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We discuss the dynamics of the world sheet of a string propagating in a non-simply-connected 
space. A significant role is played in this case by vortex configurations, which give rise to phase 
transitions on the world sheet. The cases of bosonic strings and superstrings are considered. The 
connection between the Hagedorn phase transition occurring at finite temperatures and the 
Berezinskii-Kosterlitz-Thouless transition on the world sheet is discussed. 

I. INTRODUCTION 

At the present time string is one of the rapidly 
developing areas of theoretical physics, including a variety 
of problems on the boundary of elementary particle physics, 
field theory and statistical physics. One of the possible goals 
of these investigations is the construction of a unique theory 
of fundamental interactions. To realize such a program it is 
necessary to achieve a much deeper understanding of string 
properties, to search for additional hidden symmetries, to 
attempt to recognize what is string field theory-a theory 
describing the interaction of strings in the same way conven- 
tional field theory describes interactions of particles. One of 
the advantages of the field formulation consists of the fact 
that it permits a unified way description of the character of 
the excitations in various classical vacua, to answer the ques- 
tion of which classical vacuum is the true ground state, etc. 

All this is missing from contemporary string theory. Its 
most consistent formulation so far-the theory of the first 
quantized string-permits the calculation of amplitudes for 
scattering of strings propagating in a given external space. 
They are calculated as functional integrals on surfaces, with 
the boundary of the surface being fixed by the initial and 
final states. In the case when the latter have definite quan- 
tum numbers, i.e., the string finds itself in the state of a "par- 
ticle", the boundary is tramformed into a set of points and 
the boundary conditions are in effect replaced by the intro- 
duction of vertex operators inside the functional integral, so 
that the amplitude takes on the form 

and the averaging is done with the help of the functional 
integral 

where the integration is over the two-dimensional metric 
gab (6) and coordinates xp (g), describing the embedding of 
the two-dimensional surface with coordinates 6 I, 4 2-the 
world sheet of the string-in the external D-dimensional flat 

space, %, is the standard Minkowski (or Euclidean, after 
the Wick rotation) metric. One may also consider the case of 
a space with curvature by replacing vpv by the appropriate 
metric gpv ( x ) .  The vertex operator V, (P,, x'' (6))  corre- 
sponds to the emission or absorption of a particle with mo- 
mentum P and quantum numbers symbolically denoted by 
the subscript i. 

The most important property of this theory is the exis- 
tence of two-dimensional conformal and reparametrization 
symmetry in certain cases, for example in flat space for 
D = 26, which permits one to view the two-dimensional 
metric gab ( 5 )  as pure gauge degrees of freedom. The condi- 
tion of conformal symmetry on the world sheet is equivalent 
to the classical equations of motion of the string field; all 
possible vacua of the string theory consist of various two- 
dimensional conformal theories defined by critical param- 
eters: central charge and the spectrum of anomalous dimen- 
s i o n ~ . ~  In this fashion, in studying two-dimensional models 
we obtain information on many possible vacua in string the- 
ory; in view of the complete absence of an adequate field 
formalism this is at the present time the only possibility for 
studying the structure of the vacuum states. 

The simplest examples of nontrivial vacua, different 
from flat space RD, are flat spaces with one or several com- 
pact dimensions: R D - ' x S '  O ~ R ~ - ~ X S : ~ )  X . . . X S : ~ ) ,  
parametrized by the radii of the circles (cycles) S ' and, in 
the case of several cycles, by the angles between them. At 
first sight it may seem that the dimensions of the cycle are 
arbitrary but it will be shown below that there exist critical, 
limiting dimensions to the cycles. For radii smaller than 
limiting the conformal symmetry on the world sheet disap- 
pears and such a space is no longer acceptable as the vacuum 
state. This phenomenon, noted in Refs. 4 and 5, is connected 
with the Berezinskii-Kosterlitz-Thouless (BKT)6p7 phase 
transition on the world sheet, whose essence is the appear- 
ance of new dominating field configurations-vortices. Vio- 
lation of conformal symmetry occurs because for small radii 
the vortices are in the plasma phase, in which Debye screen- 
ing is present. The appearance of a new scale parameter-the 
Debye radius-results in violation of conformal invariance. 

The appearance of vortex configurations is possible be- 
cause the space S '  is not simply connected, or, in other 
words, because of the nontriviality of the first homotopic 
group n-, (S I )  = Z. It can be shown that also in the case of 
more general manifolds the existence of vortex excitations, 
and therefore the possibility of phase transitions, follows 
from nontriviality of T,. 

It is found that vortices on the world sheet correspond 
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directly to certain states of the string. The Hilbert space of 
the string states is defined by the function embedding the 
string in the external space Xp ( a ) ,  where u is the coordinate 
along the string varying (by convention) between 0 and 237. 
for a closed string we have Xp (0) = Xp (2a) ,  i.e., a is a 
coordinate on the circles '. In this case there exist, for anon- 
simply-connected manifold M with a , ( M )  #0, sectors in 
Hilbert space unconnected with each other, and n ,  (M) enu- 
merates the components of the full Hilbert space: 

States of the string corresponding to sectors with k #0, 
are called soliton or twisted states. The first term is conven- 
tionally used in compactification on a torus, for example in 
the theory of the heterotic string,' the second term is used in 
description of orb if old^,^ where noncontractible cycles exist 
round singular points and their radii are not bounded from 
below. We make use of the first term. 

