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A critical phenomenon, of which bifurcation is the classical analog, has been found in the 
rotational bands of highly-deformed odd nuclei. Analysis of the classical and quantum- 
mechanical pictures of the phenomenon shows that it is accompanied by a change in correlation 
between the total and single-nucleon angular momentum vectors. The qualitative changes found 
in the energy spectrum and electromagnetic M 1 transition probabilities can be used to 
demonstrate the quantum-mechanical bifurcation in high-spin states of odd nuclei. Experimental 
data that indicate the existence of bifurcation in the bands of odd-neutron isotopes of ytterbium 
are presented. 

1. INTRODUCTION 
As the excitation energy of a nucleus increases, the dy- 

namics of its internal motion becomes increasingly compli- 
cated because of the increasing importance of nonlinear ef- 
fects. The interaction of quasiparticles with one another and 
with other degrees of freedom complicates the nuclear ener- 
gy spectrum to the extent that one can speak of dynamic 
chaos. However, even before this, at much lower excitation 
energies, dynamic nonlinear effects should lead to bifurca- 
tions that produce a qualitative change in the energy spec- 
trum of one of the nuclear excitation branches. Certain de- 
tailed properties of single-particle motion, deformation, and 
other structure factors manifest themselves in the neighbor- 
hood of the bifurcation point. 

Bifurcations in many-particle systems have not been ex- 
tensively investigated. They are usually identified with sec- 
ond-order phase transitions which, in contrast to thermody- 
namic phase transitions, are referred to as ground-state 
phase transitions because, in the classical limit, the second 
derivative of the ground-state energy of the system with re- 
spect to some parameter exhibits a discontinuity at the criti- 
cal value of this parameter. This picture has been used to 
analyze critical points of the energy shell that is obtained by 
averaging the quantum-mechanical Hamiltonian over the 
coherent state with the corresponding symmetry. This meth- 
od was originally developed for the Lipkin model with 
SU(2) symmetry1 and has been used to investigate phase 
transitions in phenomenological algebraic models such as 
those of interacting bosons [SU(6) symmetry]' and fer- 
mions with SU(8) dynamic ~ymrnetry.~ 

Studies of quantum-mechanical bifurcations have been 
mostly confined to simple model in which bifur- 
cations are due to the appearance of a well with two degener- 
ate minima as the potential parameters are varied. In a pre- 
vious paper, written in collaboration with Zhilin~kii,~ we 
investigated the critical phenomena that arise in the rota- 
tional spectra of quantum-mechanical systems under the in- 
fluence of centrifugal forces. The essence of the phenomenon 
is that, for a sufficiently high angular momentum, systems 
that do not have axial symmetry exhibit a change in the dy- 
namics of precessional motion, which is seen as a regrouping 
of a part of the rotational multiplet ( RM-a set of rotational 
states with given angular momentum I) when the critical 
point I, is reached. In the classical limit, critical phenomena 
are associated with bifurcations in the Hamiltonian system 

with a particular type of local symmetry. The transition pa- 
rameter is then the angular momentum-a constant of mo- 
tion of the system. Of the five types of critical phenomena 
that can occur in purely rotational spectra, two are "local." 
They are characterized by the appearance of RM clusters, 
i.e., almost degenerate levels corresponding to the delocali- 
zation of precession around equivalent axes. Local critical 
phenomena are universal near I,: they occur in a limited 
region of phase space and are described by a closed Hamilto- 
nian with a small number of parameters that depend on the 
internal structure of the system. 

Critical phenomena were predicted7 and discovered8 
when the rotational spectra of certain spherical molecules 
(CH,, SiH,, and SnH,) were analyzed. There is consider- 
able interest in bifurcations in the upper part of the RM of 
water molecules and other symmetric triatomic molecules of 
the hydrates of group IV and group VI elements for angular 
momenta I, - 30.9 As these molecules rotate around a stable 
axis with the minimum moment of inertia, the latter in- 
creases with increasing I because of the centrifugal force. 
When its magnitude becomes comparable with the interme- 
diate moment of inertia, the initial axis of rotation loses its 
stability. Two equivalent (because of the symmetry of the 
molecule) axes become stable and lie symmetrically on ei- 
ther side of the initial axis of rotation. There is no doubt that 
this phenomenon should also occur in nuclear rotational 
spectra because some nuclei become nonaxial for 1-40. 
However, the phenomenon is difficult to detect because the 
levels tend to bunch in the upper part of the multiplet, i.e., 
above the yrast region in which the density of levels with 
given spin is high. 

