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A formula is derived for the transition probability or shape of the electron or photon spectrum 
arising from the motion of atoms in potentials without bound states. The wave functions are 
asymptotic involving Bessel functions, and the interaction is exponential. The formula is a 
generalization of the various results for intersecting and parallel terms. The dynamics of the 
position of the transition region is considered, as well as the dependence of the probability and 
shape of the spectrum on the impact parameter. The Landau method for calculating integrals of 
rapidly oscillating functions is discussed. 

1. INTRODUCTION. 

The treatment of transitions in atoms and molecules 
with weak coupling between states, e.g., in collisions with 
large impact parameters, reduces to the calculation of the 
integral of the overlap between the wave functions Yi, ( r ) ,  
which describe the radial motion in the quasimolecular po- 
tentials of the initial and the final states Y,, ( r ) ,  and the 
transition matrix element averaged over the electronic inter- 
action V(r) [Ref. 1 ] 

where Cis a constant which is determined by the normaliza- 
tion of Y ,  f. If Y ,  are normalized to a S-function of energy, 
then the probability of a nonadiabatic transition is given by 
Pisf = l J / 2 f o r C = 2 ~ .  

The problem of the spectra of electrons and photons 
formed in pairwise atomic  collision^^^^ also reduces to the 
evaluation of such integrals. This process can also be repre- 
sented as a pairwise transition between terms Ui, where the 
term Uf is shifted by k from the boundary of the contin- 
uous spectrum of the term IU/. (see Fig. 1 ). The spectral 
distribution over the energy of the free electrons or photons 
is given here by Eq. ( 1 )  with the substitution 
CV = (277-T) I", where r is the auto-ionization or radiative 
width. 

The numerous articles that have appeared that deal 
with the calculation of J can be separated into two groups 
depending on whether the terms intersect or not. In the first 
case it is assumed that the main contribution to the integral 
comes from the vicinity of the point of intersection of the 
terms or the Condon point (as it is called in spectral theory) 
r, (see e.g., Ref. 3) ,  which is determined by the condition 

Ui ( r c )  -0, ( r , )  =ha or UI (re)  =Uf (r , )  . (2)  

The matrix element is assumed to be constant and equal to 
V(r, ). This case also includes, for example, the calculation 
of J to first order in the terms in the vicinity of r, when the 
turning points for classical motion in the potentials Ui, are 
far from r,. Such a calculation leads to a formula for the 
quasiustatic limit in the theory of line broadening (e.g., Ref. 
3 )  or the well-known Landau formula in the theory of nona- 
diabatic transitions (Ref. 4, $90). The case which arises 

when the turning points are close to the point where the lines 
intersect was considered in Ref. 5 in the context of problems 
of collision theory, and the oscillatory structure of the spec- 
trum, connected with the emission of particles when the 
atoms approach and divergence, was considered in Ref. 6, in 
which the terms were also linearly approximated in the semi- 
classical approximation, and in which damping was also tak- 
en into account. A uniform formula was proposed by Miller7 
for arbitrary repulsive potentials and positions of the Con- 
don point and the turning points, and proven, for example, in 
Ref. 8. 

In the case of parallel terms the calculation of J i s  linked 
with an account of the dependence of V(r), which is carried 
out, as a rule, for model problems which permit the calcula- 
tions of J in closed form. Of recent works we note Ref. 9, 
where the quantum motion of the atoms in linear parallel 
terms with exponential interaction is considered, and also 
Refs. 10 and 11, which describe the quanta1 motion of the 
atoms in the potentials A , e x p ( - a r ) + A ~  and 
A,exp( - a r )  and the exponential interaction on the basis of 
a closed expression for the overlap integral from Ref. 12. 
This preference for model problems is not accidental. The 
location of the transition region in the case of parallel or 
close-to-parallel terms is not so obvious. A general principle 
for estimating integrals involving oscillating wave functions 
was formulated in Ref. 4, $51; however, the conclusion 
reached here concerning the location of the transition region 
(the singular points Ui, and the roots of Eq. (2)  ) is criti- 
cized in Refs. 13 and 14 on the basis of specific examples of 
atomic and molecular collisions. Deviations from Eq. (2)  
can also be expected when V(r) varies rapidly in the vicinity 
of the turning point. Such a situation is frequently encoun- 
tered in the description of forbidden optical and electronic 
transitions and collisions at thermal energies. 

