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According to quantum electrodynamics, the reflection of resonance radiation by a medium 
containing excited atoms (molecules) is not determined by its refractive index. Actually, the 
reflection process is described by two interfering channels. The coherent channel contains elastic 
scattering processes and gives rise to the selective component. The incoherent channel modifies 
the quantum state of the medium and produces Raman scattering and stimulated emission. It 
contributes to both selective and diffuse components of scattered radiation. It  is shown that, when 
the reflectance of a thermally excited medium for resonance radiation is calculated, the result 
obtained in the semiclassical theory is different at the macroscopic level from that found in 
quantum electrodynamics. 

1. According to the semiclassical theory of radiation 
that operates with nonquantized electromagnetic fields, the 
evolution of the electromagnetic field in a medium is wholly 
determined by its permittivity. If the medium consists of 
two-level atoms (molecules) with ground and excited state 
concentrations n, and n,, respectively, the permittivity of 
the medium for (n, - n, )A ' < 1 is found to be ' proportion- 
al to the difference n, - n, . We suggested in our previous 
papers2,' that the semiclassical approach is inadequate as a 
way of describing the evolution of resonance radiation in 
inhomogeneous excited media because their permittivity 
does not determine the Poynting vector. This conclusion was 
based on a study of the reflection of resonance radiation by 
thermally excited media. The question is also of independent 
interest. The point is that the reflectance of an inverted medi- 
um for resonance radiation, calculated from the semiclassi- 
cal theory of radiation, is not in agreement4-6 with experi- 
mental data. It was pointed out in Ref. 7 that a possible 
reason for this discrepancy was that lateral waves were not 
taken into account. We now draw attention to another rea- 
son, namely, the fact that, when the quantum-mechanical 
properties of radiation are taken into account qualitatively 
at the macroscopic level, this modifies the calculated reflec- 
tance even for thermally excited media. This is obviously 
unexpected and requires rigorous demonstration. In this pa- 
per, we present a proof of this proposition that does not rely 
on perturbation theory since, as will be shown below, the 
direct evaluation of the reflectance of an excited medium 
cannot be carried out in finite-order perturbation theory be- 
cause of the presence of stimulated processes. 

To begin with, we must establish the reason why the 
necessity for field quantization in reflection problems was 
not noted before. It was assumed that the reflectance of a 
dispersive medium can be calculated by the methods of stan- 
dard statistical Green's  function^.^ The field correlation 
functions are then unimportant, but several effects slip out of 
view. In systems with a dense energy spectrum, the higher- 
order terms in V ( V is the volume of the system) in the 
Feynman expansionX are asymptotically taken into account 
by the decoupling of correlation functions. The reason for 
this is that, to derive closed equations in the Bogolyubov 
chain, higher-order correlation functions must be expressed 
in terms of lower-order functions. In systems with a sparse 

spectrum (e.g., one-dimensional systems), decoupling is not 
in general admi~sible .~ Complications also arise in bound- 
ary-value problems. On the other hand, there is no problem 
with diffuse reflection because coherent processes are then 
unimportant, and reflectance evaluated in the lowest order 
in the coupling constant is proportional to the number of 
scattering targets, i.e., R(") -n V (n is the concentration of 
these targets). The admissibility of decoupling of correlation 
functions in the case of coherent (Fresnel) reflection is not 
as obvious. The reflectance is then proportional to the square 
of the concentration of scattering targets, i.e., R"' a n2, so 
that R"' /R'"' = V -  ' . In general, decoupling will not guar- 
antee that terms of this structure will be correctly evaluated. 
The question then is whether higher-order correlations 
should be taken into account in boundary value problems. 
The answer is that they should because of the presence of 
stimulated emission processes, provided the excited atoms in 
the medium contribute significantly to the reflected radi- 
ation. 

