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This is a direct continuation of work previously reported in S. N. Vergeles, Zh. Eksp. Teor. Fiz. 
95,397 ( 1989) [Sov. Phys. JETP 68,225 ( 1989) 1 .  The method of dynamic quantization, 
proposed there, is now developed further and is used as a basis for the quantization of the chiral 
Schwinger model. In dynamic quantization, regularization is accomplished by imposing an 
infinite set of second-order constraints on the degrees of freedom in the deep ultraviolet region 
and by going over to the Dirac commutation relations. This leads to the conventional 
interpretation of gauge theories, which are regarded as anomalous. The chiral Schwinger model is 
found to be gauge and Lorentz invariant. 

1. INTRODUCTION 

In this paper, we shall apply the method of dynamic 
quantization' to the (right) chiral Schwinger model. We 
shall show that, in contrast to Feynman quantization, dy- 
namic quantization is completely correct in this case, i.e., 
both gauge and Lorentz invariance are preserved. As a re- 
sult, we obtain a spatially odd theory of free neutral Bose 
particles with the spectrum w ( k )  = k where k > 0 [in the left 
theoryw(k) = - kwherek<O]. 

We present the essence of the method of dynamic quan- 
tization. We consider the asymptotically free gauge theory in 
Minkowski space. Apart from the gauge field, the theory can 
include the chiral fermion (Weyl) field. The set of boson and 
fermion fields will be denoted by Q (x)  . 

It is well known that, in the case of Feynman quantiza- 
tion, such theories are anomalous and, in the usual sense, 
contradictory. The program of Faddeev and Shatshvili2 for 
the quantization of anomalous theories (as it applies to the 
Feynman method) lies outside the framework ofthe conven- 
tional interpretation of gauge theories. This approach is very 
interesting to us, but we shall not examine it here. Readers 
interested in the quantization of the chiral Schwinger model 
by the Faddeev-Shatashvili method should refer to Refs. 3- 
8. 

Let @ ( x )  represent an arbitrary field and 
p ( x )  = SQ(x)  a small increment of the field. We shall as- 
sume that @ ( x )  is a classical field and that Q ( x )  is a quan- 
tum-mechanical operator. Let us consider the Heisenberg 
equations for the field p. These equations can be obtained 
with the aid of the Hamiltonian H which explicitly contains 
the background field @. Let H'2' be the part of the Hamilto- 
nian H that is quadratic in p. The Hamiltonian H'2' can be 
diagonalized at all times t. Let {p, ( t , ~ ) )  be the set of modes 
that diagonalize the Harniltonian H"' at time t, and let 
[w,  {@)) be the set of corresponding eigenfrequencies. The 
frequencies w, {@) and modes p, (t,x) are functional of the 
field @(t ,x) .  Since the set of functions { p ,  (t,x)) is com- 
plete to all times t ,  the field p ( x )  can be expanded as follows: 

where the coefficients a,  ( t )  are functions of time only. The 
set of quantities {a, ( t ) )  may be regarded as a set ofdynamic 

coordinate variables. Let T, be the momentum variable that 
is the canonical conjugate of a,, and let us consider the dy- 
namics of the system relative to the moving frame 
{p, (t,x)). To do this, we consider {a,, a,) as a set of local 
dynamic variables and express all operators in terms of 
them. 

In the space of the parameters N (which contains mo- 
mentum space as a direct cofactor), we draw a closed surface 
u ( A )  in the deep ultraviolet region that contains the in- 
frared region and is specified by the following condition. The 
index N belongs to the surface u (  A) if for the field Q = 0 we 
have (w${O) = A2-+ cc ). We say that the mode p, (x)  and 
the corresponding degree of freedom (a, , a, ) lie in the 
interior of the surface u ( A )  if w;{0) < A ~ ,  and that it refers 
to the ultraviolet tail if w;{O) > A*. 

To regularize the theory, we assume that there are no 
degrees of freedom referring to the ultraviolet tail, and that 
the bare constant e2(A) tends to zero. This means that we 
are applying to the system an infinite set of second-order 
constraints in the terminology of Dirac's theory9: the de- 
grees of freedom referring to the ultraviolet tail are all as- 
sumed to be equal to zero. We assert that this regularization 
is self-consistent and, without proving this proposition, we 
shall outline the corresponding physical picture. 