One may raise the question about the form of the vertex 
operator, responsible for the emission of one or another state 
of the string. It is found that vertex operators accompanied 
by vortices on the world sheet correspond to the emission of 
states of the soliton sector. This is a direct reflection of the 
fact that both the soliton states and the vortices are a conse- 
quence of nontriviality of one and the same group, a, (M).  

In the following section we shall discuss the simplest 
case of compactification on S '-the two-dimensional XY 
model. We shall construct the vertex operators of the soliton 
sector and determine the spectrum of their anomalous di- 
mensions, and consequently the mass spectrum of the soliton 
sector. 

In Sec. 111 we discuss the description of the system of 
vortices in the XYmodel as a two-dimensional Coulomb gas, 
whose plasma phase is equivalent to the sine-Gordon mod- 
el.'' This gives rise to an interesting duality between large 
and small values of the radius of the space S ', and also 
between ordinary and soliton sectors. We shall also discuss 
questions relating to chiral strings, in particular the gauge 
anomaly and the resultant restrictions on compactification 
on a torus. 

The role of vortices in the conformal phase, when it is 
thermodynamically advantageous for the vortices to bind 
into dipoles, will be discussed in Sec. IV. We will present 
there a self-consistent calculation of dipole corrections to the 
correlation functions and critical indices of the free theory. 
In that approximation all correlation functions coincide 
with the free ones, but parameters, for example the radii of 
the cycles, are renormalized. 

We shall discuss the effect of the dipole corrections on 
the interaction with the two-dimensional metric gab ( l ) ,  in 
particular the possibility of existence of corrections to the 
critical dimension of the theory that are exponentially small 
in the radii of the noncontractible cycles. 

In Sec. V we discuss vortex effects in heterotic strings 
and in superstrings. Here we make use of a supergeneraliza- 
tion of the two-dimensional Coulomb gas model,'' in which 
a phase transition also occurs. 

Section VI is devoted to the behavior of strings at finite 
temperatures. As is known, passage to a nonzero tempera- 
ture T is equivalent to studying the system in a periodic 
imaginary time, in other words the Euclidean space has the 
formRD- ' X S  ', wheretheradiusofS ' isr = (2.rrT) - ' and 

there appears in the theory a critical temperature T, ,  that 
coincides4s5 with the Hagedorn temperature-the limiting 
temperature in string above which no canonical 
ensemble exists. 

The corresponding divergence of the free energy is con- 
nected with the appearance of additional tachyons in the 
soliton sector. We shall also discuss certain results of the 
work of Ref. 14, in particular the character of the phase 
transition. 

II. MOTION OFTHE STRING IN A NON-SIMPLY-CONNECTED 
MANIFOLD 

1. The two-dimensional XYmodel: the Berezinskii-Kosterlitz- 
Thouless phase transition 

The simplest example of a non-simply-connected mani- 
fold is the circle S I .  The corresponding a model is also called 
the XY model. As we already know, S ' = R ' /Z  and the 
group Z acts on the straight line R ' by translations: 
x --+x + 2nn, ~ E Z .  If the radius of the circles ' equals R then 
the initial action has the form 

where R is just the metric on S '. After passage to the univer- 
sal cover R ' we obtain 

(i is the node number and e is the lattice vector), or in the 
continuum limit 

The quantum theory is defined by the functional inte- 
gral over the field x and summation over the gauge equiv- 
alence classes of the field A,. The partition function for the 
XY model is 

The quantityfl = R '/47raf = l/Tis ordinarily called the in- 
verse temperature. " 

The gauge equivalence classes are characterized by the 
strength of the gauge field Fob = d l ,  Abl , and in lattice terms 

where U,, = exp(iaA,, ). The field strength is defined on 
lattice plaquettes, and the scalar quantity F = +.cObFub dual 
to it is defined at the vertices of the dual lattice, but in the 
continuum limit this distinction is irrelevant. 

In the trivial class one may choose A , ,  or A, ({) = 0, 
everywhere and we are dealing with the free theory. The next 
class has nonzero field strength on only one plaquette, in the 
continuum limit F = 27rQS({ - &,), where Q is an integer. 
In the general case the configuration is specified by a set of 
integers Q,, Q, ,..., Qi ,... and coordinates {,, 6 ,,..., gi ,... The 
singular nature of the distribution of the field F is a conse- 
quence of the discrete character of the gauge symmetry. 

The nontrivial point configurations of the gauge field 
are vortices, they are what distinguishes the simply free the- 
ory from a theory on S ' .  On a contour about the singular 
point-the center of the vortex-the field performs Q full 
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rotations x -x + 2aQ. If we make no use of the language of 
gauge fields A , ,  then it is convenient to break up the field 
into a sum of two components-the classical vortex x, and 
the quantum x,. For the vortex located at the origin of the 
coordinates, 

where I? is the polar angle on the world sheet, 
6 = 15 Iexp(iI?), 5 = g1 + ig2. 

