parallel to a given vector k,, the state 
(28) describes a plane wave that propagates in the k,-direc- 
tion and that has a bounded spectrum; in particular, such a 
wave might be a short pulse. In the present case, if Fa ( k )  is 
nonzero only on a sphere of radius Ik,l and has a special 
form, then the state (28) can be a monochromatic Gaussian 
beam (with frequency w = c 1 k, 1 ). 

One feature characteristic of the state (28) is that its 
temporal and spatial shape are independent of the number of 
photons. In this regard, the state is reminiscent of the famil- 
iar field modes in an optical resonator, for example, Just as in 
the latter, one can introduce creation and annihilation oper- 
ators14 for the state (28): 

having required that those operators satisfy the canonical 
commutation relations 

[a, a+]  = JF; ( k ) ~ .  (k) hk-I. (30) 

One then obtains the same equations for In) as for a simple 
harmonic oscillator: 

ci+ln)=(n+l)"ln+l), B[n)=n2"[n-I), 
In>=(n!)-'"(dC)"IO). (31) 

A coherent state of the field ( 7 )  can be expressed in 
terms of the operators (29) (see Ref. 14): 

with 

It can easily be shown that 

thereby yielding 

[&(k), (af)  "1 =nFa (k) (&+)"- I ,  &(k) In) 

where V(r,t) = ni (r , t) ,  and from (9) ,  

V ,  (r, t) = z ' ( h c ) ' J  d3k k'cia (k) erp [ i  ( k c e k f )  IF. (k). 
23% 

Note that for all spectrally band-limited fields 
(Aw<w,, where w, is the mean signal frequency), V(r,t) 
oscillates rapidly at a frequency -a,. 

The next step is to use the corrected formula (25) for 
the n-photon state (28 ) to calculate W,,, ( 9. It is most con- 
venient first to find the expected value of :N" : 

h 

We may represent :N: in the form 
T 

P 
f l :=Q+Z++E-,  P=v E(+) (r, t )  E(-1 (r, t)dt, 

Then 

From (35) and (37) we obtain 

T 

v 
= - na(n+i) " j  Vz(t) dt 1 n-2). 

2 0 

or, with the notation 

v 
O (r, t) = - J V 2  (t) at, 

2 0 

we have 

h 

Iteratively applying the operator L, we obtain 

where we have introduced a factor 

Taking the conjugate of (41a) yields 

Assuming that k = p  - j i n  (41a), we obtain 
m ,, 
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h h 

Now we note that M and :W -P  : contain as many creation 
operators on the left as there are annihilation operators on 
the righk We then obtain a nonvanishing result for 
(n--2jl:M"-P:ln--2p+2j) only when n - 2 j  
= n - 2p + 2j, i.e., whenp = 2j. The sum overp in (42) can 

therefore be dropped, puttingp = 2j, and the sum over j can 
run from 0 to [m/2], the integer part of m/2: 

matic field a2 4 1, since the integral in the numerator of a2 
contains a rapidly oscillating factor. 

According to (27b), the J,,, are the factorial moments 
of the number of photocounts for an n-photon field. Let us 
denote the conditional moments of the quantity m (assum- 
ing that the field contains n photons) by (m/n), (m2/n), 
etc. Then recalling that P, ( x )  = x, P2(x)  = (3x2 - 1)/2, 
we find from (46) that for m = 1,2. 

It remains to calculate the matrix element 
It is clear from the first of these equations thatp is the proba- 
bility of detecting a single photon. Combining the second 
equation with the first, we obtain (for n>2)  

Notice that in the present instance, when a = 0, (i.e., in the 
Glauber theory), the mean squared fluctuation in the num- 
ber of photocounts, np( 1 - p ) ,  is binomially distributed 
and, as is to be expected for the state In) in the Glauber 
theory, is a sub-Poissonian quantity. If the finiteness of the 
signal is taken into account, the fluctuations are enhanced. If 
a 2 >  2/(n - I ) ,  the fluctuations in the number of photo- 
counts in an n-photon state becomes larger than for a Pois- 
son distribution. Thus, even if a2 is very small, the contribu- 
tion of the second term in (48) can be sizable. In particular, 
if fluctuations in an n-photon state in the theory with a = 0 
are sub-Poissonian, taking the finiteness of a into account 
will always lead to super-Poissonian fluctuations for large n. 
This can be quite important in experiments designed to de- 
tect sub-Poissonian states. 

Now let us find the value of (n 1 W,, In) = W(m/n ), the 
conditional probability of detecting m photons when the 
field is in an n-photon state. According to (25),  (26),  we 
have 

m 

Applying Eq. (35), we find 
T 

Substituting this expression into (43), we obtain 

- n! m! 
0 n-m+- pm 

(a2/4) ' -4 (n-m) ! 2 ) j m - j  ' 
1=0 

where 
T 

The J,, can be expressed more compactly if we make use of 
a well-known identity for Legendre polynomials: By virtue of (46),  we obtain 

n-m 

where 

or, more compactly, Then the J,, become 
n-m 

n! 
(PIS) r, (n-m) I W (m/n) = 

m! (n-m) ! k = ~  k! (n-m-k) ! 

