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An expression is obtained for the photoabsorption cross section of atoms near the ionization 
threshold in an external static magnetic field. The results satisfactorily describe quasi-Landau 
resonances observed experimentally in the photoabsorption by hydrogen atoms in a magnetic 
field. A similar expression is obtained for the photoabsorption in an electric field. 

1. INTRODUCTION 

The present paper reports a study of the process of ab- 
sorption of photons by hydrogen-like atoms subjected to a 
magnetic or an electric field in the case when transitions take 
place from lower states to highly excited states with energies 
close to the ionization threshold of a free atom (see Ref. 1 ). 

Some time ago it was found experimentally2 that in a 
magnetic field the photoabsorption cross section of atoms 
exhibits strong oscillations (as a function ofthe photon ener- 
gy) near and above the ionization threshold. The existence 
of such oscillations, known as the quasi-Landau resonances, 
was confirmed by recent precision  experiment^.'.^ Similar 
(but simpler) oscillations were found to be exhibited by the 
photoabsorption cross section above the ionization thresh- 
old of atoms in an electric field? 

The main difficulty in the direct investigation of prob- 
lems of this kind is in constructing a wave function for the 
final highly excited state. In the case of a hydrogen atom in a 
magnetic field of intensity B, directed along the z axis, the 
problem reduces to the solution of the following Schrodinger 
equation, written in atomic units; (see, for example, Ref. 7) :  

diagonalizing large matrices and it was found that the calcu- 
lated photoabsorption cross section exhibits oscillations of 
the expected type below the ionization threshold. 

It has been pointed out earlier1'-l5 that quasi-Landau 
resonances are related in a way to the classical periodic or- 
bits of the problem in hand. It was shown in Refs. 10-15 that 
the separation between neighboring peaks (representing the 
period of one oscillatory function) agrees well with the dif- 
ferences AE, = En + I - E n ,  between the energies En which 
satisfy the "quantization condition": 

where S (E)  is the classical action calculated along a given 
periodic orbit passing through the Coulomb center and n is 
an integer. 

Assuming that AE, < E n ,  we find that 

where T, = dS/dE (.= .,> is the period of the orbit investi- 
gated. 

It was assumed initially in Refs. 12-15 that there are 
real quantum states localized near periodic orbits and the 
condition (2)  is the standard criterion of semiclassical quan- 

where r2 = x' + y2 + z2; p' = x2 + y2; m is the azimuthal 
tization of one-dimensional motion. It was later under- 

quantum number; E = E - pm is the energy after subtrac- 
~ t o o d ~ , ~  that this interpretation is incorrect, because in the 

tion of the usual Zeeman splitting; 
case of a hydrogen atom in a magnetic field near the ioniza- 

and p = B /(4.7 x lo5 T )  is the magnetic field intensity in 
atomic units. The experiments reported in Refs. 3 and 4 were 
carried out in a field B = 6 T, so that P = 1.28 X lop5 is a 
small parameter. 

In studies of transitions to lower levels, characterized 
by P 2(p ') < ( l /r) ,  we can use perturbation theory in which 
the small parameter is fi (Ref. 8) .  In the case of transitions 
to states with very high values of (p 2 ,  when the opposite 
inequality is satisfied, it is permissible to apply perturbation 
theory to the Coulomb potential.y However, if in the case of 
the investigated state the Coulomb term is comparable with 
the paramagnetic term, ( l/r) z B 2  (p2), then such approxi- 
mations are unacceptable. These states are characterized by 
large values of (r):  (r) a l /p  2'3, whereas the energy mea- 

tion threshold all such periodic orbits are classically unsta- 
ble" and any wave packet centered on such an orbit should 
spread out rapidly in a time governed by classical mechanics. 

Our aim (in accordance with a brief communication 
published earlier") is to show that the absorption of a pho- 
ton by atoms in external fields can be described by simple 
semiclassical expressions and that the external field taken to 
a certain power plays the role of the Planck constant. 

The main result obtained below is as follows. Near the 
ionization threshold the photoabsorption cross section can 
be represented in the form 

a )  in an external static magnetic field: 

o (E) = u c o u l + ~ ~ ' ~  1m 07' exp (ispip') ; (4) 

b)  in an external static electric field: 

sured from the ionization threshold is low: E cc ( l / r ) a ~  'I3. 

This is the case we shall consider in the present paper. 
o (E) = ucoul +Y' 1 m E  uAEiexp (iSP/yfi). 