To determine the action for the vortices in Eq. (2.4) we 
integrate over the fields x(6)  in the background of the given 
distribution of the fields A,  (5).  This problem is solved triv- 
ially as we are dealing with a free theory in the presence of an 
external source: 

IAJ 

As a result the effective action for the vortices is 

where 

is the Green's function for the two-dimensional Laplace op- 
erator, a is the ultraviolet cutoff (of the order of the lattice 
step), d' is the infrared cutoff (area of the system). For the 
vortex configuration we have 

N 

and we obtain, after substituting Eq. (2.6) into Eq. (2.5), 

The first term in Eq. (2.7) leads to a sharp suppression 
of configurations with uncompensated charge BQi $0. The 
main contribution to the partition function comes from 
"neutral" vortex systems. The second term describes inter- 
action between vortices, and the last term describes self-in- 
teraction. The chemical potential p is determined by the 
asymptotic Green'sfunction G(5,g '), 6+g' and depends on 
the specific method of regularization. For the square lattice 
the exact value isp = 277'. It is convenient to viewp as a free 
parameter of the theory. 

In this fashion the system of vortices constitutes a two- 
dimensional Coulomb gas. Its fundamental property is the 
existence of the BKT phase tran~ition.~,' Below the transi- 
tion point /3>fic the vortices are bound with antivortices 
into dipole molecules; however for P <PC these molecules 
dissociate and the vortex system goes over into the plasma 
phase. Debye screening gives rise to violation of conformal 
invariance in the high-temperature ( T = 8- ' >B, - ' ) 
phase and the asymptotic behavior of the correlators 
changes from a power law to an exponential law. 

To find PC it is convenient to calculate the mean square 
value of the dipole moment of the molecule. 

-1 

<pa>= j d2p p2 exp t - s d i ,  (PI I { .I dZp ~ X P  t  dm (PI I } . 

The molecules with Q = . 1 dissociate first. Their action 
equals 

ForB<p, = .rr- ' the integral in the numerator in Eq. (2.8) 
diverges, which means freeing of the vortices. Since we have 
0 = R '/4n-a', the critical value of the radius is 

We shall still return to the properties of the two-dimensional 
Coulomb gas in Sec. 111. 

2. String in the W-' x 9  space 

We now discuss the spectrum of a closed string, when 
one of the spatial dimensions is compactified to a circle. This 
problem has been solved in the operator formalism in Ref. 8; 
our study will be in terms of the Virasoro algebra and we will 
show that soliton states with winding number L correspond 
to vortices with charge Q = L of the two-dimensional XY 
model. 

The physical states of a closed string are characterized 
by three quantum numbers: the D-momentum P' , the num- 
ber of the excited state Nand the soliton quantum number L. 
The numbers F" and N are introduced in the same way as in 
ordinary space, but the presence of the compact dimension 
gives rise to quantization of the corresponding component of 
the momentum: 

The second peculiarity consists in the appearance of the 
number L, corresponding to the number of windings of the 
string in the coordinatex" The spectrum of physical states is 
described by the equation 

Let us show how this equation is obtained. As is well 
known, the interaction amplitudes in string theory are ex- 
pressed in terms of the vacuum expectation values of the 
vertex operators V, (P, ,N, ,L,)  corresponding to the in- and 
out-states [see Eqs. ( 1.1) and ( 1.2) 1 : 

237 Sov. Phys. JETP 69 (2), August 1989 A. A. Abrikosov, Jr. and Ya. I. Kogan 237 



The vertex V ( P ,  N, L;x(l)  ) has the form 

with the field xO containing the classical component x, : the 
vortex with charge L is located at the point z. In terms of 
complex coordinates we have 

L g-z 
x."(g)=-In--. 

2i E- f  

For the spectrum of physical states u the tensor coefficients 
Care determined by the Virasoro conditions (see Ref. 16) : 

LnV=LnV=O, n>O, (2.16a) 

(Lo-I) V=(Eo- 1)  V=O. (2.16b) 

The Virasoro operators L, and 2, act as follows: 

1 
L,V ( z )  = - - 

2nia' 
c ; 

The contour C, encircles the point z and contains only one 
vertex V. 

The physical spectrum is determined by conditions 
(2.16b), which presuppose that the conformal dimensions A 
and K of the fields Vare equal to unity. In addition the rela- 
tion (Lo - Z,) V = 0 guarantees invariance of the amplitude 
under rotations in the world sheet. 

We shall demonstrate two ways of evaluating the di- 
mensions A and K. The first is based on the evaluation of the 
correlator 

It will be used in Sec. IV in summing the dipole corrections 
to the spectra. For now we apply directly the Virasoro condi- 
tion (2.16b). Let us act with the operator Lo on the vertex 
V ( P  = (~/R,P),N,#,L;z = 0).  To simplify the calcula- 
tions we assume that only one number in the set { n , )  in Eq. 
(2.14) is different from zero: n ,  = N # 0. In evaluating the 
integrals it is necessary to consider different pairings of the 
operators dxp (c) entering Lo, and the operators xp (z,?) 
and d "kp/dz"' from V: 

Here 

However, in contrast to the procedure applicable in the ab- 
sence of vortices, in the current calculations it is necessary to 
take into account the presence in the field of the classical 
component xu0, Eq. (2.15). It can be shown that for an arbi- 
trary set { n i l ,  such that Z n ,  = N in Eq. (2.14), the result 
looks like the following: 

The expression for the operator 2, differs by the sign of the 
mL term: 

and in view of the requirement (Lo - z,) V = 0 we have 

i.e., the total orders of the derivatives d, and d,, which enter 
V, differ by mL. 