Nonclassical states of the electromagnetic field (anti- 
bunching of photons and squeezed states) have recently at- 
tracted close attention. These states are identified by analyz- 
ing higher-order correlations. We now draw attention to 
quantum-mechanical effects that can be seen under the con- 
ditions of interference. They arise from the interaction 
between a field and a medium if there are two or more pho- 
tons in the virtual states that determine scattering. This is 
what happens in the case of scattering by excited atoms, 
which is virtually described in the resonance approximation 
in terms of the emission of the scattered photon, followed by 
the absorption of the latter. These quantum-mechanical ef- 
fects are not small and their contribution to the resultant 
signal can reach 100%. The Poynting vector, i.e., the lowest- 
order correlation function, carries information about these 
effects. 

There is an elegant technique'' for the analysis of the 
evolution of higher-order correlations, based on Hall's gen- 
eralization" of the thermodynamic variant of Wick's 
 theorem.'^'^ The absence of correlations from the medium 
follows from Hall's generalization, provided they were not 
present in the initial state. In our case, the situation is differ- 
ent. There are no correlations in the initial state, there can be 
only one scattered photon, and the number of photons is 
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multiplied up during the evolution process as a consequence 
of stimulated emission. 

2. We propose a different modification of the standard 
formalism that enables us to avoid the decoupling of photon- 
photon correlations in any order of perturbation theory and 
yet obtain a closed Dyson-type equation. We shall decouple 
the atom-atom correlations in the usual assuming 
that the scatterers are uncorrelated. The theory contains no 
other approximations and the calculations are performed ex- 
actly. This is an important point. As noted above, when the 
medium contains excited atoms, the Feynman series con- 
tains singular terms that can be given a meaning only by the 
partial summation of infinite subsequences. Different meth- 
ods of summation then lead to different results. The formal- 
ism that we are proposing automatically selects the regular 
part (0)"' , whereas the irregular part (0) '")  can be shown 
to be positive-definite without resorting to perturbation the- 
ory. Our formalism is based on the unitary transformation of 
the3-matrix expansion and, obviously, retains all the advan- 
tages of standard Feynman-diagram type techniques, sum- 
mation rules, and Dyson equations. Under equilibrium con- 
ditions, it retains the dispersion relations, the 
KallCn-Lehmann representations, and so on. Moreover, the 
absence of photon-photon correlation decoupling means 
that field moments of any order can be calculated. 

We shall describe the electromagnetic field in a medium 
in terms of the density matrix p of the system, in which we 
have evaluated the trace of the atomic variables of the medi- 
um. We are therefore dealing with a significantly more de- 
tailed description of the field, which is based on expectation 
values and finite-order correlations. We shall determine the 
evolution of the density matrix of the subsystem (electro- 
magnetic field) when, generally speaking, it is not strongly 
coupled to the environment. The arguments of the matrixp 
are the occupation numbers. Under equilibrium conditions, 
and when the coupling between the radiation and matter is 
weak, this matrix determines the Gibbs distribution. We will 
find the equation for it. Actually, we are concerned with the 
derivation of the analogs of the constitutive equations and 
Maxwell's equations in the medium at the quantum-me- 
chanical level. In its formal aspect, the formulation of the 
problem resembles Refs. 13-15 in its derivation of the con- 
trolling equation, but the formalism that we employ will en- 
able us to retain the advantages of the method of second 
quantization. 

Let us introduce auxiliaryi6 m>tually hermitian, cre- 
ation (annihilation) operators 34 (9, ) for the ensemble of 
photons as a whole. The components of the vector N are the 
occupation numbers N,, of the optical modes characterized 
by wave vector k and polarization index A. By analogy with 
phase volumes in statistical physics, we refer to these opera- 
tors as r operators, in contrast with the mean operators that 
represent the creation and annihilation of single-particle 
states. 