The Schriidinger equation corresponding to-the Hamil- 
P 

tonian (1)  was solved numerically in Refs. 10 and 11 by In these expressions we have P =  B/(4.7X lo5 T) ,  and 
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y = F/(5 .1  x lo9 V/cm) are the intensities of the magnetic 
and electric fields expressed in atomic units (for the hydro- 
gen atom); uc,,, is the cross section of the pure Coulomb 
photoabsorption (without allowance for the external field). 
The summation in Eqs. (4 )  and (5 )  is carried out over all 
unstable periodic orbits passing through the Coulomb cen- 
ter. The quantity s,' is the reduced value of the classical 
action calculated along a given orbit; ujM' and uLE) are the 
amplitudes expressed below [see Eqs. (33)-(37) ] in terms 
of elements of the classical monodromy matrix of the investi- 
gated periodic orbit and in terms of a wave function of the 
initial state. Near the ionization threshold the cross section 
uc,,, can be regarded as independent of energy, whereas S, , 
uhM', and ujE' depend only on the reduced energy E,  which is 
equal to E /P2I3 for the magnetic field and E /y1I2 for the 
electric field. A finite value of the reduced energy corre- 
sponds to the case when the Coulomb energy is comparable 
with the energy in the external field and perturbation-theory 
methods are inapplicable. 

For an atom in an electric field when the energy is posi- 
tive, there is only one unstable periodic orbit which emerges 
from the Coulomb center against the field and returns back 
to the center. The corresponding sum in Eq. (5 )  contains 
only repeated replicas of this orbit, so that calculations are 
simple. 

An atom in a magnetic field near the ionization thresh- 
old is characterized by an infinitely large number of various 
unstable periodic  orbit^^,^,'^ and exact summation over all 
the orbits is in any case not simpler than the direct solution 
of the Schrodinger equation. However, if we are interested 
not in the exact value of the cross section at a given energy, 
but in the average cross section in a small energy interval A E  
(which is equivalent to experimental determination of the 
cross section using a method characterized by a finite resolu- 
tion), the main contribution to the sum in Eq. (4 )  comes 
from the finite number of short-period orbits the motion 
along which is limited by the inequality ( Tand AE are mea- 
sured in atomic units and we have A E ~ P * ' ~ )  

The necessary parameters of such orbits can be found nu- 
merically. 

The expressions derived below are in good agreement 
with the experimental data on the photoabsorption in elec- 
tric and magnetic fields, and with the results of a direct nu- 
merical solution of the Schrodinger equation in such cases. 

The method used to derive Eqs. (4 )  and (5)  is close to 
the method of Refs. 18 and 19 where semiclassical expres- 
sions were obtained for highly excited wave functions of the 
ergodic stadium billiard type. This method is based on aqua- 
siclassical representation of the Green's function in the form 
of a sum over all the classical orbits joining two fixed 
 point^.^^.^^ 

The paper is organized as follows. The expression for 
the photoabsorption cross section is obtained in Sec. 2 in 
terms of the exact Green's function of the Schrodinger equa- 
tion and the semiclassical representation is considered. In  
the problem under discussion the existence of a Coulomb 
singularity modifies the standard expressions and Sec. 3 
gives the results of matching the semiclassical expressions to 
the exact expression near the Coulomb center. The general 

properties of the semiclassical expressions for the absorption 
cross sections in external fields are discussed in Sec. 4. The 
results obtained for the photoabsorption in electric and mag- 
netic fields are compared in Secs. 5 and 6 with the experi- 
mental data and with the results of direct numerical calcula- 
tions, respectively. 

2. GENERAL FORMALISM 

I t  is well known (see, for example, Ref. 7 )  that the pho- 
toabsorption cross section expressed in atomic units is 

Here, Vfi is a matrix element of the electron velocity; Y i  is 
the wave function of the initial (bound) state of energy -I; Yf 
is the wave function of the final state of energy E, normalized 
at large distances to a plane wave with a single coefficient; w 
is the photon energy; 1 is the photon polarization vector;p is 
the momentum of the final electron; a is the fine-structure 
constant. 

We introduce the Green's function for the Schrodinger 
equation in the usual way: 

where En and Y, are the exact eigenvalues and eigenfunc- 
tions of the Schrodinger equation. We then have 

and the quantity Q governing the photoabsorption cross sec- 
tion of Eq. ( 7 )  can be expressed in terms of the Green's 
function as follows: 

We first consider the case of a magnetic field. In view of 
the invariance under rotation around the magnetic field di- 
rection, we have 

4- 

G (x', x; E )  = exp[im(vr-v) IGm(p1, q ;  E l ,  
2n (pip2) "zm=-m 

where m is the azimuthal quantum number; G, (ql,q;E) is 
the Green's function for the two-dimensional equation ( 1 ), 
and q is a vector with the components ( z g ) .  