Turning now to Eqs. (39), (40), and theirconjugates, it 
can be shown that the quantities Y,L?*, and a2 r@ect the 
~ontribution made by the non-Glauber operators L + and 
L . Consequently, the Glauber theory corresponds to the 
limit a2 - 0, so we naturally devote special attention to those 
effects related to the finiteness of a. For a quasimonochro- 

Let us analyze this equation. For a = 0, inasmuch as 
P , + , ( l )  = 1, the summation in (49) gives ( 1  - p ) " " ,  
yielding the familiar formula for the binomial distribution: 

n! 
W (mln) = pm (1-p) "-". 

m! (n-m!) 
(50) 
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When a becomes finite, the probability W(m/n) is no longer 
binomial. According to (48), this is manifested as an in- 
crease in the size of the fluctuations in the number of photons 
detected as a increases. The probability of detecting all n 
photons also increases. According to (49), we have 

~ ( 1 / 5 1  

If a + l ,  we may retain just the leading term in 
P, ( 1/( 1 - a') ), which depends on the nth power of the 
argument. This leads to the result 

0.10 0.4 

(2n) ! 2" 
lim W(n/n)=-pn =- 
CL-I 2"(n!)" (nn)" pn. 

- 
FIG. 2. Dependence of W(m/5) on a: a )  rn = 5; b)  

Equation (52) is of interest in two respects. First, it is 
clear that the entire theory makes sense only when p <  1/2. 
The same constraint also follows from the requirement that 
O< W(m/n) < 1 for other values of m. This is a perfectly nat- 
ural constraint, since when we derived Eq. (26) [as in the 
derivation of ( 16) in the Glauber theory], we worked to 
only the first nonvanishing order of perturbation theory. 
Second, comparing Eq. (50) for the case m = n with (52), 
we see that W(n/n ) ,, = , = pn , while for a = 1 there ap- 
pears here a large numerical factor 2" / ( m )  

In Fig. 2, we have plotted the a-dependence of W(m/5) 
for several values of m and p. It is clear from these curves 
that as a increases, the probability of detecting all n photons 
rises dramatically [in accordance with (52) 1,  due to the re- 
duced probability of detection for 0 < m < n. There is thus an 
additional bunching of photocounts, which can be treated as 
a consequence of the "tendency of bosons to clump togeth- 
er." 

To estimate the magnitude of a ,  consider a pulse of light 
with frequency w and duration r :  

m = 1. Curves l , 2 ,  and 3 correspond t o p  = 0.1,0.3, and 
0.45. At a = 1, the probability W(5/5) is approximately 
an order of magnitude greater than at a = 0 (panel a, 
curve 3 ) .  

0.05 0.2 - 

I I 

0 0.5 0 0 0.5 1.C ~5 

Conversely,when T < T, we obtain 

Thus, a is determined by the smaller of the two quantities T 

and T. 

5. CONCLUDING REMARKS 

To summarize, our basic conclusions are as follows. 
The rotating-wave approximation that is actually employed 
in the theory of photodetection leads to a violation of causal- 
ity in that theory. Allowance for the creation and annihila- 
tion of virtual pairs of photons makes it possible to eliminate 
this deficiency, and without overly complicating the theory, 
it leads to a set of corrected equations for photocount statis- 
tics. For coherent states, the latter yield Poisson statistics, as 
in the former theory, but with a different parameter. Matters 
are more complicated for highly nonclassical states, such as 
those with a fixed number of photons. In the Glauber theory, 
the parameter a, which describes the contribution of those 
processes that restore causality, is identically zero, and the 
probability of detecting photons is given by a binomial distri- 
bution. If one allows for the finiteness of the parameter a, 
then for small n, the probability distribution changes and 
fluctuations increase by a small quantity proportional to a*. 
But if n is very large, the corrections to the probability of 
detecting a large number of photons will differ radically 
from the predictions of the Glauber theory, even when a is 
very small. 

Wz close by noting one more important point. The op- 
erator W,,, , whose mean value gives the probability of detect- 
ing m photons, is diagonal in the In) basis for the single- 
mode case in the Glauber theory. This means that if a state of 
the field I*) is of the form IT) = ZV, ln),the probability of 
detecting m photons will be 

which is recorded over some time T." For the case in which m 

T) T, we easily find from (45) that W =  z ~ ( m i n )  1lpnlz7 
n=m 

which yields to a simple probabilistic interpretation. For the 
corrected theory, the latter relation no longer holds. It 
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would clearly be of interest to carry out experiments de- 
signed to detect the indicated statistical features of the pho- 
tocounts, with the hope that states with a fixed number of 
photons could be created through nondestructive quantum 
measurements." 

"The function Vused to evaluate a andp is not an analytic signal, but this 
is not an essential consideration here. 
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