Consider the dynamics of the degrees of freedom a, 
near the surface a (  A). Since the bare constant is e2 (A) 4 1, 
the nonlinearity of these degrees of freedom in the Heisen- 
berg equations is naturally taken into account by perturba- 
tion theory (PT) .  

Purely kinematic considerations show that the effective 
coupling constant between the degrees of freedom near the 
surface u ( A )  is not renormalized and remains of order 
e2 ( A ) < 1. The reason for this is that, in this case, the ranges 
of integration over the intermediate frequencies become 
greatly reduced, and do not give the usual logarithmic diver- 
gences, whatever the duration of the interaction in time. 

Let A, <A.  We can show in the usual way, using PT, 
that if we take into account fluctuations in the degrees of 
freedom between the surfaces u ( A , )  and u ( A ) ,  this lead to 
the renormalization of the constant e2(A) -e2(A,).  For the 
coupling between the degrees of freedom near the surface 
u (  A, ), we must now use the constant e2(A, ) if the integrals 
over the intermediate frequencies are cut off in PT calcula- 
tions on the surface a( A, ) . 
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It follows that, as we enter the infrared region, the effec- 
tive coupling constant between the degrees of freedom rises 
in accordance with the formulas that are well known in 
asymptotically free theories. This means that the coupling 
will cease to be weak for some scale A, <A. The region adja- 
cent to the boundary of u (  A), in which the couping remains 
weak, will be referred to as the ultraviolet region. The low- 
frequency region in the space of the parameters N, which is 
not included in the ultraviolet region, will be referred to as 
the infrared region. The coupling between the degrees of 
freedom and their fluctuations is strong in the infrared re- 
gion. 

We shall see that fluctuations in the degrees of freedom 
a, near the surface u(A) are small. The effect of fluctu- 
ations in the ultraviolet region on the dynamics of these de- 
grees of freedom can be taken into account by PT, and their 
quantum numbers are then conserved. PT calculations show 
that the frequencies w$ and modes p, (x)  near the surface 
u(A)  depend only on the infrared component of the field 
@' (x) ,  which is indicated by the notation p, { @ I )  (x )  [var- 
iations in @' (x)  are proportional to the modes p,{@')(x) 
from the infrared region]. Fluctuations in the field @' (x)  
have large amplitudes, but they vary slowly in space-time. 
Their effect on the dynamics of the ultraviolet degress of 
freedom a, is therefore correctly taken into account in the 
adiabatic approximation. All this leads to the following im- 
portant result: the occupation numbers n, for modes 
p, {@' 1 (x)  in the deep ultraviolet region are conserved, i.e., 
they are constants of motion. Of course, this proposition is 
valid only for states near the vacuum state for which all 
n, = 0, or only some of them, are different from zero. We 
shall assume that this restriction is satisfied in the ensuing 
analysis. 

In the infinitely-dimensional affine space of the fields 
@(x), we can construct the hypersurface ):(A) in which the 
sets of modes [p, {@' ) (x)  1' is a complete tangential set of 
vectors at each point. (Here and in what follows the prime 
will indicate that the index N does not assume values that 
belong to the ultraviolet tail.) This problem is mathemat- 
ically correct. The hypersurface @ ( x )  is invariant under the 
group of gauge transformations of the fields ):(A). Actually, 
the vector fields that generate the gauge transformations are 
the zero modes of H'2' and can therefore be expanded in the 
set (pN{@')(x) 1'.  

It follows that the configuration space of the system can 
be bounded up to the hypersurface ):(A). The dynamics 
conserves the system on this hypersurface and the system is 
regularized thereby. Moreover, the following propositions 
are valid: ( 1 ) for the regularized system, the number of d e ~ -  
grees of freedom is determined and bounded (per unit of 
volume) and (2) there is no transport of particles, energy, or 
other quantum numbers across the surface u(A) for any A 
in the deep ultraviolet region. 