Subsequent calculations will be based, as in Refs. 18 and 
19, on the use of the general semiclassical representation of 
the Green's function G(xl,x;E) in the form of a sum over all 
the classical paths passing through two fixed pointsx" and x' 
(see, for example, Refs. 20 and 21 and the references given 
there). In the quasiclassical approximation the Green's 
function of the Schrodinger equation can be represented as a 
sum of two terms: 
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G(x", x'; E )  = G o ( x f ' ,  x'; E)+Gode(x" ,  x'; E ) ,  ( 12) 

where GO(x",x1;E) is the contribution of "short" classical 
paths, i.e., of paths for which the classical action is small 
compared with the Planck constant. Such paths usually exist 
only if the initial and final points are close to one another 
and, naturally, if there are no such paths, there is no corre- 
sponding contribution. The semiclassical approximation 
cannot be applied to these paths, but because of their local 
nature the potential in the Schrodinger equation can be ex- 
panded as a series in terms of a deviation from the point 
(x" + x1)/2 and in the leading approximation the quantity 
Go is identical with the Green's function considered in the 
Thomas-Fermi approximation. In the problem under dis- 
cussion the quantity Go is simply the Coulomb Green's func- 
tion without allowance for the external field (i.e., in the case 
when p-. 0) .  

The term Go"' (x",x1;E) represents the contribution of 
"long" paths when the action along the paths is large. It is 
GOSc (x",xl;E) that can be represented in the semiclassical 
limit by a sum over all classical paths joining the points x" 
and x'. In n-dimensional space, we have 

x 'A~/* exp( i  s (x", X I ;  E )  
f i  

(13) 

where 2* denotes summation over paths and each term in 
the sum is related to one of the classical paths of energy E 
connecting the points x"  and x'. Moreover, 

is the action along a path and A is a determinant composed of 
the second derivatives of the action: 

In this expression the symbol y is used for coordinates in an 
(n - 1 )-dimensional plane perpendicular to a given path; 
the primes refer to the initial and final points of a path; Iql is 
the modulus of the velocity; v is an integer which appears if a 
given path has points at which the semiclassical approxima- 
tion is invalid. This number is equal to the number of conju- 
gate points (at which A - cc ) in combination with an addi- 
tional phase associated with the reflection from the 
boundaries (as discussed below). 

The preexponential factor A in Eq. (13) can be ex- 
pressed conveniently in terms of elements of the monodromy 
matrix. This can be done by considering one of the classical 
paths joining points q" and q' and introducing in the vicinity 
of this path a coordinate system selecting thex axis along the 
path and they axis at right-angles to it at a point x*. We shall 
linearize the classical equations of motion near this path. 
Then, y ( t )  is described by certain linear second-order equa- 
tions and we can determine the matrix M,, ( t )  linking y ( t )  
and y( t )  with y (0)  and y(0): 

If Tis the time of motion from the initial point q' to the final 
point q", the matrix Mu ( T )  can be called the monodromy 
matrix of a given path. 

We can easily that in two-dimensional space 
we have 

A 

where /qi I and are moduli of the velocity vector at the 
initial and final points, respectively. 

Equations ( 13) and ( 15) allow us to determine the se- 
miclassical contribution to the Green's function made by a 
given path. This can be done starting with the quantities 
calculated from classical mechanics , i.e., the action S, the 
velocities at the initial and final points, and one element of 
the monodromy matrix. 

We now return to the problem of an atom in a magnetic 
field described by Eq. ( 1 ). We can show that the centrifugal 
term in Eq. ( 1) obtained in the limit p-0 contributes not 
only to the phase v, but also to the magnitude S, and A is 
found for classical paths corresponding to the Hamiltonian 

We carry out the following scaling transformation: 

q ( t )  = p - " " " 4 ( ~ ) ,  p ( t )  =rj  ( t )  =B"'$ ( T )  , ~ = p t .  ( 17) 

After substitution of E = EP 'I3 the Hamiltonian expressed 
in new variables is independent ofp. In the case of this trans- 
formation the action and the elements of the monodromy 
matrix transform as follows: 

The quantities on the right-hand sides of these relationships 
are called reduced. They can be calculated from the Hamil- 
tonian of Eq. ( 16) when fl = 1 and they depend on the re- 
duced energy E = E /b 21! The range of energies near the 
ionization threshold of interest to us corresponds to finite 
values of E .  

After these transformations, Eq. ( 13) for Go" becomes 
( f i = m =  l , n = 2 ) :  

G"""qU, q'; E )  

fjt/" 
- - -x ' exp ( i (P", Q'; E )  

i ( 2 z i )  P'" i ) .  (19) 

We must stress once again that the reduced values and ?? 
depend only on E = E /fl'/" which is assumed to be finite. 
We can describe Go"' fully if we identify the values of the final 
and initial points q" and q'. 