The mass spectrum is obtained from the condition 
(2.16b) 

and coincides with Eq. (2.12). This proves that soliton states 
correspond to vortices on the world sheet. 

We note that for the critical value of the radius 
R, = 2(a1)"*, Eq. (2. lo),  there appear in the spectrum - 
massless states with L = + 1, m = N = N = 0. For R < R, 
tachyon states appear in the soliton sectors. 

Ill. FIELD DESCRIPTION OF VORTICES IN CLOSED AND 
CHlRAL STRINGS 

The defining role in the vortex system of the X Y  model 
is played by vortices with the smallest charge Q = + 1. 
Their contribution is described by the partition function of 
the two-dimensional Coulomb gas: 

Expression (3.1 ) has a field representation. It can be shown 
that Eq. (3.1 ) is equivalent to the partition function for the 
sine-Gordon modello: 

1 
z=N,,-I j ~ c p  enp [ - j (T (a.rp)'+h cor 2 n  (28)"cp) 1, 

1 
No = 1 Dcp exp [- 1- 1 d 2 ~  (d.cp)'] ,  h=2e-'*/a2. (3.2) 
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Expansion of Eq. (3.2) in a power series in A coincides with 
Eq. (3.1 ). Upon making in Eq. (3.2) the change of variable 
y = 2n(2P) "' q, we obtain the Lagrangian 

9= (aOy)Z/16n2B+h cos y .  (3.3) 

Colemanloshowed that the quantum theory, Eq. (3.2), 
exists only for P <PC = n -  ' , and for B>P, the theory has 
no ground state. The critical value coincides with Eq. 
(2.10)-the BKT phase transition point, and the absence of 
a ground state in the model (3.2) corresponds to the dipole 
phase of the Coulomb gas. 

It is clear that the Lagrangian (3.3) is invariant under 
the shift y-ty + n and y may be interpreted as an angle vari- 
able. If we ignore the Acosy term describing Debye screening 
and violating conformal symmetry, then we obtain a La- 
grangian of the same type as the original one but with new 
values of the parameters f l  and R: 

The duality (3.4) is also observed in the spectrum 
(2.12), invariant under the replacement R - ? j  and m*L 
(see Ref. 17 and references therein). This is nothing but 
duality of the Kramers-Wannier type for the XY model, 
where we have chosen the initial field x ( f )  as the order pa- 
rameter, while the field y(6)  arising in the field description 
of the vortices is the disorder parameter. We note that it is 
defined as it should be on the dual lattice, which is where the 
coordinates of the vortices are defined. In this fashion there 
exist in the theory three regions 

I .  R>R,=2 (a') ", 
11. Rc>R>a'/Rc='/2 (ar)'/2, 

111. R<i/z(a')' l l .  

Under the transformation (3.4) regions I and I11 go into 
each other, while region I1 goes into itself. However in com- 
paring regions I and I11 it is necessary to take into account 
the term Acosy in Eq. (3.3). It can be interpreted as an exter- 
nal tachyonic field, with the string propagating in its back- 
ground. In this manner we have duality between the theory 
with R  < f ( a 1 )  and the theory with ?j = a'R - ' > R ,  , but 
in the presence of the condensate of the external tachyonic 
field. 

The critical parameters of open strings with a compact 
dimension are the same as for closed strings, aside for some 
minor technical complications connected with boundary 
conditions. The situation is different if we are interested in 
chiral (heterotic) strings. In that case it is necessary to con- 
sider the chiral sector of the theory (2.4) and assume, when 
evaluating the effective action of the type of Eq. (2.5), that 
the components A + = A ,  + A l  or A - = A, - A, of the 
gauge field are independent. Making use of standard conic 
variables 6, + 6, we easily see that Eq. (2.5) can be repre- 
sented in the form (for Minkowski signature) 

and, setting A = 0, we obtain for the chiral theory the 
gauge-noninvariant action 

Under the gauge transformation (2.8) we have 

In spite of the fact that the theory may be gauge-nonin- 
variant, since only exp(i6S) is relevant for quantization we 
obtain unbroken gauge symmetry if for all ~ ( 6 )  and A,  (6) 
we have SS = 2nN. Taking into account that ~ ( 6 ) / 2 n  and 
A,  (g)/2n- are integers we obtain for p the condition 

Upon substituting in Eq. (3.8) the value P = R '/4.rra1 
we obtain R = k ' N ,  where the radius R is the parameter of 
the ordinary, closed string. Functional integration over the 
fields x is carried out for the full left-right theory, and the 
chiral sector is extracted only in the final formulas. The field 
~ ( 6 )  can be decomposed into a formal sum of two fields: 

and if the fields x + (6 + ) are compactified on the circle S ' 
of radius R, then the full field is found to be compactified on 
a circle of radius R = 2R,. Therefore R, ' = a 'N  and such 
values were obtained for heterotic strings previously. The 
relation R = 2R, can be interpreted to mean that in chiral 
strings only even numbers of vortices are considered on the 
world sheet of the corresponding left-right theory. 