In these papers the dependence of J on orbital angular 
momentum was not considered. Between them the question 
of the asymptotic behavior of the amplitude of the transition 
at large I always arises in the calculation of the cross sections 
or the absorption coefficients. It is commonly assumed that 
this dependence can be found using the modified-wave-func- 
tion approximation.I5 However, it was long ago established 
[Ref. 1, $22; Refs. 16 and 171 that this approximation does 
not permit a valid description of the behavior of the proba- 
bility of the transition and, consequently, not of the modifi- 
cation of the line shape at large I, either. 
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FIG. 1. Transition for motion of atoms in potentials U,,/ or emission of an 
electron or a photon with energy fiw for motion in the potential _U, ,. The 
boundary of the continuous spectrum is determined by the term U,; E,, /  
are the kinetic energies of the atoms at infinity, E is the kinetic energy at 
the point r = r, , determined by conjition ( 2 ) .  The center of the line corre- 
sponds to the energy fiw,, = U, - U, at large r. 

In the present article an expression is obtained for the 
integral ( 1 ) under quite general conditions with regard to 
Y ,  and V and without the usual reduction to the problem 
on the entire axis. this expression encompasses various for- 
mulas for J i n  the case of intersecting and parallel terms and 
enables one to find a connection between the Landau-Ziner 
and Demkov models of nonadiabatic transitions (this ques- 
tion was considered in the semiclassical formulation in Refs. 
18 and 19), to refine the formulation of the Landau method 
for calculating the integrals of rapidly oscillating functions, 
and to determine how J depends on the orbital angular mo- 
mentum. 

We note that the question of a uniform formula for J 
was apparently first posed by Child," but the formula which 
he obtained is in fact valid only in a certain parameter region, 
which can be qualitatively described as the superbarrier 
transition for slow variation of V(r) (for a more detailed 
discussion of this point, see Section 2) .  

2. SUPERBARRIER TRANSITIONS 

We will evaluate the integral ( I ) ,  setting 
V = V, exp( - a r ) ,  where V, is slowly varying in compari- 
son with the exponential function, which, for example, takes 
into account the incomplete overlap of the continua as a 
result of the rotation of the internuclear The func- 
tion xi = rYi satisfies the equation 

with the boundary condition xi ( r  = 0) = 0; Ei is the total 
energy of the colliding atoms with reduced massp and angu- 
lar momentum 1;. In Eq. (3)  and below, E,, and Ui, -0 as 
r-0, and Eq. (2) takes the form 

Ui(r,) -Ui (r,) =Ei-Ef=ti (o-to,) . 
The potentials Ui, have no bound states, so that the follow- 
ing can serve as a reference equation for Eq. (3)  

whose solution, normalized to a 6-function in energy, is giv- 
en by 

where J,, + ,,, is the Bessel f~nc t ion . '~  
The first term of the asymptotic expansion ofxi  is 

ax, -'h x* (r) = (-J yi (xf), 

if the function xi ( r )  satisfies the condition 
D v 

jk idz= ' jk idr ,  &(Zi)=ki(ri)=O. (7)  
Y I( 

Using the reference equation (4)  with the solution (5)  is 
advantageous with the usual approximation by the Airy 
function because its solution (5)  takes into account not only 
the variation of the nature of the solution at the turning point 
ri ,  but also the singularity of ki at r = 0. Therefore, Eq. (6)  
is valid in the asymptotic sense for any value of r or I. 

Relations analogous to Eqs. ( 3 )-(7 ) can also be writ- 
ten out for YS, so that the integral ( 1 ) takes the form 

which, after the use of well-integral transformations for the 
Bessel function [Ref. 24, p. 5431, transforms to 

m 

where 

$=iar-ko,xi sin 0+ (li+'/,)O-kofx, sin cp+ (lffl/,)rp, 

and Lo,, are contours in the 0 and e, complex planes. 
To evaluate the integral (9) ,  we make use of the tech- 

nique of the multidimensional method of steepest descent 
(saddle-point method) [Ref. 25, p. 3411. The coordinates of 
the saddle points are found by solving the system of equa- 
tions 

dxi 
-- dxf a* - ia-kpi sin 9 - - kof sin cp - = 0, 
dr dr dr 

-- d* - -xikoi cos 0+ (li+ 'l,) =0, 
30 

(10) 

-- a* - -xfkof cos cp+ (Lff '1,) =O. 
dcp 

The saddle points naturally fall into two groups. We first 
assume that z = ( I  + 1 / 2 ) / k ~ g  1. Then the wavenumbers 
k in reference equation (4)  are real. In this case, which we 
will refer to below as the superbarrier case and denote by the 
subscript I, the coordinates of the saddle points along the 0 
and q, axes are real and for one group of roots are equal to 

@+=arc 60s zi, cp+L-arc cos zf. (11) 

The coordinates of the saddle points along the r axis for this 
group of roots are determined by the equation 

For the second group 
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&=-arc cos zi, (p-=arc cos zf, (13) 

and the coordinates along the r axis are determined by the 
equation 

We remark that the simple equations ( 12) and ( 14) are ob- 
tained only by using the well-known Langer substitution 
I ( / +  1 ) + (1 + 1/2)' in Eq. (7),  which is assumed below. 