Nonlinear effects in rotational spectra are due not only 
to centrifugal forces but also to Coriolis forces. The latter 
arise from the coupling between single-particle and rota- 
tional degrees of freedom. In nuclear physics, the Coriolis 
force manifests itself in the rotational spectra of odd nuclei, 
and is proportional to the single-particle nucleon angular 
momentum j. Consequently, the strongest coupling to rota- 
tion is experienced by nucleons occupying subshell levels 
with maximum j. These levels differ in parity from other 
states in the shell being filled. It follows that j is  a good quan- 
tum number for them because the admixture of states with 
other values o f j  corresponds to transitions to a neighboring 
shell. The Coriolis force orients the vector j along the total 
angular momentum I of the nucleus. This gives rise to the so- 
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called decoupled bands that have now been discovered in 
many odd nuclei across the periodic table. The most exten- 
sively investigated are the decoupled bands of rare-earth nu- 
clei in which the odd neutron or proton occupies the i13/2 or 
h , subshells. 

We shall show below that, for a particular occupancy of 
a subshell with anomalous parity, a transition to a decoupled 
band as I increases is accompanied by a quantum-mechani- 
cal bifurcation that can be observed as levels of different 
symmetry (signature) approach one another in a band, or by 
examining the change in the dependence ofthe M 1 probabili- 
ty on Inear the critical point. A phenomenological theory of 
quantum-mechanical bifurcations has been developed and 
can be used to analyze the rotational spectra of odd nuclei 
near the critical point. The dependence of the energies and 
electromagnetic transition probabilities on signature has 
been used103" to extract information on the nonaxial proper- 
ties of the nucleus in states with high angular momentum. 
The closeness of these states to the bifurcation point can 
substantially affect the results of the analysis. 

2. EFFECTIVE HAMlLTONlAN 

Among the states of an odd axial nucleus, we consider a 
rotational band for which the odd nucleon occupies levels in 
an anomalous-parity subshell with given j. The total spin of 
the nucleus consists of the angular momentum of the core 
(R)  and that of the odd nucleon, i.e., I = R + j. Conse- 
quently, for given j  and each value of the nuclear spin, there 
are several levels forming the RM. Instead of the true nu- 
clear Hamiltonian, we shall consider the effective Hamilto- 
nian in the space of the RM states. In its most general form, it 
can be written in the intrinsic coordinate frame (ICF) as 
follows: 

where g, are arbitrary functions, the first term is the rota- 
tional energy of the core, and the remaining terms represent 
the axisymmetric field in which the motion of the nucleon 
takes place and which depends on rotation. 

Relative to the laboratory coordinate frame (LCF) the 
orientation of the axis of symmetry n of the core that is paral- 
lel to the symm2try axis of the mean field is defined by the 
polar angles 8 and 4. The orientation of axes 1,2, and 3 of the 
ICF is chosen so that axis 3 lies along the vector n. The ICF 
then coincides with the spheroidal coordinate system. The 
projections of the total angular momentum operator 1 onto 
the ICF axes must therefore obey unusual commutation re- 
lations both with one another and with the projections of the 
operator j (details may be found in Ref. 12, which discusses 
the nonadiabatic theory of diatomic molecules): 

[ I , ,  Izl = - i ( I ,  c t g 0 + j 3 ) ,  [ I , ,  131=[12,  Z3]=0, 

[ j l ,  I l l  =-ij2 ctg 6, [ j z ,  I l l  =i j ,  ctg 0 ,  [ j , ,  I ,]  =0, 
Ih Izl =O, k = l ,  2, 3; [ i I ,  131 =-ijz,  [ j z ,  Z31=ijI, [ j , ,  I s ]  =O.  