Up to this point we have confined ourselves to one cycle 
S I. In the heterotic string it is necessary to consider the more 
general case of compactification on tori 

Now the action equals 

where aU is the matrix of the lattice Td, such that 
T' = R d / r d .  

It is easy to show that the effective action for the vorti- 
ces in the chiral sector of such a theory is obtained by the 
obvious generalization of Eq. (3.6): 

while the condition SS,, = 0 (mod 2n) results now not only 
in quantization o f p  [see Eq. (3.8) 1, but also in a new condi- 
tion on the matrix a,, : 

i.e., the lattice Td should be integral. In this way gauge sym- 
metry naturally allows compactification of chiral strings on 
integral tori only. 

IV. INFLUENCE OF VORTICES ON THE SPECTRUM OF 
PHYSICAL STATES OFTHE STRING 

1. Vortex contribution to the correlation functions of the XY 
model 

We show that taking into account corrections due to 
dipole vortices leads to renormalization of the constant P, 
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corresponding to the compact dimension. We study the in- 
fluence of dipole vortex configurations on the asymptotic 
behavior of the correlation functions for f i  >PC.  In this re- 
gion the theory is in the conformal phase and the vortices 
combine with antivortices into molecules. The partition 
function of the dipole gas differs somewhat from expression 
(3.1) for the free plasma. It is given by 

Here U, (pi ) is the binding energy of the vortex molecule 
with dipole moment p, (we shall assume that the charges of 
the vortices equal f 1 ), and U,  = U(x, - x, ,p,,pj ) is the 
interaction energy of the ith and jth dipole. The total chemi- 
cal potential of the vortex and antivortex, forming the mole- 
cule, equals 2p. 

The main contribution to the renormalization of the 
scale dimensions of the fields is due only to terms propor- 
tional to powers of (p'). Higher dipole corrections have the 
form (p2"/z2' - ', and being of short range are of less inter- 
est. 

First of all we study the contribution of the free dipole 
gas to the correlator ( x  is the angle variable on the circle) 

D ( 5 ,  q)=(exp [ i m x ( t ) ]  exp [ - i m x ( q ) ]  ). (4.2) 

It turns out that taking into account the interaction between 
the dipoles has no effect on the result, i.e., we shall obtain an 
answer that is exact in the dipole approximation. 

To perform the calculations we need to know the field of 
the vortex dipole. Although in going round a single vortex 
the field acquires the increment x -x + 2n-, the dipole field 
at large distances is determined unambiguously as the phase 
accumulations of vortex and antivortex cancel each other. 
According to Eq. (2.15), the field produced at the point 6 by 
a dipole p located at the point z,, is given by 

Expansion in a series in I p 1 / 16 - z, I < 1 gives 

The field at the point 6 due to N dipoles is given by the 
superposition of the individual fields. In Euclidean coordi- 
nates z, , z = z, + iz,, we have 

The correlator of interest to us equals 

If terms containing higher moments (p4), (ph), ... , are ig- 
nored then Wick's theorem holds and therefore 

where v i s  the average dipole density, 

The right side of Eq. (4.7) contains the field x, , produced by 
one dipole and averaged over its positions. The one-dipole 
correction may be represented graphically, see Fig. 1. The 
single line stands for the field of the dipole, Eq. (4.4), the dot 
stands for the dipole molecule. The correlator is 

x P p  -(x:)= J dzz ~ P [ x . ( q ) x ~ ( ~ )  -x : (q )  I 

Integration over d 'p is elementary: 

J d2p papbe-U'P'=i/26ab<pZ), 

and we obtain 

The integral diverges logarithmically for z-0. We regular- 
ize it in the same way as the analogous divergence in the 
Green's function for the Laplace operator, i.e., 

1 
< x p ( E ) x p ( q )  - x p Z ( q )  )= - -<p2)2n  In,  1 1 1 4  1 2+a2 

2 a2  

(4.12) 

The last integration is easily performed using the symbolic 
notation 

FIG. 1 
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where 

Let us give the expression for the full correlator with dipole 
corrections. The contributions of the dipoles A, and the 
quantum fluctuations A0 to the scale dimension are indepen- 
dent, so we have 

The dimension Ao is the same as for the free field: 

while Eqs. (4.7) and (4.12) give for the vortex component 

A,=i/2nm(p2> =x/4P (4.17) 

The quantity x characterizes the polarizability of the dipole 

gas 

E is the electric field intensity. According to Eqs. (2.8) and 
(2.9) we have 

It thus turns out that the one-vortex renormalization of the 
scale dimension can be described by one numerical param- 
eter 

-the dielectric permeability of the Coulomb gas: 

In statistical physics this is achieved by temperature renor- 
malization T-ET. 

2. Multidipole corrections to the correlation functions of the 
XY model 

We show now how to take into account the influence on 
the scale dimension of interactions between dipoles. It turns 
out that it is possible to sum up the corrections to the correla- 
tors in all orders of (p2), and the contributions of the higher 
moments ((p4) etc.) decrease rapidly and have no effect on 
the asymptotic behavior of the correlators at large distances. 

