
Nonlinear generation of the fundamental and first harmonic of a periodic surface 
profile under the action of s-polarized laser radiation 

V. N. Seminogovand A. I. Khudobenko 

Center for Scientifc Research on Laser Technology, USSR Academy of Sciences 
(Submitted 1 February 1989) 
Zh. Eksp. Teor. Fiz. 96,504-524 (August 1989) 

We have developed an analytic nonlinear theory which describes the formation of periodic 
structures on a surface subjected to s-polarized laser radiation. In this paper we investigate the 
processes by which laser-induced evaporation of material and photochemical etching of 
semiconductors can generate periodic surface profiles, and rigorously derive dynamic equations 
which describe the linear and steady-state nonlinear oscillatory regimes for generation of the 
fundamental and first spatial harmonics of these profiles. We study the relative roles of intermode 
and intramode nonlinearities, as well as the effect of reactive nonlinearities which are due to 
interference between the fields of resonance surface electromagnetic waves and those of second- 
order diffraction. Our work clarifies the importance of topological nonlinearities caused by 
rescattering of temperature waves or concentration waves of electron-hole pairs by the generated 
profile. We show that under the action of laser irradiation it is possible to create a profile for which 
absorption of radiation incident on the surface reaches 100%. 

1. INTRODUCTION 

The classical problem of reflection of light from a sur- 
face with a periodic profile has attracted special interest in 
recent years. A number of new linear and nonlinear optical 
phenomena have been discovered,'.' caused by a sharp in- 
crease in the local field near the surface due to resonance 
excitation of surface electromagnetic waves (SEW). In par- 
ticular, it has been shown that a profile with period on the 
order of the wavelength of the incident radiation can give 
rise to total suppression of specular reflection and anoma- 
lously high absorption of light3-6 when the depth of the pro- 
file is close to optimal. 

At the same time, it has been established theoretically 
and experimentally that surface periodic structures (SPS) 
with a period on the order of the wavelength can be induced 
by light itself (reviewed in Refs. 7-10), due to diffraction of 
the light by spatial modulations of the profile and interfer- 
ence of the diffracted waves. In light of this, it is natural to 
ask the following questions: can a significant variation of the 
specular reflection coefficient be induced during stimulated 
generation of SPS, and is it possible for laser radiation to 
create a profile with 100% absorptivity? Of course, these 
effects would be of great interest, since they imply the possi- 
bility of enhanced self-consistent energy injection of radi- 
ation into the material mediated by the surface. This type of 
energy injection should in turn affect the fundamental pro- 
cesses by which laser radiation interacts with matter in a 
decisive fashion. However, the available data are clearly ina- 
dequate to answer these questions. To explain why this is so 
and give a more detailed statement of the problem, we 
should say a few words about the state of theory and experi- 
ment with regard to SPS. 

These profiles are well-studied in their initial stages of 
devel~pment .~- '~ A linear theory of SPS generation has been 
developed for the processes of laser evaporation (LE) of 

photochemical etching (PCE) of semiconduc- 
t o r~ , " - ' ~  pyrolytic etching and deposition of films on sub- 
strate~"- '~ ; this theory, which uses perturbation methods to 
calculate the amplitude of the profile modulation 6 (r, t ) ,  
predicts that the amplitude of the continuum of resonance 

gratings will grow exponentially with time. However, in the 
case of s-polarized radiation (i.e., the electric field intensity 
vector Ei is perpendicular to the plane of incidence) one 
resonance grating will dominate: the one with param- 
eterS7.'0.'3 

forp-polarized incident waves there are two gratings which 
dominate: 

where g is a reciprocal lattice vector, g = 2 ~ / d  where d  is the 
grating period, go = 2n-/A, A is the wavelength in vacuum, 
E = ( n  + im)', E~ > 0 are the dielectric permittivities of the 
material and the etchant (for LE in vacuum E,, = 1 ), 0 is the 
angle at which the radiation is incident on the material from 
the etchant, and E,, is the projection of E, on the average 
boundary between the medium. 

Experiments  how'^-'^ that as we increase the length of 
the laser pulse, the number of pulses which arrive, or the 
energy per pulse, the evolution of the SPS ceases to obey the 
linear theory and becomes nonlinear. For the case ofs-polar- 
ized pump waves, this results in the generation of a profile 
made up of both the grating ( 1 ) and its first harmonic with 
wave vector 2g, while for ap-polarized pump ( 2 )  is accom- 
panied by gratings with the sum and difference spatial per- 
iods, i.e., (g,  + g,). SPS with profiles whose Fourier spectra 
are even more complex have been r e c ~ r d e d , ~ ' . ~ ~ , ~ ~  e.g., 
structures of Btnard-cell type.22 In addition, several experi- 
m e n t e r ~ ' ~ . ~ ~ - ~ ~  have reported observing considerable varia- 
tions in the reflectivity and absorptivity of metals under the 
action of powerful radiation pulses, which cannot be ex- 
plained by a dependence of the optical constants of the metal 
on t e m p e r a t ~ r e . ~ ~  However, it should be kept in mind that 
none of the experiments done up to now provide enough 
information for a complete description of the time evolution 
of the profile in the nonlinear epoch; likewise, none of these 
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experiments reliably establishes a connection between the 
absorptivity of the surface and the parameters of the genera- 
ted profile. 

As for the theory of nonlinear SPS generation, only the 
first steps have been taken in this area: the investigations in 
Refs. 29-35 comprise the whole of the theoretical effort to 
date. It is, of course, obvious that thermal, hydrodynamic or 
electrodynamic nonlinearities, where the last is due to the 
nonlinear dependence of the amplitudes of the diffracted 
waves on the modulation depth of the generated profile, 
could all cause the amplitude to saturate in the nonlinear 
epoch. Taking these nonlinearities into account produces a 
whole class of problems involving the nonlinear dynamics of 
the Fourier amplitudes of the surface waves and the nonlin- 
ear generation of an electromagnetic field with a spectrum of 
spatial frequencies. 