The expression for the photoabsorption cross section 
( 10) includes integrals of the Green's function containing 
the initial wave function. We are interested in the case when 
the initial state is one of the lowest states with all quantum 
numbers. The wave functions of such states are concentrated 
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in a region of the order of the Bohr radius or, after the scaling 
transformation of Eq. ( 17), in a region of the order of P2I3. 
This means that in the limit 8-0 in the reduced equation 
both q" and q' are located near the Coulomb center where 
semiclassical expressions are generally invalid and we have 
to match the results to the exact Coulomb functions. 

3. MODIFICATION OF SEMICLASSICAL EXPRESSIONS NEAR 
A COULOMB CENTER 

We now go over from cylindrical coordinates (p,z) to 
parabolic coordinatesp, Y; we know that p>O, v>O from the 
expressions 

After additional transformation of the time t into a vari- 
able T is related to t by 

we find that the classical equations of motion corresponding 
to the Hamiltonian ( 16) are transformed into equations cor- 
responding to the Hamiltonian 

with vanishing energy. 
We can easily show that the action and the quantity A 

remain unchanged in the old and new coordinates. Since the 
Hamiltonian of Eq. (22) has no singularity at p = v = 0, it 
follows that for q", 9'-0 the functions S(q",qf ) and A(q", 
q') tend to the finite limits So and A,. It is clear from Eq. 
(22) that i fp  = v = 0, we have lbl = 2 and 

where m,,  is an element of the monodromy matrix of Eq. 
( 14) expressed in parabolic coordinates. 

If we allow for the centrifugal term, we find that the 
complete Schrodinger equation [without separation of the 
factor p"', as in Eq. ( 1 1 ) ] becomes 

The centrifugal term is large if p and/or v is close to 
zero. In this range we can ignore the term with E and p2v2. 
The corresponding equations are easily solved and we can 
show that for each passage of a given path across the p = 0 
axis (or the p = 0 and v = 0 axes in terms of parabolic co- 
ordinates) in each part of the path entering and leaving the 
Coulomb center an allowance for the centrifugal term re- 
duces to the appearance in Eq. ( 19) of an additional phase 
v:, = 2m + 1. 

The existence of a finite limit to Eq. ( 19) when q", q' -+O 
does not mean that this semiclassical expression is valid in 
this range also. The correct form of the Green's function can 
be found by matching the semiclassical expression to the 
exact Coulomb solution near the center. 

We omit details and give only the final result: 

G:"(qM, q'; E )  

where-as before-summation is carried out over all classi- 
cal paths emerging from and returning to the Coulomb cen- 
ter; p, and pJ are the initial and final momenta on a path; pjP' 
andpy' are the projections of these momenta along the axis 
p; \Vjm' (q) is the mth term in the expansion of the function 
\Vi - ' ( r )  as a Fourier series in terms of the azimuthal angle; 
\Vj- ( r )  is the standard solution of the Schrodinger equa- 
tion in a Coulomb field which at large distances represents a 
plane wave with a single coefficient in combination with a 
converging spherical wave (see, for example, Ref. 7).  

Equation (25) is the basis of the semiclassical calcula- 
tion of the photoabsorption cross section of an atom in a 
magnetic field. 

The problem of a hydrogen atom in a static electric field 
reduces to the solution of the Schrodinger equation with the 
following Hamiltonian7 (in atomic units) : 

where the electric field is assumed to be directed along the z 
axis; y = F/(5.1 X lo9 V/cm) is the electric field intensity in 
atomic units. 

As in the case of an atom in a magnetic field, we consid- 
er transitions to highly excited states for which the Coulomb 
energy is comparable with the potential energy in an external 
field. In the case of these states the energy is close to the 
ionization threshold: E = y'I2&, where E is a finite quantity. 

In principle, this problem is simpler than that of an 
atom in a magnetic field, since parabolic coordinates make it 
possible to separate the variables and reduce the equation 
expressed in terms of partial derivatives to a coupled system 
of ordinary differential  equation^.^ This makes it much easi- 
er to carry out numerical calculations,%ut does not identify 
the nature of oscillations of the photoabsorption cross sec- 
tion above the ionization threshold, so that we can still pro- 
ceed as in the case of a magnetic field. 

The photoabsorption cross section in an electric field is 
described by Eqs. (7)-( lo) ,  where G(x",xl;E) is the 
Green's function in an electric field corresponding to the 
Hamiltonian of Eq. (26). In the semiclassical approxima- 
tion the function G(x",xl;E) is given by Eqs. (12) amd (13). 
We can show that the only classical path that contributes to 
Eq. ( 13) in the case when E > 0 is that emerging from the 
Coulomb center along the z axis against the field and reflect- 
ed back to the center. In the case of an atom in a magnetic 
field we reduce the problem to the two-dimensional form by 
utilizing conservation of the azimuthal quantum number 
and we ignore the centrifugal term, as in Eq. ( 16). In the 
case of the investigated path we have p = 0 and this cannot 
be done, so that in order to find A of Eq. ( 14) we have to use 
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the three-dimensional semiclassical approximation. It fol- 
lows from Eq. ( 14) that if the path follows thez axis and the 
motion along the x and y axes is independent, then 

Each of the second derivatives can be expressed, as before, in 
terms of the corresponding element of the monodromy ma- 
trix, as in Eq. ( 15). 