The expression for the square of the angular momentum op- 
erator of the core, 

where I ,  =I, + i12, j ,  = j ,  + ij,, can be obtained from 
the commutation rules (2).  The conserved quantities for the 
Hamiltonian (1) are 12, j2, and the projection of I onto the z 
axis of the LCF with quantum number M. This means that 
the eigenfunctions of the Hamiltonian H can be written in 
the form 

K 

where D hK is the Wigner function, bK ) is an eigenfunction 
of the operators j2 and j,, and the sum over the component K 
of the total angular momentum along axis 3 of the ICF runs 
from - I  to I for I < j  and from - j to j for I > j. From now 
on, we shall be interested only in multiplets with I > j. The 
invariance of the function given by (4)  under the transfor- 
mation 9 = exp [ - i?r(I, - j2) ] leads to the following 
expression for the expansion coefficientsI3 

The function can therefore be written in the form 

It follows that multiplet levels with different parity of I - j 
have different symmetry properties under the rotation of the 
entire nucleus by 180 "about ICF axis 2. In reactions involv- 
ing heavy ions, in which the latter are used to excite the 
rotational states, only the lowest level of each multiplet is 
populated. The set of levels observed in a rotational band of 
an odd nucleus is usually split into two sequences, namely, 
those with even I - j  (favored band) and those with odd 
values of this difference (unfavored band). A conserved 
quantum number, i.e., the signature o = ( - 1)'-j can be 
introduced for these two sequences. 

3. CLASSICAL BIFURCATION 

In the classical approximation, the energy of a level in a 
multiplet is determined by the mutual orientation of vectors 
R and j. In the lower part of the RM, the angle 9 between the 
these vectors is acute, whereas for the upper levels it is ob- 
tuse. For given I and j, the energy of the core-plus-nucleon 
system has the following form according to ( 1 ) : 

E (6,9)  = ( j  sin 6 cos O) 

x g, ([ (IZ-jz  sinZ 6 )  '"-j cos @ I z ,  j2), ( 7 )  

where the orientation of the vector j relative to the ICF is 
defined by angles 9 and 4. 

Stationary points of the energy surface ( 7 )  can be found 
from the equation 

{ [ (I"jz sin")'"-j cos Zf] 'A  (0 )  + 
-I- j cos 6 ( I2 - jZ  sin2 6 ) '"C (6)) sin 6 cos @ =0, (8 

R2=12+jz-2js2-j+I--j-I+, ( 3 where 
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C ( B )  = k ( j  sin 8 cos @) z ( k - O  

X g k ( [  (I2-j2 sin2 .6.)'"--j cos BIZ, j 2 ) ,  (9 )  

andg; is the derivative ofg, with respect to R2. The station- 
ary point 9- = 0 corresponds to an aligned configuration of 
the angular momentum vectors: 

axis of a soft nonaxial spinning top, the phenomenon investi- 
gated here consists essentially of the change in the mutual 
orientation (i.e., the correlation), of the vectors I, j, and R. 
This interpretation of the phenomenon becomes more ob- 
vious when we investigate the precessional motion of these 
vectors near the stationary points ( 10) and ( 14). 

Let us now consider the classical equations of motion 
xi = {H,Xi) for the components Xi of vectors I and j along 
the ICF axes, where H is the classical Hamiltonian ( 1) in 
which R2 = (Il - j1 ) 2  + (I2 - j2)2, and {. . a )  are Poisson 
brackets. Using Poisson brackets for the components of the 
angular momenta, which are the analog of the commutation 
rules (2), we can show that the complete set of equations of 
motion is 

1,=2{- (I t - j I ) j2  ctg 0+ (1,-j,) [ (I,+,)  t tg O + j s l )  

where the energy 

corresponds to the lowest RM level. The highest level corre- 
sponds to the anti-aligned configuration (9 = a) that differs 
from (10) by the sign of the component j,. 

To investigate the energy surface near an aligned con- 
figuration, let us expand the function E(9,#)  into a series, 
assuming that the angle 9 is small, and write this expression 
in terms of the Cartesian coordinates 6 = 9cos # , I ]  = Qsin 4 
near ICF axis 1: 

where a,, -gA (R ,j2) > 0 and the coefficient 
a,, - R 2 g;) (R ? ,j2) + Ijg, (R '- ,j2) can vanish at the criti- 
cal value of the total angular momentum, given by 

(we are assuming that gi and g, are smooth functions of the 
variable R _ ) . When this occurs, we have a,, = a (I - I, ) , 
near I,, where a > 0. Consequently, for I < I,, the minimum 
( 10) of the surface (7) becomes a saddle point, and there are 
two additional degenerate minima lying on the 13 plane 
(4, = 0,a), symmetric with respect to axis 1. They corre- 
spond to the stationary states 

with energy 

The angle S,#O is determined from ( 8 ) . It is readily shown 
thatZ:(~,) - E:(I,)#O. 