The evolution of a surface profile during LE was inves- 
tigated in Refs. 29 and 31-35, while the authors of Ref. 30 
studied the profile evolution during laser excitation of sur- 
face capillary waves. The authors of Refs. 29-31 and 33-35 
took into consideration only the electrodynamic nonlinear- 
ity. In this regard the treatment given in Ref. 32 is exception- 
al: its authors also investigated the role of thermal nonlinear- 
ities which arise because of the nonlinear Arrhenius 
dependence of the LE velocity on temperature. The concepts 
of intramode and intermode electrodynamic nonlinearities 
were introduced in Ref. 30. The intermode nonlinearity 
arises because of rescattering of one resonance SEW into 
another, e.g., by the gratings 2gorg, + g,, and is found to be 
important for profile depths gg,, 2fln (Ref. 29), where 
D,, = E ~ ' ' ~  n/(m2 + n2) 4 1. The intramode nonlinearity is 
connected with rescattering of a resonance SEW into either a 
nonresonant radiated wave or a surface wave by gratings ( 1 ) 
and (2) ,  and is important at depths g{, zP, (Ref. 30). 
In Refs. 29, 34, 35 the case of s-polarized incident radiation 
was investigated by taking into account only the intermode 
nonlinearity. However, the results of these papers do not 
agree among themselves: Ref. 35 predicts a growth in the 
amplitudes 6, and g2, which is monotonic in time, whereas 
Ref. 34 finds a growth regime of <,, g2, which is oscillatory, 
although the amplitude gg for the fundamental grating is 
found to be unbounded in time. 

According to Ref. 30, the growth of the fundamental 
grating amplitude eventually saturates because of the intra- 
mode nonlinearity. In view of this, an investigation of the 
time evolution of the profile up to a level ggg zP, must 
simultaneously take into account both types of electromag- 
netic nonlinearity, as was done in Refs. 31, 32. In construct- 
ing their theory, the authors of Ref. 33 used an approximate 
analytic solution to the diffraction problem (based on Ray- 
leigh's hypothesis) for the case ofp-polarized incident radi- 
ation. In Ref. 3 1 the problem of diffraction for the case of a 
normally-incident pump wave was solved numerically based 
on an integrodifferential equation obtained without using 
Rayleigh's hypothesis. According to the results of Ref. 33, 
the profile evolution involves out of phase oscillations of the 
amplitudes l g i ,  lg2 and lg, + ,? [see (2)  1. In contrast to Ref. 
33, the results of Ref. 31 predict that the temporal dynamics 
of the profile are not oscillatory: after some transient varia- 
tions the quasistationary amplitudes g2, =:const and {, =:O 
[see ( 1 ), (2) for 0 = 0"] are established. The reason for this 
disagreement in the conclusions of Refs. 31, 33, 34, 35 re- 

mains unclear; equally unclear is the question of whether the 
absorptivity of the surface can vary significantly during the 
time evolution of the resonance gratings ( 1 ) or (2) .  

In this article we will develop an analytic nonlinear the- 
ory of SPS formation during LE and PCE of a surface. These 
processes are mediated by pulsed and CW s-polarized laser 
radiation incident on the surface at an arbitrary incident an- 
gle 8; our theory will be valid until gl, &, 'I2. We will 
obtain an analytic solution to the problem of diffraction of 
light by the emerging profile, taking into account both the 
intramode and intermode electrodynamic nonlinearities. 
For the LE and PCE processes we will rigorously derive 
equations which describe the linear and oscillatory nonlin- 
ear stages of generation of the surface profile, including its 
fundamental and first spatial harmonic. For the first time we 
elucidate the important role played by "topological" nonlin- 
earities caused by rescattering of temperature waves (for 
LE) and concentration waves of electron-hole pairs (for 
PCE) by the generated profile. We take into account the 
effect of "reactive" nonlinearities which arise because of res- 
cattering of a SEW into the second-order diffracted compo- 
nent of a nonresonant surface wave and subsequent mutual 
interference of these wave fields. We also identify the role of 
diffraction "seeds" which are evolving in time and which are 
created when third-order surface waves interfere with reso- 
nant SEWS and second-order diffraction. We investigate the 
time evolution of the reflectivity and absorptivity of the sur- 
face, and show that laser irradiation can in fact create a pro- 
file which gives rise to total suppression of specular reflec- 
tion and 100% absorption of the radiation incident on the 
surface. 

2. DIFFRACTION OF S-POLARIZED WAVES BY A SURFACE 
WITH A PERIODIC PROFILE: INTERMODE, INTRAMODE, AND 
REACTIVE NONLlNEARlTlES 

Let us assume that a medium with dielectric permittivi- 
ty E = (n + im)2  occupies the half-space z' > {(x,t) and a 
second medium (i.e., an etchant with E, > 0)  occupies the 
half-space z' < c(x,t) .  Suppose that a plane s-polarized elec- 
tromagnetic wave is incident on the boundary from the et- 
chant side (the plane of incidence is yz' and the vector Ei is 
directed along the x-axis) : 

E i ( x ,  y, z', t )  =Ei exp (ik,y+ik,z1--iot) + c.c., (3) 

where kt = k,~, ' /~  sin8 and k, = k,~ , ' /~  C O S ~  are the projec- 
tions of the vector E,"~ ko (k,, = W / C )  of the incident wave 
on they and z' axes, and 8 is the angle of incidence of the 
wave. 

In LE and PCE a fundamental grating is generated with 
the parameters ( 1 ), along with its first harmonic. Therefore 
we will assume that 

where r = {x,y) and the vector g is directed along the x-axis 
(see Fig. 1 ) . The amplitudeg ,, is due to the initial roughness 
of the surface; it is small and time-independent, and we will 
need it later to describe the diffraction "seeds" which are 
found to affect the dynamics of formation of the profile. 

Let us write the field distribution in the region z' 
< g(x,t) (i.e., in the etchant), which arises as a result of the 
diffraction of the wave (3)  by the profile (4),  in the form 
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FIG. 1. Rescattering diagram arising from the profile (4)  (viewed at the 
surface from the medium side). The plane of the incident laser wave is z'y. 
The radius of the circle is =: k&,"2. The rescattering of the incident k, 
wave by the grating g generates two resonance k . , waves. The rescatter- 
ing between the resonant k, and k _, waves results in a grating 2g. The 
nonresonant surface k .  ,, waves arise as a result of scattering of the k, 
wave by the grating 2g and the k + , wave by the grating g. The nonreson- 
ant surface k + ,, waves are generated because of rescattering of the k, 
wave by the grating 3g, the k.,  wave by the grating 2g, and the k + ,, 
wave by the grating g. 

E=EI exp ( ik ,y+ik,zf- tat)  

where kpg = kt - Pg, and p = 0, + 1, ..., 
rpg = kpg - kOZ&,; we have Re rpg > 0 if kpg > k , ~ , " ~  
and Im rpg < 0 if kpg < k , ~ , ' ' ~ .  From diffraction theory 
(see, e.g., Ref. 6 ) ,  it follows that those waves for which 
kpg - k&o'/2 are resonantly excited. In particular, for the 
case of a profile (4) with parameters ( 1 ) two resonant SEWS 
are excited with vectors kg and k - ,  (see Fig. 1 ) . 