In the case of intersecting terms and z< 1 there exists at 
least one root r + of Eq. ( 12) and one root r - of Eq. ( 14), 
which is complex conjugate to r + . Assuming that the con- 
tribution of the second root is negligibly small, it is possible 
to evaluate the integral (9)  by a formula from Ref. 25 (p. 
355), which is symmetric in the locations of the saddle 
points and which, with the corresponding changes in nota- 
tion, has the form 

where y = (y ,,..., y, ), y is an n-dimension manifold. 

F+ = (2ni) "I2f (Y+) F- = 
(2ni) ""f (g-) 

[-i det $"(y+) 1" ' [ i  det gN(y-) 1" ' 

@and @' are the Airy-Fock function and its der i~at ive,~ and 
det $" is the Hessian. 

We will make use of Eq. ( 15) to evaluate the integral 
(9)  in the superbarrier case. Taking into account that 

we obtain an expression for the integral (9)  in region I in the 
form ( 15 ) , where 

The quantities A and B with the help of Eq. (7)  can be ex- 
pressed in terms of the values of the action 

On the basis of the assumptiolls which we have made 
about z , , ~  it follows that larg B I < a, so that Eq. ( 15) de- 
scribes the interference structure which is associated with 
the uniform contribution of both saddle points, as should 
also be the case for the superbarrier transitions. 

In reduced form expressions ( 15 ) , ( 18 ) , and ( 19) coin- 
cide (to within the assumptions regarding the quantity a)  
with those obtained by Child" by another method. How- 
ever, the formula obtained by Child is inadequate not only in 
the fact that its derivation is based on an approximation of 
the wave functions by Airy functions and therefore does not 
contain centrifugal terms; these formulas and those obtained 

above are uniform in the distance between the saddle points 
only in the region of superbarrier transitions and do not al- 
low one to directly consider subbarrier transitions, which 
correspond to imaginary wavenumbers for real r. In order to 
carry out an analytic continuation of expressions ( 18) and 
( 19) into the region of subbarrier transitions, we consider 
the dynamics of the saddle points as functions of the param- 
eters. This problem is of independent interest since it allows 
us to answer the question of the breakdown of the Franck- 
Condon principle, which is connected with taking the inter- 
action into account. 

3. LOCATION OFTHE SADDLE POINTS: SUBBARRIER 
TRANSITIONS 

For z ,  > 1 the wavenumbers in Eq. (4)  are imaginary, 
which, thanks to relation (7 ) ,  corresponds to imaginary val- 
ues of k ,  ,- for real r. Below we will call such transitions sub- 
barrier transitions. The saddle points for such transitions, as 
before, fall into two groups, but the 0 and q, coordinates of 
the points are now imaginary, and the equations which de- 
scribe the positions of the saddle points along the r axis have 
the form 

The roots both of Eqs. (20) and of Eqs. ( 12) and ( 14) 
lie among the roots of the equation 

in which 

and the dimensionless parameters A and M have the values 

where k, = (k,, + kof )/2 and Ak = k,, - kof are con- 
trolled by external conditions. 

Let us discuss the nature of the solutions of Eq. (21) 
qualitatively. For AD> 2km Ak the terms intersect for real 
r = r, > r, = (r, + rf )/2 and there exists a pair of complex 
conjugate roots which satisfies Eqs. ( 12) and ( 14). Formu- 
las ( 18) and ( 19) correspond to this case. In the opposite 
case ~ D < 2 k ,  Ak, i.e., for terms which are close to parallel, 
we distinguish three limiting situations. For such small colli- 
sion energies, when M < 1 and A2 < 1, Eq. (2 1 ) reduces to 
Urn = k f, /M, whose root r, < r, . With increasing collision 
energy, in the far wings of the lines, when Ak /a > 1, i.e., for 
A2 > M and AZ > 1 Eq. (21) reduces to Urn = (k, Ak /a)', 
wherefore its root r, < r, . Finally, in the vicinity of the cen- 
t e ro f the l i neAk /a< l ,  w h e n M > l  andA2>1,  Eq. (21) - 
reduces to Urn = k f,, so that the root satisfies ro 5 r ,  . For 
orientation we point out that for collisions with energy 
- eVandradiationwithA -5000A, k /a- l0andAk / 
a - 1  forawingwithAA-5 A. 