Specifically, we shall be concerned with nonrelativistic 
gas atoms each of which contains a single valence electron. 
Spin effects will be neglected. We then associate a field oper- 
ator $(r, R)  with the gas atoms in the Schroedinger repre- 
sentation, where R is the position vector of the center of 
gravity of an individual atom and r the position vector of the 
valence electron. We associate the operator 2, ( r )  with the 
electromagnetic field. Assuming a quasiresonant interac- 

tion, i.e., Ik - a,,, ( k + w,, , where w,, is the optical 
transition frequency of the atoms, we adopt the following 
Schroedinger equation for the system ( f i  = c = 1 ) : 

(1) 

where 

in which gi is the wave function describing the internal 
structure of the atoms with energy E ; .  We shall use p to rep- 
resent the momentum of the atom, M the mass of the atomic 
residue, V =  L,L,L, the quantization volume, and 
hip + (bip ) the creation (annihilation) operators for the 
atom in a state (i,p) . 

Next, we assume that 

wheree, is the linear polarization unit vector, 6,f, (2, ) are 
the photon c~eation (annihilation) operators, and the vacu- 
um term in Hph has been discarded. In the gauge with zero 
scalar potential, we have 

in which p will be allowed to tend to zero at the end of the 
$alculation;" The statistical properties of the operators 
bi, + and bip are unimportant when the gas is not tempera- 
ture degenerate. We assume that 

To evaluate the required density matrix, we introduce 
the functions 

that describe, in the second-quantization representation, the 
free electromagnetic field of the configuration defined by the 
vector N, where cp (N I{) represents the wave functions of the 
quantum-mechanical oscillator. 

Let 

h h 

Assuming that 91, and 8: act in some new space r, we 
construct the unitary operator 

which transforms the dynamic formalism from the second 
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quantization space to the space I?. The vacuum basis vector 
in the new representation is denoted by ):, and the remain- 
k g  basis vectors are constructed by applying the operators 
!?I: to it. It is convenient at this point to note that the set 
82 ): is sufficient basis fo; physical states. The repeated 
application of the operator 32 will not be encountered. It is 
precisely this fact that favors the use of the r space. 

If some state of the free electromagnetic field is de- 
scribed in the second quantization representation @ ' ( N o ( ( ) ,  
then the following wave function corresponds to it in r 
space: 

where 

The inverse transformation is also valid: 

There is no need to s~ecify thg commutation relations 
for theascillary operators 3, and 8; when the unitary op- 
erator a is constructed. They are unrelated to the statistical 
properties of the fields, andAcan remain arbitrary. Since the 
application of the operator a,+ generates a ymplet%state of 
the electromagnetic field, it follows that 8, and 3; can 
only appear alternately in the theory (by analogy with the 
description of the kinetics of a photon by â ,, and a ,̂+, ). 
However, the commutation relations for both Fermi and 
Bose fields then lead to identical final expressions. We shall 
assume for simplicity that 

We now apply the unitary transformation to ( 1 ) via the 
operators a and 0 + : 

e -+-+ - - A  ,, 
- - S @ I) $AI#@~L dr d ~ ]  yr, Yr = OY. ( 2 )  m 

where E ( N )  is the energy of the free electromagnetic field 
with occupation vector N .  The expectation value of any elec- 
tromagnetic field operator can now be found from the for- 
mula 

where ) , = \V, . Therefore, the construct 

plays the part of the density matrix of the electromagnetic 
field in the medium. 

To evaluate ( 3 ) ,  it is convenient to use in r space the 
formalism of quantum-mechanical Green's functions in the 
form proposed by KeldyshI8 

a,,r(f, t ,  f ' ,  t ' )= - i< iT ,G[ ( f ,  t ) & ~ , + ( g ' ,  t e ) 8 ) r ,  ( 4 )  

sentation and the subscript 1 describes the time contour that 
starts from (I' = 1) t -  - W ,  extends to t-  w and returns 
again ( I  = 2 )  to t- - a,, where T, is the chronological op- 
erator on this contour. The operator 3 in (4) has the form 

The average in ( 4 )  is evaluated over the initial state 
before the interaction between the field and the medium is 
turned on. In the subsequent analysis, we shall assume in (4)  
that quantum-mechanical averaging and statistical averag- 
ing over the ensemble of systems are employed. The interac- 
tion between the gas atoms and the reservoir can be explicitly 
included in (4) .  It can also be taken into account in the 
initial state. The influence of the reservoir via the mass oper- 
ators is seen in the broadening of the atomic energy levels. 
The sign of the imaginary part of the mass operator is deter- 
mined by the causality principle. 