In describing the motion along and close to the z axis it 
is convenient to adopt coordinates similar to the parabolic 
coordinates of Eqs. (20) and (2 1 ) . We assume that 

It follows from Eq. (26) that ,u, v , ,  and v,  are described by 

where a prime denotes the derivative with respect to the 
available 7, which is linked to t by dt /dr = ,u2. 

Further calculations are analogous to the case of a mag- 
netic field. The final expression for the contribution to the 
Green's function by a path emerging and returning along the 
z axis is 

where summation is carried out over all multiple passages 
along a given path; S(E) is the action corresponding to Eq. 
(29); m , , = sinh (A T)/A represents an element of the mono- 
dromy matrix corresponding to Eq. (30); A = (2~) '" ;  T(E) 
is the period of the path described by Eq. (29); the vector k is 
directed along the z axis; Y: ' (x l )  is the same standard 
Coulomb function as in Eq. (25). 

4. SEMICLASSICAL EXPRESSIONS FOR THE 
PHOTOABSORPTION CROSS SECTIONS IN EXTERNAL 
FIELDS 

The final expressions for the photoabsorption cross sec- 
tion can be written down by introducing quantities A ," de- 
fined by the overlap integral of the initial wave function 
Yi (x)  and the function Yjm'(x): 

where p is the azimuthal angle of the vector r. I t  should be 
noted that if / p i  -0, the value A jm' tends to a finite limit.' 

Substituting Eqs. (25) and ( 3  1 ) into Eq. ( lo ) ,  we ob- 
tain an expression for the photoabsorption cross section of 
an atom in an external field near the ionization threshold in 
the form of semiclassical sums of Eqs. (4 )  and (5),  where 
the amplitudes gbM'and ubE' governing the contribution of 
each classical orbit, beginning and ending at the Coulomb 
center, are as follows: 

a )  in the case of a magnetic field, we have 

(2n) '" 
o;M'= - 

0 a(sin 0, sin 0,)' ( z n A;,'"'' A:') 

b) in the case of an electric field, we obtain 

where 8, and 8, are the angles between a classical orbit and 
the z axis. The phases v ,  and v are described by 

where v, is the number of conjugate points (at which we 
have m ,, = 0)  on a path; v ,  is the number of reflections from 
the boundary of the allowed region (number of points at 
which the velocity modulus vanishes); v ,  is the number of 
intersections of the orbits along thep = 0 (z+O) axis; v, is 
an even number equal to the number of times that an orbit 
enters and leaves the Coulomb center: 

v4=2Tom/n, where To= ( d S / d ~ )  ,=o. 

This term appears because of the shift of the energy in Eq. 
( 1 ) by an amount equal to the Zeeman splitting. 

The quantity p,  in Eq. (34) is the momentum directed 
along the field. In the above expressions an element of the 
monodromy matrix of Eq. ( 14) calculated using the para- 
bolic coordinates is denoted by m ,, . The reaction S in Eqs. 
(4)  and (5)  is along a given orbit. Near the ionization 
threshold the values of A j'"' can be regarded as constant, 
whereas m,, and S are functions of the reduced energy E, 
which is E /o for a magnetic field and E / y ' I 2  for an elec- 
tric field. 

As pointed out above, the contribution of short classical 
orbits is equal to the purely Coulomb contribution in the 
absence of an external field. We can easily show that 

a 
.c..,= -z 1 A:"' I ' do., 

2no 

where A jm' is defined in Eq. (32) and do, is an element of a 
solid angle with the vector p .  

In view ofconservation of the azimuthal quantum num- 
ber the sums over m in Eqs. (33), (34), and (36) contain a 
finite number of terms governed by the initial wave function. 
Summation in these semiclassical expressions is carried out 
over all the classical orbits beginning and ending at the Cou- 
lomb center. In view of the specific nature of the Coulomb 
potential, any orbit entering the Coulomb center is reflected 
back with the same momentum (which follows directly ifwe 
use the parabolic coordinates). Therefore, any path which 
begins and ends at the Coulomb center must be periodic and 
must pass through the Coulomb center. The semiclassical 
sums include also contributions due to multiple passes along 
the same periodic orbit. Let us assume that S'"' , v'"', and 
A'"' are quantities corresponding to the nth passage along 
one path. In the case of two degrees of freedom, we have 
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where S, Y ,  and A are quantities calculated for one trip along 
a given path; A ,  and A, = 1/A, are eigenvalues of the mono- 
dromy matrix of Eq. ( 14). 