The foregoing qualitative consideration gives an idea of 
the locations of the roots in the limiting cases; however, for 
analytic continuation more detailed information on the be- 
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FIG. 2. Qualitative graph of the depzndence of the radial coordinates of 
the saddle points q ,  = (r ,  - r, ) b /2aZ on the energy E for linear ap- 
proximation of the terms. The solid curve is q , (E),  Eq. (24), the indicat- 
ed point on which is the point of coalescence of the roots; the dashed line 
( 1 ) is Re q + (E),  and dashed line (2) is the locus of points of intersection 
of the terms q, = E( 1 + 8') ; the thin straight lines gives the coordi- 
nates of the turning points q,,f  = * SE, the other notations are defined in 
the text. 

havior of the roots in the vicinity of r z r ,  ~ r ,  is necessary. 
Toward this end we approximate the potentials by linear 
functions. Then 

In this case Eq. (22) has two roots r + , whose positions 
depend on the two dimensionless model parameters 

6=Ab/26, E= ( p / a 2 h Z )  E = A r A b / 8 ~ ' 6 ~ ,  (23) 

where Ab = bi - bf>O, 5 = (bibf)"', E =  E,, - Ui, f ( r , ) ,  
Ar = ri - rf > 0 for E > 0 (see Fig. 1). The dependence of 
the dimensionless distances q  * = ( r  + - r, )$ /2a2 on the 
parameters S and E has the form 

q , = ~  (1+62)'- (1+6Z)'h/462f ( 1 - 8 ~ 6 ~ ) " / 4 6 ~ .  (24) 

Here the subscript " + " has the following meaning: 
q +  > q -  orIm,+ >O. 

For fixed S, i.e., prescribed forces, and real r + Eq. (24) 
corresponds to a parabola, which reduces topcanonical 
through a rotation of the q  and E axes by an angle v such that 
tg Y = - ( 1 + S2) - The dependence q ( ~ )  is shown 
qualitatively in Fig. 2. The position of the intersection point 
of the terms q, = r,Z /2a2 = E(  1 + S2) for a # O  coin- 
cides with q+ only at the point E, = - 1/8, i.e., for an r- 
dependent interaction the Franck-Condon principle is not 
satisfied. The interaction shifts the transition region from r, 
to r, independent of whether the transition1' is superbarrier 
in the usual sense (E > 0 )  or subbarrier ( E  < 0).  This shift is 
most important for those terms which - are close to parallel, 
641 .  Inthislimit r +  -r, = -a2/4b f o r ~ = 0 .  

If in Fig. 2 we draw the straight lines q,,, = + ES, 
which give the position of the turning point as a function of 
energy, then we can isolate the three points whose coordi- 
nates along the E axis are E,, E ~ ,  and E ~ .  At the point 
E, = 1/88', q, = - (1 + S2) ll2/8S2, where the tangent to 
the curve is vertical, there is a double root r + = r - , and 
0 = q, = 0. At the point E~ = [ ( 1 + S2) '12 - 81/46, the 
larger of the two roots r +  equals rf, and at the point 

2 L/2 . c i = [ ( l + S )  +S]/4S,r+ equalsr,. 
Figure 3 allows one to trace out the dynamics of the 

roots r , as functions of the parameter a for fixed values of 
the distance between the turning points Ar = ri - rf and the 
difference of the slopes of the terms Ab. As a varies from 
zero to a = ( ArAb) I/', which corresponds to E varying over 
the interval E, < E < cu , the roots describe an ellipse in the r 
plane with axes Ar/S and Ar( 1 + S2)1/2/S. 

The values E > E, correspond to superbarrier transi- 
tions, i.e., region I. As should be the case in this region, Eq. 
(24) determines for such E two complex conjugate roots, 
where the one with imaginary part greater than zero ( r  + ) 
satisfies Eq. ( 12), and the one with imaginary part less than 
zero ( r  - ) satisfies Eq. ( 14). For E < E, the transitions have 
a subbarrier character z ,  > 1, but are described by different 
formulas. We will first isolate region 11, in which E~ < E < E, ,  

which corresponds in the r plane to motion of the root r + 

from r, to rf (see Fig. 3a). In this region both r + and r - 
satisfy the equation 

and 

'f rr 5 
a k L $ 5  'f FIG. 3. Location of the saddle points in the r plane 

r- 

as a function of the parameter a for E > 0 (a)  and 
E < 0 (b),  see text. The solid lines are the location of 

---- 5 - -  i Y, Tf r + , the dashed lines are the location of r +  on the -. - - second sheet, the wavy lines are the branch cuts 

r+ from the points r,,,. 

r- 
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Carrying out the same calculations as in the derivation of 
formulas ( 1 8) and ( 19), we find that in region I1 