Physical fields are also naturally considered to be regu- 
larized in the above regularization procedure. By definition, 
a regularized field depends only on points on the hypersur- 
face ):(A). In particular, a regularized field p ( x )  depends 
on the variables a, lying in the interior of the surface a ( A )  
[see Ref. 1 1. The commutation relations (CR) for the regu- 
larized fields differ from the original CR because the former 
do not involve the variables {%, a,) from the ultraviolet 
tail. The CR for the regularized fields are none other than 

the Dirac CR (see Ref. 9 and the appendix) that arise when 
the second-order constraints a, ~0 and IT, -0 are applied 
to the degrees of freedom {IT,, a, ), in the ultraviolet tail. 
The imposition of these constraints is possible because the 
variables {IT,, a,) commute with all the first-order con- 
straints, i.e., the generators of the gauge transformations. 
Moreover, the commutators [a,, H '1 and [IT, , H '1 are pro- 
portional to a, and %, which follows from propositions 
( 1 ) and (2)  above, where H ' is the Hamiltonian terms of the 
variables {a,, IT, (see Sec. 2).  

We thus arrive at the following picture. Suppose that all 
the operators are expressed in terms of the regularized fields 
in the usual way. We derive the Heisenberg equations of mo- 
tion in an explicit form, using the Dirac CR. The equations 
of motion obtained in this way have the usual form on the 
hypersurface Z (A). Since the regularized equations of mo- 
tion are Lorentz invariant, we find that Lorentz invariance 
applies to physical momenta (in the infrared region). 

It follows from the foregoing that, in particular, the 
gauge anomaly does not arise in chiral gauge theory. Be- 
cause of the importance of this result, we shall derive it expli- 
citly in the language of the Hamiltonian formalism in 4-di- 
mensional Minkowski space. 

Since fermion fluctuations give rise to the gauge anoma- 
ly, let us consider fluctuations in the quantum-mechanical 
Weyl field p ( x )  in an external gauge field A, (x ) .  The Ham- 
iltonian is 

H,=H;"=- j hr(rp+iri Virp+irp+A.rp), ( 2 )  

where T' are the Pauli matrices and i = 1, 2, 3 and V,, = d / 
dxp + A , .  The Heisenberg equations i p  = [p,H] and the 
commutation relations 

lead to the Weyl equation 

icj= hcp, (4)  

where h( t)  = - iriVi - iAo is a hermitian Weyl operator 
that depends on the gauge field (and, consequently, on 
time). 

Let {pN ( t , ~ ) )  be the complete orthonormal set of solu- 
tions of the Weyl equation. This means that all the functions 
p, satisfy (4)  and, at the time to, the set {p, (t,,x)) is a 
complete orthonormal set of eigenfunctions of the operator 
h(t0): 

Since the operator h ( t )  is hermitian, it follows from (4)  and 
(5)  that 

at any time t. Because of the completeness condition (6) ,  any 
fields p (x)  and p + (x)  can be expanded in the sets of func- 
tions CpN(x)) and {p,+(x)) with coefficients {a,(t)) 
and {a$ (t)}, respectively: 

The set of Grassmann quantities {a,+ , a, > can be re- 
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garded as a complete set of fermion degrees of freedom of the 
system. The commutation relations ( 3 ) assume the follow- 
ing form in terms of variables {a;, a,): 

The Weyl equations (4)  then signify that 

The following second-order constraints can then be im- 
posedin (8): a, zO, a$ zO, if IwN (to) I > A +  W .  This pro- 
cedure leads to regularization. Instead of the CR given by 
( 3 ) ,  we must now use the Dirac bracket. There is no need to 
reproduce the explicit formulas because the entire situation 
reduces to an obvious redefinition of symbols [see Appen- 
dix, equation (A8) 1. This leads to the following equations of 
motion: 

k N = O ,  k N + = 0 ,  I u N ( t 0 )  I <A, 
(9) 

a N = O ,  a N + = O ,  I ~ N ( t o )  1 >A, 

which show that the Weyl equations given by (4)  are valid 
for the regularized fields 

The prime and the summation symbol indicate that the sums 
are evaluated over the indices N for which 10, (to) I < A. All 
the operators can now be expressed in terms of the regular- 
ized fields ( lo) ,  and their dynamics can be investigated us- 
ing the Weyl equations given by (4).  Hence, for the regular- 
ized fermion current 

we have V, J p  = 0 where ta are the generators of the Lie 
algebra of the gauge group. This equation shows that the 
gauge invariance of the chiral theory remains invalid.'' 