We shall assume a Gaussian distribution for the atomic 
ensemble prior to the interaction with radiation. As noted 
above, this will enable us to use the thermodynamic var- 
iant','' of Wick's theorem to simplify the average product of 
operators $. The product of operators 6 can be evaluated 
exactly by using the algebraic Wick theoremI9 and the ob- 
vious fact that ( 6 ) '  ), 0 for i>  lAThis identity follows 
from the completeness of the basis %,+ for physical states 
and is responsible for the linear dependence of the Feyman 

A h 

terms on the normal product of operators 3, and 8lg. We 
emphasize once again the completeness of the basis 21: )O,, 
which excludes N;products containing more than one anni- 
hilation operator 8,. It is precisely this point in the deriva- 
tion of closed equations that enables us to avoid the decou- 
pling of photon-photon correlations. 

The Feynman graphs thus split into the sum of two se- 
ries: 

The first of these does not contain the normal products of 
operators 6; they necessarily appear in each Erm of the sec- 
ond series, but only with the single operator 91, and 91;. In 
the standard technique, the Dyson equation for the vacuum 
averages isI9 

In our formalism, this equation is complicated by the addi- 
tion to each of the cofactors of t e r ~ s  conta$ing the average 
of the normal product of operators 21, and 21; , but in such a 
way that each new term depends linearly on this average. 

The structure of the Feynman series is found to be as 
follows: 

where the field operators are taken in the interaction repre- 
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A 

The operator 9 ,,,? does not contain normal products of the 
operators 6. how eve^, these products are present in each 
term of the operator 9 j,::. We note that the condition 

i ~ , ~ ~ = ( ~ . ~ l ~ l ~ + > , ~  

leads to 

To construct the required density matrix p, we need only 
know p12,  since it is clear from (3) ,  (4), and (7)  that 
p = ia ,, for t = t '. From (6)  we find that 

where, in accordance with Ref. 18 and ( 7 ) ,  we have 
A 

A,.=All, Aa=-A22=A,+,P,=$,,, 

h 

We now apply the operator 1 + A, F,, to the left-hand side 
of (8),  and write (5) - (8)  in the symmetric form 

According to (9) ,  the density matrix of the photon sub- 
system splits into the sum of two components. The coherent 
component plz' describes elastic scattering processes in 
which atoms of the medium return to their initial (including 
translational) quantum-mechanical state. The incoherent 
component pi;i describes processes in which the atoms 
change their quantum-mechanical state. The latter includes 
spontaneous emission, Raman scattering, and stimulated 
emission. In extended media and time-dependent situations, 
the matrix pi:' describes the initial stage of relaxation, and 
pi;' the kinetic stage. 

The structure of (9)  can be elucidated by the following 
elementary considerations. Let @, represent the wave func- 
tions of the different states of the medium, and let us suppose 
that, prior to its interaction with radiation, the medium was 
in the state @,. When the interaction is turned on, the wave 
function of the system can be written in the form 

The parameters of the electromagnetic field appear only in 
the functionsf.. The density matrix of the electromagnetic 
field that appears as a result of the quantum-mechanical 
averaging over the parameters of the medium is given by 

Expression (9) shows that this structure of the matrixp 
is preserved when the extended medium is considered not in 

the pure but in the mixed state. If I is the operator form of the 
Poynting vector, then according to (9)  

Consequently, the coherent and incoherent channels do not 
interfere.,' This absence of interference is a consequence of 
the orthogonality of the wave functions of the medium, the 
net result of which is that coherent and incoherent scattering 
occur in different final quantum states. The assignment of 
elastic scattering and stimulated emission to different reac- 
tion channels, leads to a number of differences between the 
results obtained in quantum theory and in semiclassical the- 
ory operating with unquantized electromagnetic fields. We 
note that the decoupling of photon-photon operators, i.e., 
the use of the standard Keldysh technique,'' would auto- 
matically place stimulated emission in the coherent channel, 
and would thus distort the final results. 