JII={FII+ [ (-B1I)'"cD (-BII) '(-BII) -"'cD'(-BII)] 
+F 11 -[ (-BII) "cD (-;BII) + (-BII) -"@' (-BII) 1) eiAn, 

where 

Use of the linear approximation (22) allows us to find a 
single formula not only for regions I and 11, but also for the 
two other cases considered above. In fact, making a branch 
cut from the point E, into the lower half-plane, we obtain the 
following rules for passage between regions I and 11: 

r*(I) *rT(II), (29) 

k , ,  (r+) * exp (in12) xi,f (r-) , kist (r-) *exp (3in12) xi,j (r+), 

S,, (?+) * exp (in1.2) ai,f (r-) , Si,f (r-) * exp (3in12) oi.1 ( r + ) ,  

FI* * FIIr exp (-in/4). 

Rules (30) correspond to arg k i , f ( r +  ) = 0 on the upper 
lips of the branch cuts along the real r axis and to arg 
ki,f ( r  _ ) = 2rr along the lower lips of the cuts (see Fig. 3).  
After establishing relation (29) and choosing the branches 
of the function k , / .  ( r ) ,  we can assume that formula ( 15) or 
( 17) uniquely describes both the superbarrier and the sub- 
barrier transitions. 

For further decrease of E ,  when E ,  < E < E ~ ,  the roots r - + 

lie in Region 111, in which r + satisfies the equation 

In the r plane passage from region I1 to region I11 is 
accomplished by making a detour around the point rf and 
passing over to the second sheet (see Fig. 3a),  in which 
xf ( r + ) -+ exp (in-) xf ( r + ) . The coordinates of the second 
saddle point r , 8 - , e, are determined from the corre- 
sponding equations (25) and (26).  The quantity JIII is given 
here by formula (27),  in which one should set 

+ PC vo ( r + )  - 
FI I I  = - FIII=FII-, 

A2(2n)' [-xixf (xif+xf') I ,+I' ' 

The situation is analogous in region IV, where E < E ; ,  

only here passage to the second sheet is accomplished by 

making a detour already around the point ri (see Fig. 3b), in 
which xi ( r  + ) -+ exp (in-) x ,  ( r  + ). Therefore, in this region 
the coordinates of one of the saddle points are determined by 
the equations 

and the coordinates of the second point, as before, are given 
by Eqs. (25) and (26) with the subscript ( (" - ") ). The 
expression for JIV has form (27),  in which one should set 

A distinguishing feature of the transitions in regions I1 and 
I11 in comparison with region IV consists in the fact that the 
transitions here for r, > r ,  have a subbarrier character, even 
though E > 0. The boundary between the sub- and the super- 
barrier transitions is located at the point where the roots E, 

coalescence, and for S - 0.1 we have E, - 10, i.e., E is of the 
order of the thermal energy. 

The above use of the linear approximation has an auxil- 
iary character and allows us to determine the signs in front of 
xi,f  in the equations for the roots (25),  (31 ), and (33),  and 
also in front of a, , f  in the expressions for A and ( - B )  ' I2.  

Therefore, the formulas which have been given for J, even 
though they were obtained with the help of the linear ap- 
proximation, are still valid for arbitrary potentials which 
allow the isolation of a single root in Eqs. ( 12) and ( 14), or 
their analytic continuations. 

4. LIMITING CASES: EXTREMUM IN THE DIFFERENCE OF 
TERMS 

If we assume, as is customary, for example, in the usual 
version of the Landau-Ziner model [Ref. 4, $901, that the 
interaction is constant, but that the terms intersect at r = r,, 
then regions I1 and I11 draw together at the point E = 0, 
which is now the boundary between the sub- and superbar- 
rier transitions. The radial coordinate of the saddle points is 
determined either by the equation ki - kf = 0 or the equa- 
tion xf - x,  = 0, which r + = r, satisfies, wherefore we ob- 
tain from Eq. (19) or ~ ~ . < 3 4 )  that 

where 

which coincides with Miller's formula.' 
A simple formula which does not contain terms with 

derivatives of the Airy function was also obtained in the 
problem with linear terms and exponential interaction." but 
with V ,  = const. In this case the overlap integral 
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is expressed in terms of the dimensionless parameters 

which were introduced in Ref. 5 in the treatment of the prob- 
lem with linear terms and constant interaction, and the pa- 
rameter a is equal to (a3/2SAb)2/3, which is connected with 
the rate of variation of the interaction. 

In this same approximation of linear terms it is also 
possible to write out the amplitude of the transition in terms 
of the semiclassical approximationh 

m t 

The result which obtains upon prescribing the trajectories in 
the form 

coincides with expression (36) for S 9 1, i.e., the semiclassi- 
cal approximation which takes account of the exponential 
interaction has been validated for terms which almost coin- 
cide in the vicinities of the turning points. 