We now note the qualitative difference between Feyn- 
man and dynamic quantization. Dynamic quantization can 
be applied to asymptotically free theories for which there is a 
region in momentum space, which we call the ultraviolet 
region, in which quantum-mechanical fluctuations in the 
field are small at all times. 

The coupling is thus seen to be weak at infinity in mo- 
mentum space. On the other hand, at infinity in x-space, the 
coupling is not assumed to be weak and, in general, it cannot 
be weak. The imposition of the condition @ (x)  -, 0 for x - co 
is therefore incorrect in this case. 

On the contrary, the condition @(x)  -0 for x -  cu is 
imposed in the case of Feynman quantization, which is 
equivalent to the hypothesis that the physical vacuum is 
qualitatively no different from free vacuum with the cou- 
pling turned off; the coupling can be turned on adiabatically. 
On the other hand, there is no region in momentum space in 
which the field fluctuations are small. Actually, suppose that 
a relatively hard quantum is created at time to. Its coupling 
to the field will increase in the course of time, and will even- 
tually become strong. 

2. REGULARIZATION OFTHE CHIRALSCHWINGER MODEL 

Let us now apply the ideas formulated above to the sim- 
plest of the chiral theories, namely, the chiral Schwinger 
model. 

We consider in two-dimensional Minkowski space a 
system with action 

where V, = d/dxp - iA,, A, is an abelian gauge field, 
F,, = d,A, - d,A, and q, is the one-component complex 
Grassman field. We use the letters x, y to represent the spa- 
tial coordinate x ' .  The Hamiltonian and the angular mo- 
mentum operator are obtained in the usual way: 

where A, plays the part of the Lagrange multiplier for 
x = d,E + q, +q,. Nonzero simultaneous commutation rela- 
tions take the form 

We shall use the representation in which the operators 
A, and q, + are diagonal and their effect reduces to multipli- 
cation, and the conjugate operators become E = - i(S/ 
SA,) and q, = S/Sq, +. The Hamiltonian (12) and the com- 
mutation relations ( 14) lead to the Heisenberg equations 

B = ~ +  cp. (17) 

In addition to the equations of motion ( 15 )-( 17 ) , we must 
use the constraints 

These constraints show that the gauge field has no dynamic 
degrees of freedom of its own. It only provides the Coulomb 
interaction between the Fermi quanta. Hence the Fermi field 
contains all the dynamic degrees of freedom, and ( 15 ) is the 
key equation. 

The Weyl equation (15) can be solved exactly. Let 
P(t, X )  be the phase factor determined by the equation 

The initial condition at t = to is 

It is readily verified that the functions 

satisfy the Weyl equation ( 15). Since 

the set of functions given by (21 ) is complete and orthonor- 
ma1 at all times: 
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The Fermi fields can therefore be expanded in terms of the 
functions (21 ) for all values of time t: 

The set of quantities {a:, a,) is a single-valued 
(q, = 0-a, = 0 )  set of Grassmann degrees of freedom. It 
follows from the Weyl equation ( 15) that these variables 
satisfy the equations of motion 

Consider the commutation relations at time t = to. Ac- 
cording to (20) and (21 ), the functions p, (to, x )  are func- 
t ional~ of the field A,. Since the commutator [?(to, x ) ,  
A, (to, X)  ] is zero, it follows that 

From this and from ( 14), (22), and (23) we obtain the com- 
mutation relations 

which remains valid at all times t because (24) are satisfied. 
From the CR 

[ q ( t o ,  X I ,  xAI=a(x)q(tol X)? 