Let 2, represent the field amplitude operator. From 
(9) we then have 

From the additivity of the amplitudes of different channels 
we cannot as yet conclude that interference occurs between 
them. First, the initial state may be a Fock state, in which 
case (2,) = 0. If, prior to scattering, the radiation was in a 
quantum-mechanically coherent2' state la), and the condi- 
tion 

was satisfied for it, then after scattering this proportionality 
will be violated because ( 12) and ( 13) cannot then be simul- 
taneously satisfied. 

We therefore conclude that, as a result of scattering, the 
quasiclassical state la) ceases to be quasiclassical, provided 
both coherent and incoherent channels participate in the 
scattering process. This condition is always satisfied if the 
medium contains excited atoms that participate in stimulat- 
ed emission. 

3. Let us now consider reflection from a plane-parallel 
excited medium in greater detail. We confine our attention 
to the single-loop approximation for the polarization opera- 
tors: 

X J pv'Av,Giz (Xi, Xa) p,Jv2Av,Gzi (Xz, Xi) dri d.2 dRi ~ R z .  

which will suffice for n 4 k,. We take n to be the total concen- 
tration of scattering atoms, X the set of variables (r,R,t) and 
G,. the atomic Green's functions G, = G , , - G ,, . Scatter- 
ing of radiation is, in general, both diffuse and directed (se- 
lective) in ~haracter .~,  

Despite the fact that, for n <K,,  the selective compo- 
nent is energetically we now proceed to investigate 
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it. On the one hand, it can be resolved experimentally be- 
cause it is directional. On the other hand, by studying it, we 
can demonstrate a number of qualitative properties that also 
appear when light is scattered by denser objects. Under ho- 
mogeneous time-independent conditions, 

G,,. = Zoj (r-R) a . . ( r l - ~ f )  G,!:: ( p ,  E )  
11' 

dE 
Xexp[ip (R-R') - i ~  (t-t') ]- 

2nV ' 

If the scattering atoms in the medium experience the 
effects of a reservoir (collisions with electrons, impurities, 
and so on), then if we take the mass operator M, into ac- 
count, we obtain 

G?'' ( p ,  E )  ( E - ~ , ~ + i y , / 2 ) - ~  

The real part of the mass operator is omitted and the sign of 
the imaginary part is uniquely determined by the causality 
principle. In the absence of reservoir particles, iy is replaced 
with iO. The Keldysh technique" then leads to 

Suppose that the width of the energy spectrum of the 
reservoir particles is significantly greater than y. The depen- 
dence of M , ,  on E can then be neglected, and we have 

GE' (p, E )  =-2ni8,, (E-ej , )  Njj, (p) , 

where Nd (p) are the occupation numbers of the atomic 
states. Thus, if space is homogeneous and the scattering pro- 
cess& time-independent, we obtain the following expression 
for 9, in the energy representation: 

h 

The detailed expression for 9 i;' will not be reproduced 
here, and we shall confine ourselves to proving only some of 
the general properties that will lead us to conclude that the 
coherent scattering channel provides the lower bound for 
the Poynting vector in the reflected flux: I ( 0 )  / > 1 ( 0 )  "' 1 .  The 
Doppler effect is not taken into account here, especially 
since it appears in a nontrival manner.24 The situation is 
thus assumed to be dominated by collision broadening. If the 
scattering medium takes the form of a plane-parallel layer of 
thickness L, then in the Wigner approximation we must 
make the following replacement16 in ( 14) 

whereas in ( 1 5 ) 

where 

It will be assumed below that the scattering medium 
occupies the half-space z > 0 and that 2L = L, . The Poynt- 
ing vector of the radiation reflected by the medium is shown 
by ( 12) to consist of two components. The coherent compo- 
nent is responsible for the directionally reflected beam. In 
lowest-order perturbation theory in the concentration of the 
scattering particles, this component is associated with the 
expressionI6 