The problem of calculating the amplitudes Epg for an 
arbitrary periodic profile in the presence of resonant dif- 
fracted waves, for I E I  ) E , , ~ , E , ' / ~  C(x, t )  g 1 ,  was solved in 
Ref. 6. In the case of interest to us, i.e., waves (3) diffracted 
by the profile (4),  the amplitudes of the specularly reflected 
wave E,, and the resonant waves E +, are determined by 
solving the system of equations (22), (23) of Ref. 6, which 
in the present case have the form 

Y Z  (m- in)  ko, f i , = r n ~ ~ " ' / ( m ~ + n ~ ) ,  $n=neo"2/(mz+nz). 

(7 )  
We note that the results ofRef. 6, which are valid for the case 
E,  = 1, can be generalized to the case E,+ 1 if we make the 
substitutions E - + E / E , ,  ko+ k , ~ , " ~  in all the equations of 
Ref. 6. However, according to Eq. ( 14) of Ref. 6, the ampli- 
tudes E. ,  , E * , can be expressed in terms of the ampli- 
tudes E,,, E, , :  

E,=-igE,,ly-ik, (E&-Eox) Eg+2igE-,,E2,, Em=iktEgzly, 

E-e=igE-g,/y-ik,(Ei.-E,)~8.-2igEgzE2g', E-gY=iktE-gz/y. 

(8 )  

Solving the system (6)-(8), we obtain for the field 
components E,, Eg 

in this case the resonant denominator A in (9), ( 10) is given 
by the equation 

~=T,"-2 ik ,T ,g~(g , l~-4g '  (i2s12-2ik,g4(E,'2E~g+Eq2E281). 

(11) 

The field amplitudes E - ,  are found from ( 10) by the substi- 
tution 

g*-g (12) 

both in the coefficients and in the subscripts and using 
l - p g  = C ; g ' r ' - p g  = r p g .  

The amplitudes E + ,, , E + ,, for the nonresonant sur- 
face waves are determined from Eq. (20) of Ref. 6 by using 
Eqs. (9)-( 1 1  ). The field components for second- and third- 
order diffraction in the etchant have the form 

The amplitudes E , , E ,, are found from ( 13), taking the 
substitution ( 12) into account. 

Let us discuss the physical nature of the nonlinear de- 
pendence of the amplitude of the diffracted waves on gK and 
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f,, . The terms in parentheses in Eqs. (9)-( 1 1  ) arise because 
of our inclusion of the rescattering 

8 8 28 
E*, -. Eo -+ ETg + E*, 

(see Fig. 1  ) . The third term in ( 1 1  ) appears because of the 
rescattering 

28 28 
E*, -. ET, -+ E*, 

by the grating ( 2 g ) .  The second term in ( 10) is caused by the 
rescattering 

88 
Eo 5 E*, + E,,. 

Since all of these nonlinearities are connected with rescatter- 
ing between the different resonant waves E, and E _, by the 
2g grating, we will refer to them as "intermode" nonlineari- 
ties. The third and fourth terms in ( 7 )  arise because of the 
rescattering 

by the gratings g  and 2g respectively. The second term in 
( 1 1 ) takes into account the rescattering 

8 
E*, -+ Eo -+ E*,. 

Because rescattering involves no energy transfer from one 
resonant wave to another, we will refer to the corresponding 
nonlinearities as "intramode". The first two terms in ( 7 )  
and the last term determine the dispersion law and damping 
of the resonant waves as they propagate along the plane of 
the surface. The change in the dispersion law connected with 
the third and fourth terms in ( 7 )  is analogous to amplitude- 
dependent changes in the resonant frequency of a nonlinear 
oscillator. 

Let us turn now to a calculation of the field within the 
medium. 

According to Ref. 6, the field distribution in the region 
z' > f ( x , t )  takes the form 

Ef=exp{-y (2 ' -a  (2, t )  ) - i d )  E,,' exp (ik,,r) 
P 

.+ 

+c.c .  =8 exp(-l (2'-E(x, t ) )  - i o t ) +  c.c., 
f 

where i, k, n are unit vectors directed respectively along the 
x,  z' axes and along the normal to the surface; note that n 
points into the region z' > f ( x , t ) .  The field E ( w )  is given by 
Eqs. ( 5 )  and (7)-( 13). As a result of these equations, in the 
region z' > f ( x , t )  the field components for zero-order dif- 
fraction and resonant diffraction of the field are given by 

ik ,  
E,,' = - - (Ei,-ED,),  Eov'=O, 

Y 
i 

E,' = - - [gE,,+k,3 (E,,-Eox) E, ,E2, '1 ,  

Y 
ik 

( 1 6 )  

E,,' = - - f - [ ~ , + i g  (Eix+Eo,) Eg+k,g (Eix-Eox) EwEz,'I - 
Y 

The amplitude of the rescattered fields for second- and third- 
order diffraction in the region z' > c ( x , t )  can be written in 
the form 

Here we have neglected the z-components of the fields be- 
cause of their smallness. In Eqs. ( 1 6 ) ,  ( 17 ) ,  along with the 
fundamental resonant contributions [the first terms in ( 161, 
( 17)  ] we have included only those nonresonant contribu- 
tions which we will need below to calculate the diffraction 
"seeds", which are proportional to f3,f;,f3,6;,,  in the dy- 
namic equations for the Fourier amplitudes of the profile. 

The energy dissipated in a unit volume per unit time in 
the region z' > f ( x , t )  equals 

where yo = y + y* and D' is the electric displacement vec- 
tor. After substituting the first expression ( 14 )  into ( 18) ,  we 
obtain 

When calculating f, it is sufficient to include only the 
contributions with p = 0, f 1, and to save only the reso- 
nance terms in Eq. ( 16). Then 

2 0 ~ ~ k , '  1 Ei2 1 
f o  = { I T o  I ' -8g4 ( T ~ ' ~ - T ? )  1 E2,1 '+16g8 I E Z g I 4  

nly l21AI2 
i -2 (g2+k,2) [ g 2  I TO 1 I E g  1 2+4g6 1 E g E 2 ,  I 2 .  
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where To and A are defined in (7)  and ( 1 1 ). Including Eqs. 
( 15)-( 17) in ( 19), the expression for f, can be cast in the 
form 

The first two terms in (21) are obtained from the first two 
terms of (19) for fgi while the term in square brackets in 
( 2  1 ) appears because of the third and fourth terms in ( 19 ); 
in Eqs. ( 16), ( 17) we consider only the resonance contribu- 
tions. In what follows, we will refer to the nonlinearity in {,, 
{,, , which is connected with the terms in the square brackets 
in (2 1 ), as "reactive". This reactive nonlinearity arises be- 
cause of the rescattering of the resonance fields E;, by the 
grating g into the surface waves E; ,, and subsequent inter- 
ference between these waves. It is easy to see from ( 19) that 
the reactive nonlinearity is significant when IE; ,, I is com- 
parable to or larger than /EA I .  In the case of grating ( 1 ), it 
follows from (21) that this will happen when gll, 1 28, I". 