Comparison with the semiclassical formula shows that 
the two saddle points of which we were speaking in Secs. 2 
and 3 correspond to the approach and divergence of the par- 
ticles. This observation enables us to take account of the 
influence of the rotation of the internuclear axis on the spec- 
trum even in the case of arbitrary terms. Such a problem 
arises in the investigation of x-ray spectra formed in the col- 
lision of ions with atoms. For example, in Ref. 27 it was 
found that the oscillatory structure of the spectrum in the 
region around 10 keV in Cl" + -Ar collisions with energies 
in the range 2-5 meV is connected with the transitions in the 
vicinity of the turning point and therefore to lowest order is 
described by a formula of type (35).  However, photons of 
identical energy but emitted at different orientations of the 
molecular axis with respect to the laboratory frame interfere 
incompletely. This circumstance is connected with the de- 
generacy of the states of the continuum and can be described 
in general form with the help of the overlap integraL2' If we 
examine the spectrum averaged over the direction of emis- 
sion of the photons by the method of coincidences with a ring 
detector to record scattered particles, which in theory corre- 
sponds to averaging over the angle of rotation of the collision 
plane about the axis of the incident beam, then the compara- 
tively weak dependence of rotation of the axis on r can be 
included in V,,, after which 

where the dipole matrix element is d = (ileRnlf), n is unit 
vector aligned with the internuclear axis, and c is the velocity 
of light. Since for dipole transitions the magnitude of the 
angular momentum depends weakly on r, in Eqs. ( 12)-( 19) 
one can take a = 0, so r + = r = r, . Finally, the probabil- 
ity of emission of a photon for fixed impact parameter has 
the form 

where all quantities, including the radial velocity u and the 
rotation angle of the internuclear axis measured from the 
direction of closest approach T, are given for r = r, . After we 
go over to the semiclassical approximation for the phases B, 
Eq. (39) coincides with that obtained in Ref. 28. According 
to Eq. (39),  the complex angle T formally coincides with the 
subbarrier transitions r, < r,, . The exponential growth of 
the overlap integral of the continua in the subbarrier region 
was noted in Ref. 22 for the electronic spectra. 

Equation ( 15) is also useful in describing the case of an 
extremum in the difference function A U = U, - Uf. Such a 
problem arises in nonlinear opticsz9 and in the spectroscopy 
of line wings.3 In the calculation of spectrum ( 1 ) based of 
the multidimensional approach, the case of an extremum has 
associated with it the necessity of allowing for four saddle 
points. Two of them have identical coordinates 8 + , p + , 
and the coordinates r,,,, along the r axis are determined by 
Eq. ( 12) (Re r, > Re r,, ), while the other pair r,,, , r,, are 
determined by Eq. ( 14), and 8- and p are determined by 
Eq. (13) ( r  ,,,, = r ,,,,, ). If the coordinates 8 + , p + and 
8- , p are not too close, then by connecting pairs of points 
with identical 8 and q, it is possible to represent the integral 
(9 )  as a sum of contributions of each pair J = J, + J2. Each 
of the terms J,,, is given by Eq. ( 15), where for J, we have 

2 A = a r I + I  S i r  + ( r 1  S f  ( r )  S ( r  , (40) 

For J, the expressions for P* , A,, and B :I2 follow from 
Eqs. (40) by making the substitutions I + I11 and I1 + IV and 
replacing i by - i in the expression for B :/,. 

For a slowly varying interaction a equals 0, whence the 
plane in which the four saddle points lie is perpendicular to 
the 8p plane. If we further assume (r, - r,, )/r, 9 1, then 
Eq. (40) simplifies, and we find that 

where it is assumed that AU< 0 for r,, < r < r,. Equation 
(41) clearly shows that the resulting spectrum in the ap- 
proximation under consideration is a consequence of two 
interfering effects. One is connected with the presence of an 
extremum in the difference function and is described by the 
factor @( - B , ) ,  and the other arises as a result of the ap- 
proach and divergence of the particles. The presence of two 
vibrational modes has been established by experiment in the 
case of the electronic structure of the quasimolecule 
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He(23S)-He(23S) at a collision energy of 1.6 meV.30 Pre- 
liminary estimates show that one mode and the main maxi- 
mum at 14.4 eV are connected with the extremum in the 
difference of terms 22, + - 132, + [the factor @( - B , )  
in Eq. (41 ) 1, whereas the factor cos A ,  leads to additional 
minima with a period of 0.13 eV in the vicinity of the main 
maximum. 