The function given by ( 12) is the canonical form of the 
critical phenomenon for the local symmetry groups C,, C2, 
or C,, .6 However, in contrast to the bifurcation examined in 
Ref. 6,  which is connected with a change in the precession 

j2=2 (1,-i,) (1, ctg O + j s )  gkl (R2, j2) ja2k,  

X C kg, (R', j 2 )  j : ( P O  . 

These equations have three constants of motion, name- 
ly, 12, j2, and I, = j,, where the last of these is connected with 
the absence of rotation around the symmetry axis. More- 
over, they are invariant under rotations by 180 " around ICF 
axis 1 and 2. The stationary states of ( 16) are identical with 
the stationary states of the energy surface (7). 

PRECESSION NEAR AN ALIGNED CONFIGURATION 

The linearized set of equations for the small first-order 
quantities I,, j2, j,, = I,, and 68 = n/2  - 6 takes the form 

(17) 
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where 

~ = a ~ , / a z = 2  (I-j)gO1 (R-', j 2 )  (18) 

is the rotational frequency of the core. Equations ( 17) de- 
scribe two normal oscillations. The oscillation of frequency 

is the zeroth mode: the vectors I and j are oriented along a 
straight line that oscillates in the plane perpendicular to the 
symmetry axis. 

After the zeroth mode, we have the normal oscillation 
with frequency 

a,= [Q2+4Zjg,(R-a, j2)go' (R-2, j 2 ) ]  ' I2,  (19) 

for which the solution of ( 17) is 

~ , ( t )  =o, j2 ( t )  = - ajo> cos o,t, 
2Zgo' (R-', j 2 )  

(20) 
I,(t)=j,(t)=aj sin o,t, 60(t)=-Z3(t)/Z, 

where a is an arbitrary small quantity that determines the 
precession amplitude, and the increments on I, and j, are 
proportional to a2.  These oscillations are shown in Fig. 1: 
the vectors I and R oscillate relative to axis 1 in the 1,3 and 1, 
2 planes, respectively, and j describes an elliptical cone 
around axis 1. Consequently, the motion of all these vectors 
is localized near ICF axis 1. 

The last equation in ( 16) enables us to determine the 
time dependence of the azimuthal angle q5 and, consequent- 
ly, the motion of the symmetry axis as well: 

&=sin 8 cos cpscos Qt, n,=sin 0 sin 9s-sin Qt, 

This means that the vector n rotates clockwise (the moment 
of inertia I points in the negative direction of the z axis) with 
frequency in the x ,  y plane, whereas the oscillations of fre- 
quency w ,  take it out of this plane. 

The probability of M 1 transitions between levels in 
neighboring multiplets is determined by the components of 
the operator j along the LCS axes. Here, it is interesting to 
examine the time dependence of the classical angular mo- 
mentum j. It can be found by transforming the vector j from 
the ICF to LCS. For the component j+ , = j, + ij,,, in 
which we are interested here, we have 

j+, ( t )  =-iaj{(Q+o,)exp [-i(Q-o,) t]  - (Q-o,) 

It is important to note that the precessional motion rela- 
tive to the aligned configuration ( 10) does not depend on the 
k > 2 terms in the Hamiltonian ( I ) ,  which are responsible 
for the change in the mean field of the core as a result of 
rotation. This enables us to compare our present results with 
the harmonic approximation, obtained using the algebra of 
the angular momentum operators I and j in Refs. 14 and 15 
[which is different from (2)  ] for the simple Hamiltonian of 
the particle-plus-core model 

FIG. 1.  Two regimes of precessional motion of vectors I, R, and j, relative 
to the ICF on either side of the critical point I , .  