For small values of 16, ', and I f  ,, I, the first term in (2  1 ) is the 
important one. 

Let us write the amplitude of the first harmonic f,, in 
the form 

The first three terms in (22) are determined by the first term 
in ( 19) when only the resonance contribution to ( 16) is in- 
cluded. The diffraction "seeds" f, ',' , which are -f,,l ;, 
are obtained from the first, second, fifth and sixth terms for 
f, in ( 19), while the diffraction "seeds" f,, ',) -(,,g; are 
found from the second, third, fourth, and fifth terms in Eq. 
( 19) for f,, . These diffraction "seeds", as we will see below, 
are important as If, 1-0 or as /l,, 1-0. Therefore, so as to 
avoid cumbersome expressions as 16, ', 1-0, we will use the 
following approximation in (9)  to calculate them: 

As /g,, / -0 the expressions for E,, in (9)  and EgZ in ( 10) 
can be cast in the form 

As a result, 

(1+2 sin 0) (To'/I',,+2g2 / E, 1 ') + 1 1 

~To~'+4g2~~,~2cosO(T.I+cos0g'~~8(2) 
E38EK' 

3. PHYSICAL MECHANISM OF PROFILE FORMATION; 
EQUATIONS FOR THE TIME EVOLUTION OF THE SPS; 
TOPOLOGICAL NONLlNEARlTlES 

a. Let us first investigate the process of generation of 
SPS in PCE of semiconductors. Assume that radiation from 
a CW laser is incident on the surface of the semiconductor 
(for definiteness we pick n-type GaAs and the etchant 
H2S0,: H,02: H 2 0 ) ,  and that the energy quanta of this radi- 
ation are larger than the width of the forbidden gap. As a 
result of diffraction of the light by the initial surface rough- 
ness and interference between the diffracted fields near the 
surface, a spatially-inhomogeneous distribution of electron- 
hole pairs is generated. Since the rate of etching is propor- 
tional to the concentration of minority charge carriers (see 
Ref. 13 and the citations therein), the surface profile be- 
comes unstable; this is because the amplitudes of the dif- 
fracted fields increase as the "seed" roughness gets deeper. 

As a consequence of the PCE, the plane which defines 
the average "boundary" between the semiconductor and the 
etchant moves as a whole along the z" axis with velocity 
v,(t). Then in the moving coordinate system, x, y, z' con- 
nected with the nonmoving coordinate system x, y, z" by the 
relation 

t 

the profile of the surface is given by Eq. (4 ) ,  while the total 
velocity ofthe boundary motion is determined by the expres- 
sion 

dE(x t) u. (t) =u, (t) + ---L = bn (x, z'=E (x, t) , t) , 
d t 

where the constant p is found by using the experimental 
data. After transforming to a system of coordinates x, y, 
z = z' - l ( x , t )  in which the boundary is planar, and taking 
into account ( 181, (20)-(23), the space-timedistribution of 
the minority carriers (holes) in the bulk semiconductor is 
determined by the following problem: 

a n  d n  
-- dt U ~ - = D { , ~ + [ I + ( ~ ) ' ] ~ -  dz 

2 d x  - df;  ---- d x d z  d 2 n  
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where y, is defined in ( 18) ,  n  is the number of holes per unit 
volume, D is the diffusion coefficient, T is the effective life- 
time of the holes, k = T/&, 7 is the quantum efficiency, S is 
the number of holes required to eject one semiconductor 
atom from the surface into the etchant, and Nis the number 
of semiconductor atoms per unit volume. 

In PCE, the characteristic velocity u, = 10 - '-10 - 5  

cm/sec. l 3  Therefore the conditions u, 9 Dg, D  / I ,  Dy, 
[where 1 = ( D r ) ' l 2  is the diffusion length] are certainly 
satisfied; this allows us to neglect the term v,(dn/dz) in the 
first equation ( 2 4 ) .  Furthermore, we will assume that f ( x , t )  
changes little in a time t z t , z m a x  (1/Dyo2, 12/D, l / D g Z ) .  
Then for t  > to a quasi-steady-state regime is established, 
which is equivalent to assuming that f  ( x , t )  and d{(x , t ) /d t  
do not depend on time. The steady-state solution to the prob- 
lem ( 2 4 ) ,  (25)  we will seek in the form 

In order to write down equations for n,,, n , ,  and n,, it is 
necessary to include in ( 2 4 )  the rescattering caused by cross 
terms of the type ( d  ,{/ax2) (dn /dz ) ,  ( d l  / d x )  ( d  ,n/dxdz), 
( d f / d x ) ( d n / d x ) .  Below we will see that dn,/dz = Af,, 
dn,/dz = Bf ,, , dn ,/dz = Cf, , where A,  B, C are quantities 
of order one, while the amplitudes of the profile satisfy the 
conditions g fg  58, gf,, <fin '/'(Pn I )  for all values of 
t. For the grating with parameters ( 1 ), it follows from Eqs. 
(20) - (22)  that when g f ,  -8, the grating amplitudes are 
in the ratios 

VbImax:KgImax:VgImax = 1: l :Pn1/2 .  

From the estimates which follow from this ratio it is quite 
clear that it is sufficient to include in ( 2 4 )  only the rescatter- 
ing nu- n ,  apd n, - n ,  by the grating g. The nonlinearities 
which arise because of rescattering we will refer to as "topo- 
logical". As a result, after substituting ( 2 6 ) ,  ( 4 )  into ( 2 4 ) ,  
( 2 5 )  we obtain the following system determining n, (z) : 

The distribution n , ( z )  is the solution to the problem 

while the concentration n ,  ( z )  is found from the system of 
equations 

n, (z=m) =0, 
,=a D a t '  

( 2 9 )  

It is clear from (27)- (29)  that the solutions to these prob- 
lems must be found in the form 

no (z) =Ao exp (-yoz) SBo exp (-6,z), 

n, (2) =C1 exp (-yoz) +C2 exp(-6,z) 

+C, exp (-6,z) +C1 exp (-13~z), 

60=1/1, 6,= (g2+~-2)'A, 62= (4g2+l-2)'ir, 

where A,, B,, A,, B,, C ,,..., C, are constants. Substituting 
these solutions into (27) - (29)  allows us to find equations 
which determine the time evolution of the fundamental and 
first harmonic of the surface profile, and also the spatially 
homogeneous etching rate v,(t):  

For the PCE process the conditions SNfl<DS,, DS,, DS,, 
and Dy, are certainly fulfilled. Taking this into account, we 
can investigate two limiting cases. For l g$1  the time evolu- 
tion of the surface profile is described, according to ( 3 0 ) ,  by 
the equations 