, [P(to ,  x ) ,  x A ] = ~ ( x ) P ( ~ O ,  X )  

where X, = $ dxilx, we obtain 

The set of functions (21) is therefore an analog of the 
set of modes {cpN {ai > ) introduced above. The equations of 
motion (24) show that, to regularize the theory, it is natural 
to impose the second-order constraints 

It follows from (27) that all second-order constraints com- 
mute with the first-order constraints ( 18). This means that 
the imposition of the constraints (28) is formally correct. 

The canonical transformation can be used to pass from 
the variables (A,, E, p +, p) and the Hamiltonian H to the 
variables (A,, tZ, a:, a, ) and the Hamiltonian H '. We note 
that E9 - E = y + O  where y contains the dependence of the 
fermion degrees of freedom. We do not need the explicit 
form of H ' and of the equations of motion in terms of the new 
 variable^,^' except for (24) : 

[ak+, H1]=O, [a,, H']=O. (29) 

The Dirac CR for the fundamental fields (A ,, E, p +, p) 
at time to are constructed in the Appendix using the above 
formulas. There commutation relations, and all the relation- 
ships and equations that follow from them, can be extended 
to any time t as follows. Let us suppose that, at some instant 
of time t, the Dirac CR have been determined and have the 
properties defined by (A5)-(A7). They are then also deter- 

mined at an infinitesimally close time t + dt. Actually, 
A(t  + dt)  = A(t)  + id t [H(t) ,  A(t)]*.  Hence, the CR 
[A ( t  + dt),  B ( t  + dt)  ] * are determined in terms of the 
Dirac CR at time t. Using the properties defined by (A5)- 
(A7),  we can readily verify that the Dirac CR must also 
satisfy these properties at time t + dt. I t  is readily shown that 

[A,  B ] * ( t + d t )  = [ A  ( t f d t ) ,  B ( t + d t )  I* .  (30) 

This follows from (A7) if we substitute C = H. Equation 
(30) shows that all the relationships between the operators 
that include the Dirac CR remain valid at all times. This 
means that all the commutation relations and the equations 
obtained with the aid of the Dirac commutation relations 
(A8)-(A12) and, in particular, ( 3  1 )-(33 ), remain valid at 
all times t. 

We shall now use commutation relations (A8)-(A12) 
to carry our certain calculations. We find that 

It follows from ( 3  1 ), (A8),  and (A9) that 

We must now evaluate (iQ, - [p ,  HI *), using (A8),  ( AlO), 
and (A31 ), and project the result on to the functions pk 
where I k I < A. It is readily seen that, in classical mechanics, 
this projection does not include the contribution due to the 
term 

In quantum mechanics, the situation is somewhat more 
complicted. From the definitions of the functions p, and 
from ( AlO), we have - 

Using this equation and also (A8) and ( 3  1 ), we obtain the 
projection of the Heisenberg equation for the field p onto the 
function p, ,I k 1 < A: 

since p, ( x )  depends only on the field A ,  ( 2 )  for z <x.  If we 
now simplify this equation, we obtain 

Hence it is clear that the commutation relations (26) are 
reproduced dynamically, and in the limit as A -- m we have 
the equations of motion given by (24).  Consequently, the 
Heisenberg equations for the regularized fields 
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have the previous form ( 15) in the limit as A - co . The rapid 
accumulation of phase factors in the operators a, and a,f for 
Ik / - A  has no significance because these factors mutually 
cancel out if we confine our attention to finitely excited 
states. Hence, the regularized Heisenberg equations 
iA = [A, HI * are obtained from the formal equations (15)- 
(18) merely by crossing out the variables a; and a, for 
( k  I > A. All the quantities must be expressed in terms of the 
regularized Fermi fields. Consequently, when the quantities 
a, Ji' are evaluated Jl' = (p  + p ,  p + p is the fermion cur- 
rent), we can use ( 15) directly (the separation of the Fermi 
fields is not required at this point because we are using the 
regularized fields). Hence we find that 

Equations (32) and (33) show that the theory remains 
gauge invariant and the generators of the gauge transforma- 
tions x remain as second-order constraints. 

Similar calculations applied to the projection of 
( ip  - [p,  HI * ) onto the function of p, , where 1 k I > A, lead 
to an identify. These calculations are based on ( 16) and the 
constraints given by (28), in addition to the commutation 
relations (A8)-(A12). 