& ( E )  We assume that the mode (k,,/l,,) of the radiation incident 
on the medium contains only one photon, and 

krbrkh + - + k~Ltkdr  

= [&.i,Ai (E-fi..) ak~,+ak .~ ,C.  ( E - R ~ ~ )  a k u l .  p , ; (E) =2x6 ( E - k o )  Ikoho>(koh,(.  
~ I L I ~ A  

For linear scattering, to which we confine our attention 

~,A,.U (,) = ~ L x k i )  P:. (k2) here, this assumption is quite natural. When the distribution 
A, 

2 V [ o  (hi) a (h2) 1'" of atoms over the Zeeman sublevels is uniform (this is al- 
mm'w ways assumed) and the occupation numbers are 

Nmm, ( P )  6r,r, 
(14) 

Nm (p)  = Vn, ( p )  and N, (p )  = Vn, ( p ) ,  we have 
X 

E+a,,+ (k ,+k2)  p/2M+iy/2' 

Ck,l,k" ( E )  = Z p.2 ( k i ) ~ : ;  (k2) 
ckAkoko(k,, k,) = p 2  ( k ) p m 2 ( k o )  

mF 
I 

~ P I I ' P  2 V [ o ( h j ) a  (hz) 1'" 
Nw'  ( P )  8kikz 

xJ[ n u ( P )  + 
X (15) 

n m ( p )  1% - k,-om,+iy/2 om,-k,+iy/2 (2n) 
E-om,- ( k 1 + k 2 ) p / 2 ~ + i y / 2 '  

For resonance ( k ,  = w,,, ) radiation, we have 
l(3)"' 1 cc (n, + nm 12, and, if we take the inequality 

In the two-level approximation, the Zeeman sublevels I ( 0 )  / > / (0)"' 1 into account, we find that this is in conflict 
of the atomic excited states are assigned the index m in these with the semiclassical theory of radiation which predicts, in 
expressions, whereas the unexcited states are assigned the particular, that s = 0 for n, = nm . When n, = 0, quantum 
indexp; y is the energy width of the excited state. Radiative electrodynamics and semiclassical theory lead to the same 
broadening is neglected. In the dipole approximation result. 
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It is noted in Ref. 3 that the sum n, + n,, arises quite 
naturally in the analysis of the decay of a one-photon (Fock) 
state of the electromagnetic field in a uniform medium. The 
point is that both the absorption of the photon (determined 
by n,, ) and the stimulated emission produced by it (i.e., 
transition to the two-photon state, determined by n, ) lead 
to the disappearance of the one-photon state. Since both ab- 
sorption and reflection of light are determined by the same 
polarization operator, the relation 1(8)"' / a (n,, + n, )' 
becomes understandable. 

4. We must now prove that the vector (O)'"' is positive- 
definite. We first rewrite the equation for the propagator A, 
in the form 

Applying the operators A, ' and A, ' to the left and right 
hand side of ( 1 1 ), respectively, and recalling that the matrix 
p;, describes the system in the absence of interaction, we 
find, using (16) and ( l o ) ,  that 

and 

V 

where the operators @ and 6 + are taken in the Heisenberg 
representation. Hence 

-9:;) =(A,-'k+(l;', t ' )  6 (l;,  t)Aa-')r. (18) 

The operators 6 and A, ' commute, since they act on differ- 
ent arguments. From (A ,  ') + = A, ' an% ( 18) it follows 
that the diagonal elements of the operator 9 I;' at t = t ' are 
positive-definite. Applying the operators A, and A, to the 
left and right hand sides of ( 17), respectively, and recalling 
( l l ) ,  weobtain 

Arguments similar to those leading to (18) show that the 
diagonal elements of the matrixp;;' for t = t ' are also posi- 
tive-definite. Hence, according to (9 ) ,  it follows that, for the 
diagonal elements, 

p (t, t) >p("'(t, t ) .  