In the approximation of the difference of terms by a 
parabola. Eq. (41 ) leads to the corresponding equation from 
Refs. 29 and 3 1. If the difference in the trajectories is insub- 
stantial ( I A U l/E< 1 ) and the region of the extremum is far 
from the turning points, then expression (41) for J ,  taking 
into account the noted simplifications, reduces to the uni- 
form equation for the spectrum (5.14) from Ref. 3. 

5. THE LANDAU METHOD 

The results of Sec. 3 show that a uniform formula whose 
applicability does not depend on the distance between the 
saddle points is needed in point of fact only where these 
points coalesce, i.e., on the boundary between regions I and 
11. In other regions the saddle points are disposed either by 
their 8 and p coordinates (as in region I for E$E, ) or by 
their coordinates along the r axis as in regions I11 and IV. 
Therefore the situation is typical in which the magnitude of 
the argument of the Airy function satisfies 1B I > 1 and it is 
possible to use the corresponding asymptotic expressions, 
which in regions I, 111, and IV leads to the following expres- 
sions: 

Equations (42)-(44) coincide with the result of evalu- 
ating the one-dimensional integral (1 )  by the method of 
steepest descent (the saddle-point method) with semiclassi- 
cal wave functions, so that it is advantageous to consider 
these formulas from the point of view of the Landau method 
for calculating integrals of rapidly oscillating functions 
[Ref. 4, $511. 

Comparison with Eqs. (42)-(44) together with the re- 
sults of Sec. 3 shows that the treatments in Ref. 4 and in Refs. 
13 and 14 correspond to two limiting situations. For a slowly 
varying interaction, the positions of the saddle points, as in 
Ref. 4, are determined from the equation ki = kf. In the case 
of terms which are close to parallel, i.e., for S >  1, the saddle 
point is located to the left of r,, , which agrees with the analy- 
sis of concrete examples for parallel terms with an exponen- 
tial interaction given in Refs. 13 and 14. In the general case 
of a variable interaction and arbitrarily disposed terms in the 
superbarrier region, it is necessary to take into account the 
contribution of both of the two complex conjugate saddle 
points which are closest to the real axis and satisfy the equa- 

tion + ia = k, - kf, while in the subbarrier region, with 
which are associated transitions between terms which are 
close to parallel, and where 8&S2 < 1, it is necessary to take 
into acsount the contribution only of r +  , which is deter- 
mined, as before, by Eqs. ( 12) and ( 14),  but continued into 
the subbarrier region, i.e., a = tc, + tcf for Eq. (43),  or 
a = tcf - tc, for Eq. (44). The contribution of the second 
point r  - < r ,  can be neglected. We note further that in the 
subbarrier case the argument of the exponential in the 
expression for J cannot be the difference of the actions, as is 
usual, but their sum. 

6. TERMS CLOSE TO PARALLEL: DEPENDENCE OF THE 
TRANSITION PROBABILITY AND THE SHAPE OF THE 
SPECTRUM ON THE IMPACT PARAMETER 

For terms which are close to parallel, it is possible to use 
the linear approximation in the vicinity of r, . Transitions 
between such terms with S< 1 take place in regions 11-IV 
( E  < E, ) . In these cases for b, -- bf z b we have 

Furthermore, for example, from formula (43) for 
1 Arl < a2/b  we obtain 

J = A  vC v(r ) exp(--+-), b~ i - '  a3 
R2 (nab)" 4a 12b 

A similar result is also obtained for 1 Arl > a2 /b  in regions I1 
and IV. Formula (46) coincides with the result of an exact 
calculation for linear, parallel terms and an exponential in- 
t e r a c t i ~ n . ~  

For fixed distance between the turning points, increas- 
ing the distance between r, and r, leads (independently of 
the sign of r, - r, ) to a displacement of the region that is 
most important for the transitions from r, to r,, . Here the 
description of the transition differs from the various variants 
(including the subbarrier ones) of the Landau-Ziner for- 
mula (Sec. 4 )  for intersecting terms up to formula (46),  i.e., 
in essence, the Demkov model with sloping parallel terms. A 
criterion of the description of the transition within the 
framework of the model of either intersecting or parallel 
terms can be estimated from the condition for Eqs. (36) and 
(46) to coincide, which obtains for 

Such a variation of the nature of the transition also re- 
sults from variation of the impact parameter 
p = ( 1  + 1/2)/k. Even if for small p the transition is deter- 
mined by the intersection of the terms, nevertheless an in- 
crease ofp ,  as can be seen from Eqs. (22) and (23) by ex- 
panding them in the vicinity of r, , leads to a decrease of S  and 
the convergence (drawing nearer) of r + and r,  . Thus it is 
possible to refine the technique proposed in Ref. 17 for re- 
ducing the problem of transitions between arbitrary p-de- 
pendent terms to a problem of linear terms. If the parameters 
are such that the transitions take place in region I, then it is 
possible to use the linear approximation for the terms in the 
vicinity of r,.  For regions 11-IV the expansion should be 
made in the vicinity of r, . 