We note that ( 16) follows directly from commutation 
relation (A9).  Equation ( 17) is a consequence of ( 18) and 
(33), established independently. 

Equation (33) can be obtained by the method devel- 
oped in Ref. 1. Formula (2.22) in Ref. 1 gives the general 
expression for the gauge anomaly which, in our case, as- 
sumes the form 

3. THE GROUND STATE AND ELEMENTARY EXCITATIONS 

By definition, the ground state 10) satisfies the follow- 
ing conditions: 

Clearly, the state 

satisfies (34)-(35). Consider the gauge invariant operator 

&{$) = 5 dl I$ ( 1 )  5 ds  erp ( - ikz )  pi (x+l)  

that creates or annihilates a state with a particular value of 
momentum ( 13), equal to k. We also find that 

X J  dl $ ( l )  J dx exp( - ikx)  q ~ +  (z+l) 

It is readily seen that operators such as (37) create normal- 
ized states with a particular energy, but only when 
q(1) -a([). Actually, when this is not the case, the second 
and third terms on the right hand side of (38) cannot be 
proportional to the operator (37).  The reason for this is that, 
according to (35), 

2. 

Hence it is clear that the field E ( x )  is not a spatially homo- 
genous quantity. The second term on the right hand side of 
(38) is therefore found to vary rapidly as the "particle" (37) 
travels along the x axis. 

Consequently, the particle creation and annihilation 
operators with momenta k > 0 have the form 

ck = J d s  exp  (- ikx)  p+ ( x )  cp ( x )  , DO, 

(39) 
cki = J d s  exp  ( i k x )  p+ ( s )  q ( x )  , k>O. 

It follows from (34) that 

c,(O>=O, 
k 

ch+ lo)= exp ( i k t )  

The commutation relations [c: , H ] * = [ c ; ,  P ] * 
= - kc: then show that the excited state 1 k ) = c: 10) has 

momentum k and energy w(k)  = k. Hence Lorentz invar- 
iance holds if we pass to the limit as A - co . 

If we confine our attention to finitely excited states, we 
have 

[ck, cpf ] *=k6 ( k -p ) ,  (40) 

where it is assumed that (34) is valid in the deep ultraviolet 
region. 

We now state a final obvious proposition: the theory is 
unitary because, according to (35),  we have (010) = 1. 

4. CONCLUSIONS 

Regularization of the model defined by ( 1 1 ) by means 
of the Dirac CR is thus seen to provide us with the possibility 
of a quantization in which all the necessary properties of the 
theory remain valid, i.e., unitarily and gauge and Lorentz 
invariance. As a result, we obtain a spatially odd theory of 
free massless neutral Bose particles with positive momenta. 
We note that Lorentz invariance and violation of spatial par- 
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ity ensure that the quanta of excitations in the one-dimen- 
sional theory have no mass. 

The example of the chiral Schwinger model thus shows 
that field theory can be regularized by the imposition of sec- 
ond-order constraints on particular degrees of freedom in 
the ultraviolet region. This regularization is often preferable 
to traditional methods because it enables us to retain the 
necessary first-order constraints (for example, gauge invar- 
iance). This confirms the hypothesis of dynamic anomaly- 
free quantization, which we used previously to investigate 
the nonabelian Weyl theory in Minkowski Cspace.' 

We note in conclusion that the nonabelian chiral 
Schwinger model or the chiral ' t  Hooft model can be quan- 
tized by the above method. The result is a spatially odd theo- 
ry of free colorless massless baryons and mesons with the 
spectrum w (k )  = k, k > 0. 

APPENDIX 

We not introduce the Dirac commutation relations for 
the operators of the Schwinger model ( 12), and apply the 
second-order constraints (28). 

We recall the expression for the Dirac brackets in classi- 
cal theory (see Ref. 9), and then generalize them to the 
quantum field in the case of the chiral Schwinger model. 