Depending on the properties of the eigenvalues of the 
monodromy matrix, we can divide periodic orbits into three 
groups: 

a )  neutral, ifA, = f 1, A, = f 1; 
b)  stable (elliptic) if A ,  = eq , A, = e I V ;  

C )  unstable (hyperbolic) if A ,  = + eu , A, = f e - " . 
Studies of the problem of an atom in a magnetic field by 

numerical methods have demonstrated (see, for example, 
Ref. 10) that if E = 0 then all (at  least those found so far) 
periodic orbits are unstable (as in the case of ergodic sys- 
tems) and we shall confine our attention to this case. 

Before considering specific applications of these expres- 
sions, we need to determine how many periodic orbits must 
be included in Eq. (4 ) .  Formally, the summation in Eq. (4 )  
is over all classical periodic orbits passing through a Cou- 
lomb center. The time of motion along these paths can be as 
long as we please and exact allowance for all the paths in the 
case of nonintegrable systems is a difficult task (see, for ex- 
ample, Ref. 22), which is equivalent in its complexity to the 
direct solution of the Schrodinger equation. 

In the case of chaotic systems it is physically reasonable 
to calculate not the exact values of any quantities for a fixed 
energy but quantities which are averaged over the energy (or 
smoothed out) .  l 8  Formally, this means that instead of the 
value of the cross section u ( E ) ,  we can calculate the quanti- 
ty u(E,) , defined as follows: 

o (E . )  = j ! (EWEo,  AE)  o ( E )  dE,  (38) 

where the smoothing-out function f(E - E,,AE) has a max- 
imum at x = 0, falls rapidly in the range 1x1 > AE, and inte- 
grates to J f(e,AE)de = 1. 

For example, the function f(E - E,,,AE) can be in the 
form of the Gaussian function 

f (E-Eo,  AE)  = 
1  

( 2 n )  '"AE 2 (AE)'  (39) 

or the piecewise-constant function 

1/AE for I E - E O ~ < ' / , A E ,  (40) 
0 for IE-Eo/  >'/ ,AE. 

We average the semiclassical expression (25) in accordance 
with Eq. (38).  We can readily show that in the limit 8 - 0  
and for a fixed function f(x,AE),  the main contribution to 
the sum comes from those paths which obey the inequality 

where T = d S  /dt is the time of motion along the path. For 
example, if we assume that the action is a linear function of 
the energy, S ( E )  = S(E,,) + T(E,) ( E  - E,), and if we 
average exp(iS) using the function (39),  we obtain 

( T A E )  
(exp (is) ) = e x p [ i S ( E o )  ] exp[  - ----I 

2 ' 

The inequality (41) means that, after averaging, the main 
contribution to the semiclassical sum over the paths comes 

from a finite number of orbits for which the time of motion is 
limited. 

5. PHOTOABSORPTION IN AN ELECTRIC FIELD 

In this section we give specific expressions for the pro- 
cess of absorption of a photon by a hydrogen atom in an 
electric field under conditions close to the ionization thresh- 
old and we compare the results with Ref. 5. 

The general expression for this process is given by Eqs. 
( 5 )  and (34).  As pointed out already, the sum in Eq. (5 )  
contains only one periodic orbit described by Eq. (29) and 
its multiple replicas. The action S(E)  and the period T(E)  
occurring in Eq. ( 3  1 ) describing m ,, (E)  follow directly 
from Eq. (29) : 

s ( e )  = $ (4+2ep2-p') '" d p ,  

(43) 

T ( e )  =$ (4+2ep2-p4)-" d p .  

The above quantities are readily expressed in terms of com- 
plete elliptic integrals of the first and second kind K(m ) and 
E ( m )  (Ref. 23). However, for low values of m it is conven- 
ient to use expansions as a series in E and the coefficients of 
this expansion are readily expressed in terms of the P func- 
t i ~ n ~ ~  directly from Eq. (43 ) : 

In deriving the explicit expressions it is necessary to 
calculate the quantity A irn' of Eq. (34) ,  which can be ex- 
pressed in terms of the initial wave function (32). When the 
initial states have small quantum numbers we can assume 
that their wave functions are governed by the pure Coulomb- 
type Schrodinger equation in the absence of an external field. 