The main assumption in our calculations is that the di- 
pole approximation for the interaction of the vortex mole- 
cules is applicable down to short distances between them. 
This is justified for the vortex interaction potential, Eq. 
(2.18), but it is entirely possible that this result has a univer- 
sal character. 

We consider the correlation function 

where the averaging is performed in the standard manner 
with respect to the partition function, Eq. (4.1 ) . 

The gradient of the field due to a dipole p, located at the 
point z  is given by [see Eq. (4.14) 1 

This expression, exact in the dipole approximation, differs 
by 2mab pb S ( {  - z )  from what would be obtained by direct 
differentiation of Eq. (4.5), valid for Ic - z l$  lpI. 

The interaction energy of two dipoles p, and p2 has the 
form 

-k 
a280b ] PioPZb, zi20=zio-zZo. 

2n ( z i t +  a') 

To find the n-dipole correction we expand exp( - f l  Z U], ) in 
Eq. (4.1 ) in a series in U,. . After averaging over the dipole 
moments (see below) it becomes apparent that a significant 
role is played only by terms of the form 

n 

They correspond to the line graphs, Fig. 2, where the double 
line symbolizes the dipole-dipole interaction, Eq. (4.24). 

Further calculations proceed as follows. First, since the 
dipole moment of a single molecule is not large: 

one may integrate independently over the dipole moments p, 
with the help of Eq. (4.10). Thereafter one should integrate 
over the coordinates of the molecules. We show how this is 
done using the ith dipole as an example. The contraction 

is most simply evaluated by parts. The operators aC2 and 
l/d * cancel each other, and one of the double lines (Fig. 2) 
collapses into a dot leaving the factor - This 
means that the line graphs represent a geometric progression 
whose sum equals 

1 d d l  
G,=G:) + -x (-4n2B (pz)N) heorneb, - -- 

ag, all, as (E-q) 7 

2B ,-I 

where for noncoincident c and 17 one may replace E,, E , ,  by 
- S,,S,,, since E , , , E ~ ,  = S u h S m r l  - SrrnSh,, ,  . The first term 

equals 

FIG. 2. 
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after which we finally obtain 

Turning to the equation for the renormalization of the scale 
dimension of fields eix, Eq. ( 4 . 2 1 ) ,  we may rewrite Eq. 
( 4 . 30 )  as 

The beauty of this expression suggests that it may be univer- 
sal and model-independent. 

In precisely the same way we may calculate dipole cor- 
rections to the Coulomb interaction of vortices, Eqs. ( 2 . 14 )  
and ( 2 . 1 8 ) ,  with the result 

S(0) s=-=- 2nBQ1QI In ( z ~ - z ~ ) ~ + ~ ~  ( 4 . 3 2 )  
E E a2 

Thus taking the dipoles into account also reduces here to the 
renormalization of the temperature T + E T .  In conclusion 
we call attention to the fact that we have made heavy use of 
the requirement (p2) <a2.  This allowed us to first integrate 
over d 'p, and then "contract" the propagators, which would 
be problematical for ( p 2 )  -a2 ,  for example on the lattice or 
in our regularization scheme for f l <  +PC. In that case the 
main contribution would come from configurations in which 
the distances between dipoles and between vortices in a di- 
pole are of the same order. Starting from our results one may 
suppose that in that case one can no longer speak of dipoles, 
and higher corrections are determined by neutral multivor- 
tex clusters. 

The last remark refers to the vanishing of multidipole 
corrections to the correlators ( x ( ~ ) x ( T ) ) .  One can verify 
that all higher ( N > 2 )  line graphs contain the operators 
d , ~ , , d ,  = 0 ,  so that the first dipole correction is also the 
last. 

3. Multidipole corrections to the spectrum of states 

Let us investigate how the spectrum of physical states of 
the closed string is affected by the interaction between the 
dipoles. It turns out that it results in the replacement of the 
radius R  in Eq. ( 2 . 21 )  by the effective quantity 

The vertex operators of the physical fields are determined by 
Eq. ( 2 . 1 4 ) .  For brevity, as in Sec. 11, we confine ourselves to 
the simplest term, in which only n ,  = N  #O. We demand 
that characteristic dimensions A, h of the field 
v ( ~ / R , P , N , ~ , L  ) equal unity. This condition, Eq. ( 2 . 16b ) ,  
determines the mass spectrum. According to Eq. ( 2 . 18 )  it is 
sufficient to study the pair correlator of the field Vwith the 
field V( - m / R ,  - P,N,N, - L ) .  In view of Wick's theorem 
it is expressible through the sum of products of all possible 
pair expectation values: 

The last factor arises from taking into account the Coulomb 
interaction of vortices with charges + L  at points 6 and 7 ,  
corresponding to our solitons. Taking the dipoles into ac- 
count results in screening, Eq. ( 4 . 3 2 ) .  In the first factor the 
field x  contains the vortex component x u ,  Eq. (2.15 ), besides 
which the dipoles renormalize the dimension of the field eiPx 
itself, Eq. (4.21 ). Therefore 

As regards the second factor, its dimension is determined 
simply by the total order of the derivatives. In this way we 
find, taking Eqs. ( 4 . 35 )  and ( 4 . 3 2 )  into account, that 

and analogously 

Upon equating A and to unity we indeed find the spec- 
trum, Eq. ( 2 . 2 1 ) ,  with the radius R  replaced by Re,, Eq. 
( 4 . 3 3 ) .  We have thus proved that taking into account the 
dipole corrections to the conformal phase results in renor- 
malization of the inverse temperature p of the compact di- 
mension. It is true that we cannot say that this is all that 
happens, because the renormalization of the correlators 

is different from that of the free theory. In addition it follows 
from Eq. (4 .3  1 ) that it is necessary to redefine the term 
$:dxOdxO:--4~:dxOdxO: in the energy-momentum tensor, i.e., 
the behavior of the cyclic degrees of freedom, differs from 
the others. 