For the regime /gig 1 it is necessary to take into ac- 
count the second and third terms in the curly brackets of 
( 3  1 ) , i.e., the topological nonlinearities due to rescattering 
of the concentration waves n, - n  , and n, - n  , by the grating 
g. This is because 

Yg I z f d n  z Kg IBn 
for this case. In the other limiting case, for Ig, 1 y,,< 1 ,  from 
( 3 0 )  we obtain 

Thus, the question of when these topological nonlinearities 
play a role in PCE can be answered based on the semicon- 
ductor parameters and the wavelength of the laser radiation. 

b. The physics of profile generation in the case of LE is 
the same as for PCE, with the difference that the role of the 
concentration n(x ,z , t )  is played by the temperature 
T(x , z , t ) ,  while the velocity of the moving boundary between 
the media in the system of coordinates x,y,z is described by 
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the law 

vz(t) =vo (t)+ dE(x, t)/dt=Co exp[--U/RT (x, z=0, t ) ]  , 

where Co is a constant determined by the experimental data, 
R = k, N, k,is Boltzmann's constant, N is the number of 
atoms per unit volume, and U is the activation energy per 
unit volume. The problem of laser heating of the surface (4)  
can be described by (24), (33), if in (24) we make the re- 
placement 

where TI is the initial temperature of the surface, x is the 
coefficient of thermal conductivity, and K = xC, ; C, , L are 
the heat capacity and latent heat of evaporation per unit 
volume. The solution to (24), (33), (34) will be sought in 
the form 

T (x, z, t) =To (z, t )  + [Ti (z, t) e-'gx+T,(z, t) e-'2gx+ C.C. 1. 

Because T> / TI 1, I T2 I, after linearizing (33) we obtain in 
place of (25) 

where Ton = To(z = 0,t). Making the same sort of approxi- 
mations as those discussed after Eq. (26), the distribution 
To(z,t) is given not by (27) but by the system 

To (z, t=O) =T0(z=m, t) =TI ,  

uo=Co exp (-UIRT,,), 

when the conditions u0gxg, xy0 and to 2 1/xg2, 1/xyO2 are 
fulfilled, the distributions T, (z,t), T2(z,t) are determined by 
the quasistationary problems which follow from (28), (29) 
with the help of the substitution (34) and the substitution 

[see (251, (261, (2711. 
The stationary solution to the problem (26) applies for 

tZX/uo2. For LE the characteristic values are u 0 z  5. lo2 
cm/sec and x z 0.1 cm2/sec. This implies that for the LE 
process, in contrast to PCE, both the stationary ( t  k 10W6 
sec) and nonstationary ( t  5 10 - sec) regimes can be real- 
ized in practice. For the stationary case the solution to the 
system (36) ( t  2x/v$) has the form 

To (z) =T,+Aoe-T~z+Boe-v~z/x, 

(38) 

in this case vo and to, are determined from the transcenden- 
tal equations36 

In the nonstationary regime ( t5x/vO2),  when the condi- 
tions z2 g 4xt, t > 1/xyo2, uo <xy0 are fulfilled, the solution to 
(36) can be cast in the form 

In deriving the dynamic equations for v0,{, , {,, , we 
should substitute in the system (29), (34), and (37) either 
the solutions (28), (34), (37), and (38), (39) for the sta- 
tionary regime, or the solutions (28), (34), (37), and (40) 
for the nonstationary regime. It turns out that when the in- 
equalities v0 <xg, xy0, and t>xg2, xyO2 are fulfilled, for both 
regimes the time evolution of the fundamental and first har- 
monic of the surface profile is described by the equations 

In the stationary case vo and To, are determined by Eq. (39), 
while in the nonstationary regime they are given, according 
to (40), by the expressions 

vo=Co exp (-UIRT,,), Ton- (2folyoCp-2LvolC,) (tlnx) '". 

The second and third terms in curly brackets of the first 
equation of (41) are due to the rescattering To- T, by the 
grating g, while the fourth term is due to the similar rescat- 
tering T2 - TI. Note that in the regime where (39) applies, 
the values of Ton and vo are larger than in the regime (42). 

Let us now clarify the conditions under which we must 
include the topological nonlinearities in (41 ). Let us first 
investigate the stationary case (39). After substituting (39) 
into (41 ), we find that 

where 
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In the regime where (39) holds, numerical calculations 
show that for quartz, mercury, and germanium, and charac- 
teristic experimental intensities I ,  = 2 to 5. lo7 W/cm2, the 
second and third terms in the curly brackets in (41) balance 
each other; this allows the coefficient a in (44) to take on the 
values 0.1 to 0.4, depending on the intensity and material 
parameters, while v = 0 to 0.5. In these cases, when a=:v=:O 
and L>gxRTon '/Uvo, Eq. (43) acquires a simpler form 
analogous to the form of Eq. (32) for PCE: 

For real experimental conditions the inequality 
L >gxR T,,, '/Uu,, is equivalent to the condition /2 $0.1 to 2 
microns; for the optical range these inequalities should be 
verified in each specific case. 

In experiments on the formation of structures under 
pulsed conditions, the pulse length is usually 7, = 20 to 200 
nsec; consequently the nonstationary regime (42) is in ef- 
fect. Since u,, and Ton given by (42) are much smaller than uo 
and To,, given by (39), according to (41) the evolution 
equations for the profile in regime (42) have the form (43), 
where 

Thus, in the nonstationary case the topological nonlineari- 
ties always play an important role in an investigation of the 
evolution of the profile up to the level Iglg I -0, 

In Refs. 29,34,35, where the profile evolution was stud- 
ied only up to the level Iglg ( = : f i n ,  the neglect of the topolog- 
ical nonlinearities is permissible. We will discuss the region 
of validity of this paper below. However, in Refs. 31, 33, the 
topological nonlinearities were not included, although there 
the profile dynamics were investigated up to the level 
/gg, I =:fin ' I 2 .  Therefore the results of Refs. 31, 33 must be 
regarded as qualitative. Let us note that in contrast to the 
conclusions of Ref. 33, it is easy to see from Eqs. (41) and 
(43), taking (20)-(22) into account, that in both the sta- 
tionary and nonstationary regimes there is no intensity 
threshold within the LE model for the generation of a sur- 
face profile. Therefore the results for generation of a profile 
slightly above threshold which were obtained in Ref. 33 ap- 
pear to us to be invalid. 