We confine ourselves to calculating the photoabsorp- 
tion cross section in an electric field for initial states specified 
by the following parabolic quantum numbers7: 

These states are the initial ones in the experiments described 
in Ref. 5. The wave functions can be selected to be7 

where u = + 1 corresponds to the function (45a), while 
u =  - 1 corresponds to the function (45b); R, , ( r )  and 
Y,, ( 6 , ~ )  are the standard radial and angular parts of the 
Coulomb wave functions (see, for example, Ref. 7).  In the 
case of the initial states considered here the photoabsorption 
cross section found in the semiclassical approximation 
differs from zero only if the photon polarization is parallel to 
the field (i.e., for the T transition with Am = 0) .  In this case 
the nonzero terms are those with m = 0 and we denote them 
by A,:  

a Y iO) ( x )  - Y ,, ( s )  d3x.  
d z  

(47) 

These integrals are readily calculated using an expansion of 
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the function 'P:-'(x) as a series in spherical functions.' 
Bearing in mind that in our case we have Ip 1 cc fl 1 1 3 ~ 1 1 2  -+ 0 in 
the limitfl-0, it is sufficient to calculate Eq. (47) forp = 0. 
Standard procedures (see, for example, Ref. 7) yield 

where 8 ' is the angle between the vector p and the field direc- 
tion. 

The semiclassical expression of Eq. (34) includes 
A , ( $ ' )  at 8 "  =0:  

5 for o=l, 
~ ~ ( 0 )  =n~"a -& {  -1 for o=-i. 

Hence, it follows that the contribution of the investigated 
periodic orbit to the photoabsorption cross section for a 
transition from an initial state described by Eq. (45a) is 25 
times greater than for a transition from the state described 
by Eq. (45b). 

The cross section of the Coulomb photoabsorption of 
Eq. (36) is the same for the states of Eqs. (45a) and (45b) 
and is easily obtained from Eq. (48) (bearing in mind that 
wz1/8):  

We finally have 

?b 

( E )  = u~~~~ (l+gl"4 C ---- sin 
n=l sh(hTn) 

where g = 3X S3/43 for the initial state of Eq. (45a) and 
g = 15/43 for the initial state of Eq. (45b); A ( & )  = ( 2 ~ ) " ~ ;  
the functions S(E) and T(E) are defined by Eqs. (44) and 
(45); E = E / ~ ' / ~ .  

The sum over n converges rapidly for all values of E > 0 
apart from the range of very small E, when we have A ( E )  -+0. 
However, in this case the summation can be carried out ana- 
lytically using the expression 

~~-~ for O<x<2n. 

n=l 
2 

FIG. 1. Photoabsorption cross section in an electric field of intensity 5714 
V/cm for the Am = 0 transition from a state with the parabolic quantum 
numbers n ,  = 1, n, = 0, and m = 0 to highly excited states with energies 
above the ionization threshold. 

tion in an electric field,5 which in turn agrees well with the 
experimental data.5 

6. PHOTOABSORPTION IN A MAGNETIC FIELD 

An atom in a magnetic field is characterized by an infi- 
nite number of unstable periodic orbits which pass through a 
Coulomb center. Examples of such orbits are given in Refs. 
3, 4, and 9. In this case it is not possible to obtain a closed 
expression of the type given by Eq. (5 1 ). As pointed out in 
Sec. 3, if we average the cross section in a narrow interval AE 
(which is equivalent to measurement of the cross section 
with a finite resolution), we find that the main contribution 
to the sum of Eq. (4)  comes from a finite number of orbits 
for which the time of motion is emitted by the inequality of 
Eq. (41 ) . The necessary parameters of such orbits are usual- 
ly found numerically. Figure 2 shows the three simplest peri- 
odic orbits predicted for the case when E = 0 and character- 
ized by the shortest periods. Table I lists for these orbits the 
following quantities which occur in the semiclassical expres- 
sion (33) : 

a )  the classical action calculated along an orbit; 
b)  an element m,, of the monodromy matrix of Eq. 

( 14) expressed in parabolic coordinates; 
C )  the square of the logarithm of the modulus of the 

largest eigenvalue of the monodromy matrix; 
d )  the angle of inclination of the orbit relative to the z 

axis when it emerges from the Coulomb center (for the paths 
under investigation the entry and return angles are the 
same). 

All the quantities are presented in Table I in the form of 
the first three coefficients of a series expansion in terms of 
the reduced energy: F = A + BE + C E ~ .  In the case of the 
simplest path (No. 1) some quantities can be determined 
analytically. The action S(E) is readily obtained from Eq. 
(22) if we assume that p = v: 

We then have 

O ( E ) - % " ~  lt,, zn -- 
Ucoul To 

( ) for E-0, (53) 

where S is the fractional part of the number (~,/2.rry' /~ - 1/ 
2); So and To are the first terms of the expansion in Eq. (44). 

Figure 1 shows a plot of g (E )  given by Eq. (51 ) for the 
case of an electric field of intensity 5714 V/cm, which was 
the value used in the experiments reported in Ref. 5. This 
plot is practically identical with the dependence o ( E )  ob- 
tained by direct numerical solution of the Schrodinger equa- 

FIG. 2. Simplest periodic orbits for an atom in a magnetic field at an 
energy equal to zero. The chain curves represent the allowed limits of the 
range; the step along the axes is 0.5; the numbers alongside the curves are 
the same as the serial numbers of paths in Table I. 
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TABLE I. Energy dependences of the parameters of periodic orbits. 