V. VORTICES IN FERMlONlC STRINGS 

Our goal is the description of the motion of the super- 
string in a non-simply-connected space and the determina- 
tion of the parameters of the phase transition. For simplicity 
we confine ourselves, as in the bosonic case, to the space 
Rd XS I .  The action of the free superstring in the supercon- 
formal gauge has the form 

1 s = - j d2E[ a . ~ ~ a . x ~ + i q y . a . ~ ~ l ,  
4na' 

( 5 . 1 )  

with the supertransformation law 

SxP=e$@, 6v=-iy"ed,xv. 
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In considering the coordinate x, corresponding to S ', and 
going to its covering, we should have introduced in Eq. (5.1 ) 
the gauge superfield, since Eq. (5.2) does not permit the 
introduction of the boson vector field A,  (g) by itself, if su- 
persymmetry on the world sheet is to be preserved. In the 
general case this program is quite tedious, but one may sepa- 
rately supersymmetrize the vortex contribution, which is 
nothing but Eq. (2.5)-the action of the Coulomb gas. A 
detailed description of the super-Coulomb gas is given in 
Ref. 11; here we shall only state some essential information. 

The model is constructed in the superspace ({,,O), 
where 8 is a two-dimensional spinor whose supertransfor- 
mation law has the form 

The partition function is a direct generalization of Eq. (3.1 ), 
where in place of every integration over d '(one should write 
the measure in superspace +d '6dO + y,dO, and the logarith- 
mic interaction in ordinary space is replaced by the same 
kind of interaction in superspace: In(R '(ij) + a2)/a2, 
where the distance between the points (6,',0i) and (6,j,0J) 
is defined by the expression 

R, (i, j )  =t,'-Ed+iGiy,0j (5.4) 

and is invariant under the transformations (5.3). Finally 

x S dZz,  . . . d2z,. dm1+y5 dm, .  . . dmn-+y5 dmn- 

2"-n-! 

where q, = f 1 are the charges of the vortices and antivor- 
tices. After integration over the Grassmann variables we ob- 
tain (for detai1;see Ref. 1 1 ) 

m - 
h 2 P  

z , e r  = mJ #ai. . . rap d2z, . . . r ~ ,  Q,. (a,, 3 
p=O 

where ti denote the holomorphic variables gi and zj and the 
sum in Eq. (5.7) is over all possible permutations of M 
points. ( - 1 )M is the parity of the permutation. The expres- 
sion (5.6) differs from the partition function of the bosonic 
case by the factor (5.7), resulting in a different value ofPC.  
Let us consider the mean square value of the dipole moment 
of the vortex-antivortex pair, where the divergence corre- 
sponds to pair dissociation and BKT-transition: 

i.e., the critical value for flCf>and therefore for Rc2, is two 
times smaller than in the bosonic case. 

There exists a field description of supervortices, analo- 
gous to Eq. (3.21, with the Lagrangian in this case being 

The equivalence between the partition functions corre- 
sponding to Eqs. ( 5.9 ) and ( 5.6) is proved by term-by-term 
comparison of the series in powers ofA, just as in the bosonic 
case. The factor a,, (c, ,z, ) [see Eq. (5.7) 1 arises from eval- 
uation of thee average of the product VY. 

The Lagrangian, Eq. (5.9), differs from the supersym- 
metric Lagrangian in the sine-Gordon model by the absence 
of the term (A 2/4a2fl)sin2 [2a(2,8) +Dl, which is of higher 
order in A and immaterial in the limit of small A.  

The critical value PCf = +n- - ' can be obtained from Eq. 

(5.9 by, for example, bosonization 
q \ ~  +cos [2n-(2P) +@I ,iV~,d, Y -+ (a, @I2. Comparing the 
Lagrangian 

9= (a,@)Z+h' cos [4n (28) '"@I 
with Eq. (3.3) we arrive at the valuePcf = +a- '. As in the 
bosonic case there is the duality (3.4), and the action (5.9) 
describes the superstring in the tachyonic field condensate. 
Comparing PCf = +a - ' with the spectrum of closed su- 
perstrings, 

we see that for R < Rc2  = 2a' a tachyon appears in the soli- 
ton sector with N = = m = 0,lQ I = 1. Moreover, the 
GSO-projection condition must be taken into account for 
superstrings (see Ref. 1 ) . This usually excludes the state 
with N = N = 0. Then there are no tachyons in the theory 
and the sum over spin structures results in the disappearance 
of vortex effects. However, if the spatial bosons and fermions 
have different boundary conditions on noncontractible cy- 
cles then the values N = N = 0 are allowed and vortex ef- 
fects reappear. Examples are considered by Rohm in Ref. 18. 
The same happens in the theories at finite temperature, 
where the noncontractible cycle may be interpreted as 
imaginary time. 