4. OSCILLATORY REGIME FOR GENERATION OF FIRST AND 
SECOND HARMONICS OF A PROFILE: REFLECTIVITY AND 
ABSORPTIVITY OF A SURFACE DURING LE AND PCE 

Let us substitute Eqs. (20)-(23) into Eqs. (32), (43), 
assuming in (43) that L >gxRTon '/Uu,. SO as to represent 
these equations in a convenient form, let us introduce a nor- 
malized time and a normalized phase and amplitude of the 
surface gratings: 

7 = ~ Y L  t, Eng=En exp (-icp,), 

for LE and PCE respectively. We recall that Ei is the electric 
field intensity in the medium with dielectric permittivity E,: 

E ,  = 1 for LE and E ,  # 1 for PCE, and yo =: 2mk0. Since what 
interests us is the evolution of gratings with the parameters 
( I ) ,  for which k g 2 = k t 2 + g 2 = : k , 2 c 0 ,  we set 
g z  k, = k ~ , ' ' ~  COSO, r2, =: 3'/2 k&o'/2 cos 0, r,, -- 81/2 k o ~ 0 1 / 2  C O S ~ .  AS a result, in the region kg ' > kO2&, the 
system which describes the generation of the fundamental 
and first harmonic of the profile can be written in the form 

x i  21 - = - { ~ ( l + ~ ~ - x , ~ )  + ( ~ ~ - l - x ; ) x ,  cos 0 , .  
dT Ao2 

1 + sin2 8+3'"a -- B n [  ( l + A 2 ) ~ 1 Z + ~ i 2 ~ 2 2 + 2 ~ 1 2 ~ z A  cos m i ]  
3'" cos 0  

(A2+1)  '-2xZ2 (A2-1)  + ~ , l  
- upn 

2 cos 8 

cos 20 
- v P n -  [ ( I +  A') x12+x12x22 cos 2mi 

2 cos 0  

+ ~ X , ~ X ~ A  cos m i ]  1 + FiqZx3 cos (02-cps),  

xi2 cos 20 .- ( ~ ~ + ~ - z , ~ ) } s i n  mi 
5 2  

+ ( 2 F i ~ 2 x 3 / x 1 - F 2 x l ~ 3 / x 2 )  sin (%-rp,), 

dm2 xiZ cos 28 -- - L{ ( i -A2+x: )  x2 + ( ~ ~ + l - x : ) } s i n  Q i  
d~ Ao2 X a  

+ ( F I ~ 2 x 3 1 ~ i + F 2 x 1 x 8 / ~ 2 )  sin (cD2-cp3). 

Here, x, and p, are assumed to be time-independent and AO2 
is the renormalized squared modulus of the resonant de- 
nominator ( 1 1 ) . The quantity A takes into account anhar- 
monicity in the dispersion law ( 7 ) ,  while the coefficients F,, 
F2 characterize the diffraction "seeds" (23).  These quanti- 
ties are given by the following expressions 

+4(A+APnxi2 cos 0+P,xl2x~ cos 0  cos mi) ' ,  

pn cos 0  A=B-- 

where the quantity y, equals 
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The expression in square brackets in the first term of 
Eq. (8)  for a = v = 0 is due to the reactive nonlinearity, 
while the terms proportional to a and v are due to the topo- 
logical nonlinearities. The terms connected with the topo- 
logical nonlinearities can be larger, e.g., for a = 1, than 
those due to the reactive nonlinearity. It follows from (46), 
(47) that for x, 2 1 it is also important to include the terms 
caused by the intermode nonlinearity which are proportion- 
al to x,, whereas inclusion of the reactive and topological 
nonlinearities turns out to be necessary for x ,  2 1/B, ' I2. 

The coefficient of specular reflection R = I E,, 1 Eix I 
(and the absorptivity 1 - R for the surface (4)  can be repre- 
sented by using Eq. (9)  in the form (kg > kO2c,) 

R 1 R ,  =-=- ((1-A2+x,"-2P,xi2 cos 0 )  2 + 4 ( A - A P , ~ i 2  cos 0 
Rm AO2 

-P,x12x2 cos 0 cos 0 , )  2 ) ,  (48) 

where R, = I k, - iy 1 2 / )  k, + iyI2 is the Fresnel coefficient 
of specular reflection, and y = (k,, - ko2~)1 /2  
~ ( m  - in)k,. 

In the initial linear stages of the profile development, 
i.e., when x,  $I/& ,x24 1, if we neglect the "seeds", Eq. 
(46) can be written in the form 

dxi B -- = - dx,  cos 20 cos Q ,  
__.= - 

d z  1+B2 11' d~ l+B2  xi2, 

(49) 
dQ* -=- xi2 COS 20 
d t  x2 (1+B2)  

sin d D i .  

An analysis of (49) shows that when 28 < 90" the structure 
with the most rapid growth in time is the one which corre- 
sponds to A = B = 1, i.e., a grating with parameters ( 1 ) and 
its first harmonic, for which @ = 0 (phase locking). In this 
case, if the seed amplitudes x,,#O and x,, = 0, then 
x,  =x,,exp(y,t), x, = (xI~1cos28 1 )  [exp(2yLt) - 1]/2. 
At this stage x, grows more rapidly than x, ,  and has practi- 
cally no effect on the evolution of the fundamental. The ex- 
pressions for y, coincide with those obtained earlier in Refs. 

gate the process of evaporation of a metallized alloy of ger- 
manium under the action of radiation from a neodymium 
laser ( A  = 1.06 p, E = - 32 + i72 (Ref. 38), E, = 1). In 
this case we have p,, = 0.06, B,,, = 0.094. We will assume 
that the initial amplitudes f ,, = J,, = J,,z 25 d;. Because 
we are interested in the evolution of the grating ( 1 ) and its 
first harmonic, we set B = 1 in (47). 

To begin with let us clarify the region of applicability of 
Eq. (50). In the theory (Ref. 34) these equations are investi- 
gated analytically using the separatrix approximation, as- 
suming that in the generation process the phase @, changes 
discontinuously, alternating between the two values @, = 0 
and @, = T.  In this approximation it follows from (50) that 
for 28 < 90" the time evolution of the profile takes place in the 
form of opposite-phase oscillations ofx, and x,; the nth max- 
imum (x,),,,("' ~ 2 n ,  while the nth maximum 
(x , ) , , ,~~  ( n )  =: (2n - l ) / ~ o s ' / ~ 2 8 .  These expressions are con- 
firmed by Fig. 2, where the results of a numerical solution of 
(50) are shown. It is clear from Fig. 2, however, that the 
variation of @, from 0 to T takes place quite smoothly; there- 
fore the expressions for (x ,  ) ,,, ("' and (x,),,, (")  are 
obeyed only approximately. As the amplitude grows the 
"period" of the oscillations increases. 