Let x,, s = 1, ..., S be a complete set of second-order 
constraints in the classical Hamiltonian theory, and let 
{..., ...) denote the Poisson bracket. We use c,, to represent 
the inverse of the matrix {x,, x,. 1. The Dirac brackets for A 
and B are then defined by 

{ A ,  B)*=(A, B)-{A, x,)csa-(xsr, B). (A1 

This expression has all the necessary properties of Poisson 
brackets. The equations of motion obtained by using the 
Poisson and Dirac brackets are identical in the weak sense, 
and the constraints x, can be set equal to zero even prior to 
the evaluation of the Dirac brackets. 

We now turn to the model (12). We first evaluate the 
Dirac CR for the fundamental fields A,(x),  E(x) ,  p +(x) ,  
and p (x )  at time 1,. We need the parity function a ,  defined 
for homogeneous operators with values in the group Z,. By 
definition, a (A , )  = a(E) = 0, a (p  +)  = a(p)  = 1. If the 
function a is defined for the operators A and B, then 
a(AB) = a ( A )  + a (B)  (mod 2).  The commutator of the 
homogeneous operators A and B is defined by 

[A, B] =AB-BA ( - 1 ) " ' A ' u ' B ' .  (A2) 

Let a, ( k )  denote a: for i = 1 and a, for i = 2. Accord- 
ing to (26), the analogs of the matrix {x,, x,. ) and its in- 
verse c,,. takes the form 

where T; is the first Pauli matrix. Let I...,...] * represent the 
Dirac CR. For the fundamental homogeneous fields, we 
have by analogy with the Dirac brackets ( A l )  

[A,  B]'=- [B, A]'(-l)"'A'a(B), 

[xA+yB, C]"=x [A, C1.t-y [B, C]'. 

Let A, B, and C be homogeneous operators. By definition 

[A, BC]*=[A, B]'C+B [A, C]'(-l)a'BJa'A'. (A6) 

Formulas (A4)-(A6) provide an inductive definition of the 
Dirac CR for any functionals that depend on the fundamen- 
tal fields. We shall show that the Jacobi identity is valid for 
the fundamental fields and takes the form 

[A, [B, C] *I (-I) [B, [C, A] * ]  (-1) "'"'"'"' 
+ [C, [ A ,  B]']' (-1) a'C'a'B'=O. (A71 

Let any three operators out of the four A, B, C, D satisfy the 
Jacobi identity (A7). Using (A5) and (A6), we can readily 
verify that, in this case, the operator triplet A,  B, and CD will 
also satisfy (A7). Hence, by induction, we conclude that any 
functionals of fundamental fields satisfy the Jacobi identity 
(A7). 

The Dirac CR (A4)-(A6) are thus seen to have all the 
necessary properties. 

Let us now evaluate the nonzero Dirac CR for the fun- 
damental fields in accordance with (A4) [d ,E(x)  replaces 
E ( x )  in some of the CR]. 

In these evaluations, we use the commutation relations 
(14), (15)-(27), and also the definition (21). It follows 
from (27) that [a,E(x),a,  ] = [a,,p + (x )p (x )  ] 
= p k+ (x )p (x ) .  Therefore we find that 

A 

dk 
[q(x),qi(x)lW= J2Rpk(x)q1+(Y), (A81 

-A 

Direct verification shows that the Dirac commutation 
relations (A8)-(A12) satisfy the Jacobi identity (A7). 

We note that, in terms of the variables (A,, %', a: , a, ), 
the Dirac commutation relations take a much simpler form. 
Nonzero Dirac communication relations have the form of 
(25) for Ik I < A  and Ipl < A ,  and 

Hence all the properties of the Dirac commutation relations 
(AS)-(A7) in terms of these variables are obvious. 

- [B, a,(k) IT!: [aj (k) , A ]  (-l)a(A'"(B) 1. (A41 

It is clear that 
"A similar approach to the study of gauge anomalies was developed by 
Gribov." 

256 Sov. Phys. JETP 69 (2), August 1989 S. N. Vergeles 256 



2'Weuseqand Q todenote thesetsofcoordinates (A, ,  q, + )  and (A,, a: ) ,  
and let U be a unitary matrix such that Q = U+ qU. Then we have 
iQ= [Q ,H1] ,whereH '=  U + H U + i U + U .  
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