The fact that the vector (i)'") , which appears as a re- 
sult of scattering by the spatially localized system, is posi- 
tive-definite is proved by an essentially similar argument. 
Suppose that the medium occupies a finite volume, and re- 
flects the flux of radiation incident upon it. We shall find the 
concentration of scattered photons at a large distance r from 
the system. We shall be interested only in the incoherent 
channel. We shall assume that the photon-number operator 
at the point r is 

Integration of this expression over all space gives the parti- 
cle-number operator. If we introduce the factor 
2 V ( k k  ') 'I2 under the summation sign, we obtain the oper- 
ator for the excitation of a test atom at the point r. 

For a quasihomogeneous configuration of the electro- 
magnetic field in vacuum, the operator ( 19) readily allows 
us to evaluate the Poynting vector. It is clear that 

dE' - 
Xt!xp(ikr) J e r p [ - i ~ ~  (t-tf) ]A.(Ef) --Y::' 2n (11, tv) 

Using the representation given by ( 18),  we can rewrite 
(20) in the form 

where 

9. (t) =SP xek;i iki  exp (ikr) 
k h 

dE' x 5 exp[-iEf (t-t') (Z3')- Ar- '6+  (ti) dt'. 
2nV'" 

This proves that (A, . )  is positive-definite. However, (21) 
tells us more. Its structure prevents us from using thc identi- 
ty given by (A.3) and, as r -  m ,  the following cofactors ap- 
pear in (21):  

where 

Thus, the concentration of scattered photons decreases 
asymptotically as r - I ,  and involves only photons that prop- 
agate in the direction of the vector r/Ir 1 .  Thus, while remain- 
ing positive-definite at all points, this concentration pro- 
duces a radiation flux pointing away from the scattering 
target. The neglect of this flux leads to an underestimate of 
the total scattered flux, so that the inequality 1 (O) I > I (O)"' I 
is valid under all time-dependent conditions. Of course, it 
would have been sufficient for our purposes to confine our- 
selves to the proof that the expectation value of the excita- 
tion operator in the incoherent channel is positive-definite. 

5. As an aid to our understanding of the difference 
between the predictions of semiclassical and quantum-me- 
chanical theories, which is particularly clear-cut for 
n, = n ,  , let us find the quantum-mechanical average of the 
vector potential in the reflected flux. We shall again assume 
that the scattering medium consists of thermally excited 
atoms occupying the half-space z > 0. Let us suppose that the 
beam to be scattered is in the coherent quantum state" 

I cc)= exg (- y) 1 n )  ( n ! )  
h 

so that 1 ($)'I a (A)2 ,  where (8)" is the Poynting vector of 
the incident flux. We shall confine our attention to the case 
of an infinitesimal field amplitude, and assume that the den- 
sity matrix for the incident radiation is 
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plz0 (t,, t,) = [ l+cck,buk,~ exp (-ik,t,) I 10) . ,. 
X<O I [ I+ak,bak~ exp (ikot2) I .  

Passing now to the classical description, we can say that 
the incident radiation is characterized by the vector poten- 
tial 

(A(*, t )  >= Sp p i ; i ( r )  =ek2(2k,V)-'"[ako& exp (ik,r-ik,t) 

+a;,% exp (-ikor+ikQt) I ,  

For linear scattering of radiation, for which a,,4c,, we 
can confine our attention to the single-photon approxima- 
tion. To find the vector potential in the reflected flux, i.e., the 
part of the radiation that is characterized by classical param- 
eters, we write the potential in the form of the sum (13), in 
which each of the terms is found by analogy with the discus- 
sion in Sec. 3. In second-order perturbation theory, 

X P,,"' (q)  p,,"B (k,) 

As before, in the coh%rent channel for resonance radi- 
ation, the reflected field ( A ,  ):'I is determined by the sum 
n,, + n, and, in contrast to ( A ,  ) '"' , the component (O)(" 
is not positive-definite. For this reason, it follows from (22) 
and (23) that 

We have thus arrived at the result predicted by the semiclas- 
skal theory. In particular, when n, = n,, we have 
(A,,  ) = 0 in the reflected flux. Of course, as before, we have 
/ (31 > / (02'' / a (n, + n, )', so that the proportionality 
1 ( 8 )  / a (A)2  breaks down, which suggests that the quantum 
state of reflected light for n, # O  is not coherent, and the 
classical description of the reflection process is not admissi- 
ble. 