Let us find the asymptotic form of J i n  the limiting case 
which obtains when it is possible to neglect the effect of the 
potential in comparison with the centrifugal term. In the 
region of small reaction defects, where a2 > I k i, - k ;,.I (or  
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in the vicinity of the center of the line, where fi2a2/2p > h) 
the root r  + is determined by the equation a = xi + ?tf and 
is equal to 

The matrix element is correspondingly calculated using 
expression (43 ) 

Equation ( 4 9 )  gives the desired asymptotic limit at large I. 
We remark that in the recharging problem the asymptotic 
limit in p for arbitrary velocities is also constructed by the 
use of a multidimensional variant of the saddle-point meth- 
Od.32,33 

Since for terms which are close to parallel the transi- 
tions are concentrated in the vicinity of the turning point, the 
centrifugal terms can be approximated in the calculation of J 
by straight lines, i.e., Eq. ( 4 6 )  should be made to agree with 
Eq. ( 4 9 ) .  Indeed, if in Eq. ( 4 6 )  we set fihw = FAr, the dif- 
ference in the terms in the vicinity of r, , and in place o f F  we 
substitute the centrifugal force at the turning point, then Eq. 
( 4 6 )  takes the form 

which coincides with Eq. ( 4 9 ) ,  allowing for a2 > Ak 2,  and 
leads to a broadening which is proportional to the velocity v.  

Above we have compared a general formula in various 
limiting cases with the exact results available in the litera- 
ture. For the final case of free motion with arbitrary I and an 
exponential interaction, a closed formula for the overlap in- 
tegral with Ak k 0  has apparently not been given. The corre- 
sponding formula,which was obtained with the help of Ref. 
34, has the form 

where z = 1 + (a2 + Ak ' ) / 2 z  and Q, ' is the associated 
Legendre function of the second kind. For I- w it is found 
that35 

where K, is the modified Bessel function. For z- 1 ,  but 
l ( z2  - 1 )  > 1 ,  Eq. ( 5 2 )  exactly gives Eq. ( 4 9 ) ,  which in 
the final summation allows us to once more judge the possi- 
bilities of the uniform formula ( 15) .  In connection with 
these last arguments it is interesting to note that a solution of 
the problem of transitions in the limit of weak coupling be- 
tween the horizontal and the Coulomb terms was obtained in 
Ref. 36 in closed form, which also included an exponential 
interaction. 

7. CONCLUSION 

A multidimensional treatment has been used to obtain a 
quantum formula for the overlap integral ( 1 ) for arbitrary 
orbital angular momentum in the case of superbarrier transi- 
tions in the form ( 15) with functions F* , A,  and B given 
by Eqs. ( 18) and ( 19).  Analytic continuation into the sub- 
barrier region was achieved with the help of rules ( 2 9 )  and 

( 3 0 ) ,  where the relation has the form ( 2 7 )  with 
F* , A,  and B given by Eqs. ( 2 8 ) ,  ( 3 2 ) ,  and ( 3 4 ) .  As limit- 
ing cases it contains various expressions from the theory of 
nonadiabatic transitions and spectra which are well known 
in the literature, and which are connected with an exact ac- 
count of one or two saddle points or an approximate account 
of four. 

The result obtained is applicable under conditions of 
weak coupling between the states, i.e., the region of strong 
coupling of the terms is not reached. 

Another condition is connected with the possibility of ne- 
glecting the contribution of other saddle points, besides r  + . 

The dynamics of the position of the transition region as 
a function of the parameters of the problem has been consid- 
ered. The approach of the terms to parallel shifts the transi- 
tion region away from where the terms intersect in the region 
of the turning points, where it is already necessary to expli- 
citly take into account the dependence of V ( r ) .  The transi- 
tions can have a subbarrier character even for r, > r, . Tak- 
ing account of the dependence of V ( r )  has made it possible 
to trace out the transition from the case of intersecting terms 
to the case of parallel terms and the dependence of the transi- 
tion probability (the shape of the corresponding spectral re- 
gion) on the orbital angular momentum, and to refine the 
Landau method for calculating integrals of rapidly oscillat- 
ing functions. 

I am deeply grateful to Yu. N. Demkov and to the par- 
ticipants of his seminar for helpful discussions, and to the 
late N. P. Penkin for supporting this work. 
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