In Fig. 3 we present plots of the time evolution of the 
profile and the normalized coefficient of specular reflection 
(48). These plots are based on the numerical solution of 
(46), (47), taking into account all the nonlinearities, with 
the exception of the topological ones (i.e., a = v = 0). It 
follows from Fig. 3 that after several oscillations of x ,  and x, 
the system arrives at a steady state oscillatory regime with 
bounded values of the amplitudes. In this case the coefficient 
of specular reflection undergoes high-amplitude oscillations 
which periodically result in its total suppression and 100% 
absorption of the radiation by the surface at specific instants 
of time. When we neglect the reactive nonlinearity the am- 
plitude x,  saturates at the point where the second term in 
(47) forA is comparable to unity, whereas when the reactive 
nonlinearity is taken into account it occurs at the point 
where the first term in square brackets of the first equation in 
(46) (for x, z O )  balances the first term in curly brackets of 

- 

37, 13, and are understood to be growth rates for the struc- 
tures. For 28> 90" the equations for x ,  and x, remain the 
same; however, the phases are locked so that @, = T .  

In order to describe the subsequent stages, for which XI 1 x2 

x,  4 I/@, x,< l/Pn it is sufficient to include in Eqs. 12 - 
(46), (47) only the intermode nonlinearity. Then setting 8 - 
A = B = 1, F, = F, = 0, fin = 0, we obtain 

dx1 xi -=- ( 2 - ~ ~ ~ - ~ 2 5  cos mi), 
d~ xZ4i-4  0 10 20 30 40 50 60 70 z 

?, 
ax2- xi2 cos 20 -- 1 2 ~ , +  ( 2 + ~ , 2 )  cos m i l ,  

dz x,1+4 

dmi sin 0, xi2  cos 20 
-=- [ 2x2 - 

d t  x,1+4 x2 ( 2 - x . ) ] .  
0 10 20 30 40 50 60 70 t 

The system (50) coincides with the system presented in Ref. 
34. Finally, forx, -- 1/B, x2 > 1, it is necessary to use the 
system (46), (47). FIG. 2. Time evolution of x i ,  x? and @ ,  during LE of germanium. The 

plots were constructed using numerical solution of the system (46),  (47) 
Below we will illustrate the role of all the nonlinearities forfin = 0, Q = 35", A = = 1, F ,  = ,F~ = ,, Or, which the same thing, 

described above with specific examples. Let us first investi- numerical solution of the system (50). 

292 Sov. Phys. JETP 69 (2), August 1989 V. N. Serninogov and A. I. Khudobenko 292 



this equation. When we use the separatrix approximation in 
(46), (47), it is easy to obtain a rough estimate of the num- 
ber of oscillations n, which precede the steady-state regime 
in these two cases; thus, 

3" cos20 " 
n - ( ) +0.5-2.24; 

4p, cos 0 

3'" cos 0 cos 20 "' 
c -( ) + 0 . 5 ~ 4 . 7 .  

4P, (1 f sin2 0) 

Therefore, in the region of optical wavelengths the theory of 
Ref. 34 gives a valid qualitative description of the dynamics 
of x ,  and x, only for the first two or three oscillations. This 
conclusion is also verified by comparing Figs. 2 and 3. As for 
the results of Ref. 35, in our opinion the amplitudes of the 
diffracted fields in the medium were calculated incorrectly. 
Therefore the region of applicability of the theory in Ref. 35 
is limited to the linear stages of the development of SPS. 

Plots based on the same parameters as in Fig. 3, but with 
the values F, = F2 = 0, show that with each oscillation the 
minimum value of the amplitude ofx, approaches closer and 
closer to zero. Therefore more and more time is required to 
depart from this minimum, leading to an increase in the peri- 
od of oscillations with time. The introduction of diffractive 
seeds F, +O and F , + O  into the system (46) prevents the 
approach ofx, to zero and thus stabilizes the period of oscil- 
lations of the fundamental and first harmonic of the profile. 
The second function brings about the diffractive "seeding" 
in the following way. If at the initial time we have 
@, = a,, = 0 (which corresponds to the most rapidly- 
growing grating x,), then in the absence of diffractive seeds 
@, = 0 holds for all time. In this case the oscillatory regime 
does not arise.29 If, however, we have 0 < @,, < a ,  then the 
oscillatory regime is established, and 0 < @, < a holds for all 

r (see Fig. 2). When the diffractive seeds are included the 
oscillatory regime arises for any @,,; in this case the phase 
can be "expelled" from the phase-locking points @, ='O or 
@, = a both in the region 0 < @, <a and in the regions 
@, < 0 and @, > a .  The variation in the phase q, does not 
affect the character of the steady-state oscillations. 

Let us clarify why the oscillatory regime was not pre- 
dicted by Ref. 31, in which this very problem was solved 
numerically for all epochs using the same parameters (ex- 
cept that 8 = O"). It is easy to see from Eqs. (46), (47), and 
from the solution (49), that on the time scale r the position 
of the first maximum and subsequent minimum of x,  (see 
Fig. 3) depends only weakly on 8. Therefore the positions of 
the first minima for 8 = 0" and 8 = 35" must practically co- 
incide. In Ref. 3 1 the numerical calculation was carried out 
up to the normalized time; = kJl t /2aL = 0.25. In our nor- 
malized units (45) for 8 = 0" the instant t = 0.25 must cor- 

e 

respond in Fig. 3 to the instant T = 8kJl t /L  = l6n-t = 12.5. 
From Fig. 3 it is clear that for r = 12.5 the amplitude x,  is 
close to zero, while the value x, is maximal, and in the neigh- 
borhood of r = 12.5 the amplitudes x,, x, change very slow- 
ly. Therefore there is quantitative agreement between our 
results and those of Ref. 3 1 in the region 0<r<  12.5 holds 
(see Fig. 3 and curve 1 of Fig. 4 in Ref. 3 1 ). The absence of 
any conclusions in Ref. 31 concerning the oscillatory char- 
acter of the profile formation process is connected, in our 
opinion, with the smallness of the time interval over which 
the numerical solution was carried out (0si i~0.25 ) . 

From Eqs. (46), (47) it follows that for angles 8 > 45" 
the generation must undergo an essential change. The nu- 
merical calculation shows that, irrespective of its initial val- 
ue dependence, the phase Q, becomes locked at @, = rafter 
a time. In this case the amplitude x, grows approximately 
linearly with time up to the limit of applicability of the theo- 
ry (g/gg / < 1 ), while the amplitude x, attains its stationary 
value. 

Up until now we have assumed that a rectangular laser 
pulse acts at the surface. In Fig. 4 we show the effect of 

FIG. 3. Time evolution ofx,, x,, @, and R,, during LE of germanium. The 
plots were constructed through numerical solution of Eqs. (46), (47) for 
B, =0.06 ,6=35" ,B=l ,F ,#0 ,F ,#0 ,p3=1rad ,a=v=0 .  