Parameter I B I 
Orbit No. 1 

Orbit No. 2 

Orbit No. 3 

At low values of e this expression can be expanded as a series 
in E :  

Moreover, if E = 0, we can find analytically the monodromy 
matrix for this path: where 'PI = R, , ( r )  Y,,(O,g,) and 'P, = R,, ( r )  Y, ,(O,q,) are 

the wave functions of the 2p states with m = 0 and m = 1, 
respectively. Such calculations give 

The remaining quantities in Table I were determined nu- 
merically by solving the classical equations corresponding to 
the Hamiltonian (22). 

In determination of the cross sections we need to know 
not only the parameters of periodic orbits, but also the quan- 
tities A km' of Eq. (32), dependent on the wave function of 
the initial state. In the dipole approximation we can expect 
transitions without a change in the azimuthal quantum 
number: Am = 0 (a transitions) and transitions involving a 
change in this number by unity: 1 Am 1 = 1 (a transitions). 
We consider only the next three transitions from the initial 
2p state for which the experimental data of Ref. 3 suggest 
that 

Here, Y,, depend on the angle between the vector k and the z 
axis, and the factor eimp is dropped from Y,, . 

The Coulomb cross section follows from Eq. (36) : 

The oscillatory part of the semiclassical expression for the 
cross section is obtained from Eq. (33).  We finally find that 

(57) 
orb 

3) mi=l mf=0+m,=2, xz (=)" [ S n  n 
sin - - m ~ ~ ~ ' n - - - v ,  

sh hn 
( k )  n + $1) , 

where m, and m f  are the azimuthal numbers of the initial n=i p'" 2 
and final states, respectively. The conditions are similar for 
the other transitions. (61) 

The transitions of Eq. (57) correspond to the following where the values k = 1,2, and 3 correspond to the following 
integrals transitions of Eq. (57):  
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g:"= -%Y (4 cos2 0,-I) (4 coa' @,-I) (sin 0, sin 8,)", 
69.2" 

15n" g, = - 
2.2'" (sin 0, sin €I2) ' cos cos 02, 

5n" - (1-2 cosZ 0,) (1-2 cos2 0,) (sin 0; sin 02)'", 
13.2" 

- 5n" g;a).- 4 sin2 0, sin2 &(sin 01 sin 0,) ", 
13.2'" 

The summation in Eq. (61 ) is carried out over all different 
orbits emerging from and returning to the Coulomb center; 
8, and O2 are the angles of emergence and return of a given 
orbit; T;/" = (dS/d~) , , ,  is the second coefficient of the 
expansion of the action along a orbit k as a series in terms of 
the energy (Table I ) .  Since for these transitions the value of 
m,. is even, the phases vc' are independent of m, in accor- 
dance with Eq. (35). 

The photoabsorption cross sections of a hydrogen atom 
in a magnetic field of 6 T intensity are plotted in Fig. 3 for all 
the investigated transitions allowing for three periodic orbits 
with the parameters listed in Table I (paths Nos. 2 and 3 
exist for z > 0 and z < 0) .  For comparison with the results of 
Ref. 3, we carry out an approximate averaging of the cross 
section using Eq. (39) and AE = 0.85 cm-', which can be 
done by multiplying the contribution of such periodic orbits, 
in accordance with Eq. (42), by a factor fk 
= exp [ - 2( TAh'AE)2/fl 1.  The numerical results are 

Figure 3 agrees well with the average experimental data 
of Ref. 3. If necessary, it is easy to find the parameters of a 
large number of periodic orbits and to calculate the photoab- 
sorption cross section with a high degree of resolution. 

FIG. 3. Photoabsorption cross section in a magnetic field of intensity 6 T 
calculated allowing for three periodic orbits for the following transitions: 
a )  m, =O-m, =O;b) m, = 1-m, = 1 ; ~ )  m, = I+mJ = O + m J  =2.  
The cross section is averaged using the Gaussian function for which the 
half-width is 2 cm- I. 

~ /uC, , ,  , rel. units 

It would be interesting to determine experimentally the 
differential photoabsorption cross section in an external 
field showing the individual periodic orbits. 

7 

0 

7. CONCLUSIONS 

All these calculations demonstrate that the method of 
semiclassical allowance for unstable periodic orbits em- 
ployed in the present study provides a satisfactory descrip- 
tion of the oscillations observed in the process of absorption 
of photons by atoms in external fields near the ionization 
threshold. The method is quite general and it can be applied 
to a wide range of problems (both integrable and noninte- 
grable) when unstable periodic orbits have a high value of 
the action along the orbit. 

The author is deeply grateful to E.M. Solov'ev for nu- 
merous valuable discussions. 
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