VI. STRING AT FINITE TEMPERATURES 

Properties in thermodynamic equilibrium are conven- 
tionally described by means of the canonical Gibbs ensem- 
ble, whose main characteristic is the partition function 

Z=Tr exp (-pB) = exp (-BE.), 
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with p = T- ' the inverse temperature. All energy levels of 
the system are included in the sum over n. For a string en- 
semble one must sum in Eq. (6.1) over all types of string 
states, and there appear sums of the form 

In 

where d(m) is the number of different states with the same 
mass m. For all types of strings (besides unphysical ones 
with N = 2 and N = 4 supersymmetry on the world sheet) 
the spectrum d (m)  has the form" 

where a and pH are constants depending on the type of 
string. The exponentially growing spectrum (6.2) results in 
the existence of a critical temperature TH =pH - ' , above 
which the partition function, Eq. (6.1 ), does not exist due to 
the divergence as m + co . The quantity a determines the be- 
havior of the thermodynamic characteristics asO+PH. It is 
known (see Ref. 13 and the earlier work in Ref. 19 ) , that for 
a > ( d  + 1)/2 the thermodynamic characteristics do not di- 
verge forp+pH. In that region one has large energy-density 
fluctuations and the very description with the help of the 
canonical ensemble is inapplicable-the microcanonical en- 
semble is needed. For a < (d  + 1)/2, on the contrary, the 
thermodynamic characteristics diverge as /3-.PH, i.e., pH 
cannot be reached in principle. In that case TH is a limiting 
temperature. 

The parameters a and pH were evaluated some time 
ago. Leaving out the details we note the results for the bo- 
sonic (B), super (SST) and heterotic (HS) strings (for de- 
tails see, e.g., Ref. 1 ) : 

The intriguing fact that arbitrary closed strings can be heat- 
ed up to pH,  while the open ones cannot, without doubt 
requires further study. It may be that the existence in closed 
strings of two sectors-left and right-is of importance here. 
In some sense this corresponds to a hidden symmetry of our 
space-we observe only x, + x,, but it is important that 
they both exist. The quantity pH turns out to be the same for 
open and closed strings: 

Pa, s=2n ['Is ( d ~ - 2 )  a'] Ih=4n (a') 

Pa, 8sT=n [ ( d 8 8 ~ - 2 )  a'] Ib=2n @a') '", (6.4) 
p H ,  ~8='/2 ( P B + P B B T )  =n (2+2Ib) (a') Ih. 

We now recall that the description of the system at non- 
zero temperature Tis equivalent to a description in periodic 
imaginary time, i.e., in the space Rd- ' XS I ,  where for the 
radius R we have 

It is easy to see from Eqs. (6.4) and (6.5) that the critical 
temperatures correspond to the radii 

RB=2 (a') ", R88~= (2a') '", Ra8= (if 2-lh) (a')  ', 

reflecting, as we know already, the BKT phase transition on 
the world sheet and the appearance of tachyonic states in the 
soliton sector. The latter again explains the nature of the 
divergence of the partition function of the strings at finite 
temperature as the natural result of the appearance of new 
tachyonic modes in the spectrum. 

To conclude this Section we would like to discuss the 
assumption made in Ref. 14 on the nature of the phase transi- 
tion. It was noted that the soliton modes necessarily interact 
with the dilaton, and the effective potential describing the 
soliton field @ and @* and the dilaton a has the form [Eq. 
(3.13) of Ref. 141 

where T is the temperature and g is some constant. 
The conclusion was drawn from the presence of the 

term d*@ in Eq. (6.7) that a first-order phase transition 
occurs for p > p H  = 4 4  a' ) "* due to the appearance of the 
appropriate vacuum expectation value of the field a .  

However, the shift in the field a may be interpreted as a 
shift ofthequantityR '- 1/T2-theradiusofs '.Indeed, the 
dilaton vertex operator satisfies V,  a daxpd,xp, so for a # O  
there appears an addition to the action proportional to 
@(aa xp ) ', giving rise to the redefinition R - R ' + const .a .  
It is precisely this feature that is reflected in Eq. (6.7), where 
one should keep in mind that R is a massless field too (the 
metric is a graviton condensate). In fact only a redefinition 
of fields has taken place, after which a shift in the dilaton 
vacuum expectation value reduces simply to a redefinition of 
the string coupling ~ons tan t .~"  Therefore, within the frame- 
work of the external field formalism we may not shift a once 
the radius R (or the temperature T) has been fixed. Of 
course, the question of precisely what fixes R, remains open. 

In conclusion it is our pleasure to thank A. S. Losev and 
K. A. Ter-Martirosyan for interesting discussions. One of us 
(Ya. K.) is grateful to J. Attick and E. Witten for an oppor- 
tunity to see Ref. 14 prior to publication and to D. Gross for 
useful discussions. 

" We note that Eq. (2.4) is essentially the Villain6,'5 model, but it seems 
to us necessary to underline the gauge character of this model, which is 
important in the case of chiral strings (see Sec. 111). 
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