FIG. 4. Time evolution of x, ,  x,, @,, and the normalized specular reflec- 
tion of the signal f ( r ) R  / R , ,  during evaporation induced by a laser pulse 
with a Gaussian temporal profile. In Eqs. (46)-(48) we set P, = 0.06, 
6 = 3 5 " , B = 1 , F , f 0 , F 2 # 0 , p 3 = 1 r a d , a = v = 0 .  
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harmonic generation on the profile when the incident radi- 
ation has a Gaussian form in time 

(EbIZ= I EiOI2f (a) - 1  Eiol exp [- (T-37) 2/250]. 

From Fig. 4 it is clear that in the initial stage the specular 
reflection is practically the same as that from a plane surface, 
and then drops to zero; ultimately the pulse is reestablished 
at its initial level, although the resulting form of the profile is 
far from planar (see Fig. 4).  This temporal behavior of the 
specular reflection, which is caused by the nonlinear genera- 
tion of the surface profile, could serve as an explanation of 
the results of the experiments in Refs. 25-28 which were 
designed to investigate a considerable variation in the ab- 
sorptivity and reflectivity of the surface observed under the 
action of a powerful laser pulse. It should be noted that the 
dependence of R, on T presented in Fig. 4 reproduces with 
extraordinary precision the experimentally measured de- 
pendence in Ref. 27 (see Fig. 5).  

Let us now discuss the role of the topological nonlinear- 
ities during LE, setting a = 1 and v = 0 (i.e., a metal in 
which yo)g). It follows from a comparison of Figs. 3 and 6 
that inclusion of topological nonlinearities leads to a signifi- 
cant decrease in the maximum values of x ,  and x,. In this 
case, total suppression of specular reflection does not occur, 
because for all T the depth of the surface profile is less than 
~ p t i m u m . ~  Therefore, the feasibility of attaining 100% ab- 
sorptivity hinges on whether or not we can neglect the topo- 
logical nonlinearities (see Sec. 3 ) . 

Let us now investigate the PCE process in semiconduc- 
tors. Assumes-polarized laser radiation with A = 0 . 5 3 ~  acts 
on the surface of the semiconductor n-GaAs which is sub- 
merged in the polishing etchant H2S04: H202: H,O (Ref. 
12). Then n = 4.2, m = 0.33 (Ref. 39), E,"~ = 1.35 (Ref. 
12) and 8, = 0.3, /3, = 0.025. In Fig. 7 we show plots 
which illustrate the process of harmonic generation for this 
case in the regime where the topological nonlinearities are 
not required [see (32) 1 .  In comparison with the case of LE 
of metallized germanium (compare with Fig. 3) the ap- 
proach to the steady-state oscillatory regime occurs faster 
for PCE, while a deep dip in the specular reflection is ob- 
served even at the time of the first oscillation of x,. Let us 
estimate the real time required for one oscillation. Accord- 

2 
t. nsec 

FIG. 5. Experimental dependence" of the intensity of incident (dashed 
curve) and specularly reflected (solid curve) signals for A1 with 6 = 10" 
and A = 1 0 . 6 ~ .  

FIG. 6. Time evolution of x , ,  x,, Q,, and R,, taking into account the 
topological nonlinearities (To- TI ) during LE of germanium. The plots 
were constructed using numerical solution of Eqs. (46)-(48) for 
p,, =0 .06 ,B=35" ,B=1 ,F l#0 ,F ,#0 ,y ,=1rad ,a=1 ,v=0 .  

ing to Ref. 13, for our parameters the growth rate (45) for 
Ii = 7 W/cm2 and 8 = O" equals l/yL = 1.4 sec-  ' . Then 
scaling according to Eq. (45) for I,  = 1 W/cm2 and 8 = 35" 
gives l/yL = 11 sec- I .  Because t = r/2yL and the average 
normalized time of one oscillation is T = 22 (see Fig. 7),  for 
Ii = 1 W/cm2 we should expect a repetition of the oscilla- 
tions during the time interval t = 2 min. This implies that in 
order to observe the oscillatory character of the generation 
of surface harmonics during PCE it is necessary to use a CW 
laser. 

5. CONCLUSION 

Besides the LE and PCE processes, we have also investi- 
gated the processes of pyrolytic etching and d e p o s i t i ~ n . ~ ~  In 
these processes, for all cases realized in practice it is neces- 
sary to include the topological nonlinearities in order to de- 
scribe the nonlinear regime of SPS generation up to a level 
gig zfl, I/'. The characteristic dependence ofx,, x,, and R,  
on T is analogous to that shown in Fig. 6, with the sole differ- 
ence that these quantities vary more abruptly with time in 
the region of the dip in R, (T) .  

The theory proposed here can serve as a basis for devel- 
opment of a single-step maskless technology for preparation 
of deep harmonic and biharmonic diffraction gratings with 
various reflective properties. In this case the depth of the 
profile and the ratio between the amplitudes of the funda- 
mental and first harmonic are controlled by the exposure 
time, while the area of the grating can be increased by scan- 
ning the incident beam along the s u r f a ~ e . " , ~ ~ , ~ ~  It is signifi- 
cant that the period of the generated grating can be up to 
2 ~ ~ " ~  n* times smaller than the wavelength A of the incident 
radiation. 

With regard to experiment, the nonlinear regime for 
generation of surface structures has been little investigated. 
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0 10 20 30 40 50 60. 70 80 90 1 0 0 ~  FIG. 7. T ~ m e  evolut~on of x,, x,, @,, and R,, durmg PCE of n- 

1 GaAs. The plots were constructed through numerical solut~on of 
Eqs. (46)-(48) forb,, =0.3, B =  35', B =  1, F,#O, F,#O, p =  1 
rad, a = v = 0. 
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In this connection we note that the PCE process may turn 
out to be a good candidate for verifying this theory experi- 
mentally. First of all, in contrast to the processes of LE or 
generation of capillary we do not require the in- 
clusion of any nonlinearities (e.g., thermal, hydrodynamic, 
etc.) other than electrodynamic for its description. Second- 
ly, the PCE process is not complicated by competition be- 
tween the processes which lead to generation of surface pro- 
files, e.g., thermocapillary forces or  forces due to recoil of 
vapors during And, finally, the slow evolu- 
tion of the Fourier harmonic profile (seconds to tens of min- 
utes) suggests the experimental possibility of continuous 
monitoring of the structures using simple apparatus. 

In constructing a theory we have used the so-called dis- 
crete-mode approximation,'~n which out of the entire con- 
tinuum of induced gratings we consider only the dominant 
SPS. An estimate of the time interval for which the discrete- 
mode model is valid can be given only after the solution of a 
more complicated problem, where we include the effect of all 
the remaining spectrum of generated structures on the evo- 
lution of the profile. 

The authors express their gratitude to S. A. Akhmanov, 
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the results of the work, and also to V. M. Shabunin for his 
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