6.  Finally, let us determine why the Poynting vector 
(2)'"' generated by the incoherent channel cannot be calcu- 
lated by perturbation theory. The point is that one of the 
processes responsible for producing the reflected light is the 
coupling of two elementary processes, namely, the elastic 
scattering of the photon by one of the ground-state atoms of 
the medium and the subsequent stimulated emission by an- 
other (excited) atom. However, unexpectedly, this coupling 

does not allow an analysis by quantum-electrodynamic per- 
turbation theory. 

Let us consider this coupling for two isolated atoms 1 
and 2. The second atom is excited and there are no energy 
widths. Suppose, for simplicity, that the atoms are different 
and that E ~ , ,  - E~~ >cZm - E ~ ,  = w = w,, where o, and w 
are the frequencies of the incident and scattered photons. 
The quantum-electrodynamic amplitude for the process in 
the lowest-order perturbation theory is 

i.e., it is proportional to the product of two 6-functions. 
This type of structure is not uncommon in perturbation 

theory, and usually suggests that two simultaneous, but in- 
dependent, processes are taking place. In our case, the subdi- 
vision into two independent processes cannot be carried out 
because the second process is due to the first. However, the 
probability of the process is then proportional to the square 
of the product of the 6-functions and, in any case, the cross 
section (the Poynting vector) contains 6', i.e., it is math- 
ematically meaningless. The expression can be given a mean- 
ing if the 6-function is "smeared out," which requires the 
summation of an infinite sequence of Feynman diagrams and 
leads to an expression that is not analytic in the charge. 

We have thus shown for the incoherent channel that the 
reflection coefficient of an excited medium is difficult to 
evaluate in sixth-order perturbation theory. The situation is 
not saved by the presence of energy widths. This is con- 
firmed by the direct calculations reported in Ref. 25. 

Our proof that (O)'"' is positive-definite has enabled us 
to confine our attention to ( 0 )  "' . The evaluation of (O)'"' is 
a separate problem. 

I am greatly indebted to V. L. Bonch-Bruevich, D. A. 
Kirzhnits, and V. I. Tatarskii for extensive discussions of the 
different sections of this paper. 

APPENDIX 

Consider the integral 

dk f ( k )  exp (ikr) 

A=1,2 

where f (k )  is an arbitrary but smooth function that does not 
prevent the existence of the integral. We note, first, that 

Hence 

We are interested in the limiting case r -  CO. The main 
contribution to the integral is provided by the region k z  E. 
For this reason, at the point k = E, smoothly varying func- 
tions can be taken outside the integral sign. When the re- 
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maining singular equation is integrated, the limits can be 
replaced with ( - co , co ). The theory of residues then shows 
that 

1 a a 
I.(E) = -z ~ ( E ) P ~ . V ' (  8r,+~-z--) em. 

2nr V ,  dr, ar,, 

Differentiating with respect to r and summing over a v', we 
obtain the following expression: 

1 
1. ( E )  = - - f ( E )  p d  (n) e.$eiEr, n = - (A21 

2zrx=,*2 1.1 ' 

Comparison of ( A l )  with (A2) enables us to write the fol- 
lowing symbolic identity: 

If the state (k,/Z) contains N,, photons, and the other states 
(k',A ' )  are also occupied, the matrix elements of the opera- 
tor A: have the form 

and (A2) is replaced with 

E 1 
~ e ' ~ ' 6  ( k -  - + -z k ' ~ ~ . , . ) .  (A3) 

N k i  N k i  
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