PRECESSION NEAR ONE OF THE DEGENERATE STATES 

As I approaches the critical value I,, the frequency w ,  
decreases in proportion to (I - I, and the oscillation 
amplitudes of vectors I and j in the direction of axis 3 in- 
crease without limit. For I <  I,, the aligned configuration 
( 10) becomes unstable, and the vectors I and j begin to pre- 
cess around one of the stationary states (14). After the ze- 
roth mode has been extracted, the linearized equations for a 
normal oscillation of frequency 

have the form 

where Sj, = j, - j,, . The coefficients A and Cin this expres- 
sion are determined by (9) for the equilibrium value 8, of 9. 
and 

m cs 

At= jsoag," (R,', j 2 ) ,  Cf= kj:-2gk1 (R,', j 2 ) ,  

Near the critical point j;, is small, so that we can find an 
analytic solution of (8 )  for the stationary state ( 14). In this 
limit, the precession frequency w , , which is proportional to 
( I  - I depends only on the five constants 
gA(Ic) ,gg(Ic) ,g~(Ic) ,gi  (Ic 1, andg2(Ic). 

The time dependence of the components of the vectors I 
and j along the ICF axis is described by the formula 

IW jl0 11 ( t )  =Ilo-aj -sin act, j ,  ( t )  =j,,-aj -sin act, 
130 lto 

ioc Iz(t) =0, j2 ( t )  =-a - cos act, 
2441,o (27) 

Z3 ( t )  = j 3  ( t )  =jJO+aj sin o,t, 

where A and Care constants. 
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i jso 9 (t) =go-a- sin o,t, ctg Bo = - - . 
1 1 0  1 1 0  

(28) 

Consequently, the vector I oscillates in the 1,3, plane around 
the stationary position I,, and the vector R oscillates in the 1, 
2, plane around axis 1; the vector j describes an elliptical 
cone around j,. In contrast to the precession in the region 
I >  I,, the motion of all three vectors is now localized in 
different regions of space (see Fig. 1 which shows the preces- 
sion near the stationary state withj,, > 0). The time depend- 
ence of the component j + ] of vector j in LCF has the form 

is0 
j+l ( t )  = (Ilo - jlo) eciQtt 

where Q1 = aZo/aZ = 2AZ(I ,, - j,, ) / I  ,, is the rotational 
frequency of the core and the quantities Sand  Q depend on 
the values of the components of I, and j, along the ICF axis. 

4. QUANTUM-MECHANICAL BIFURCATION 

For the quantum-mechanical description of the above 
bifurcation, let us simplify the effective Hamiltonian ( 1 ) by 
recalling that the bifurcation occurs in a small part of phase 
space corresponding to low-lying RM states \In) for which 

Near the critical point, these states are described by the 
Hamiltonian 

which is obtained from ( 1 ) by expanding the functions g: 
(k  = 0,1,2) near the aligned state into a series in powers of 

R2 - R *- . The terms that we have written out are sufficient 
to describe the bifurcation, and this can be demonstrated by 
estimating the higher-order expansion terms as was done in 
Ref. 16. 

The regular part E, of (30) is the energy of the lowest 
RM state of the aligned band in the limit I% 1 [see ( 11 ) 1. 
The remaining five constants are determined by the struc- 
ture of the nucleus as a whole, and can be obtained in the 
course of the reduction of its total Hamiltonian. They have a 
perfectly definite physical meaning. The constants a ,  and a, 
are the rotational parameters in the expansion of the energy 
of an even-even nucleus in terms of the square of the angular 
momentum. The constants 6, and c,  determine the level 
splitting in the j-subshell by the quadrupole and hexadeca- 
pole deformation of the nucleus. Finally, the term propor- 
tional to the constant 6, describes the variation of the Corio- 
lis interaction across the band. In the region of the rotational 
anomaly (backbending), in which the interaction between 
single-quasiparticle and three-quasiparticle excitations is 
significant, the Hamiltonian (30) and the original Hamilto- 
nian ( 1 ) are no longer satisfactory. 

To elucidate the nature of the change in the dynamics of 
the band under investigation, we must first establish the so- 
lutions of the Hamiltonian (30) in the harmonic approxima- 
tion. We do this by the method developed in Ref. 17. We seek 

the solution of the Schroedinger equation with the Hamilto- 
nian (30) in the form given by (4).  Since the quantity 

is small, we pass from the recurrence relation for coefficients 
a,, to the differential equations for the function 

where 

After some relative simple manipulations, we obtain the fol- 
lowing equation for the \I, function: 

This equation was obtained from the five-term recurrence 
relation and is valid only in the harmonic approximation 
when the potential 

is a quadratic in x. The stationary states ( 10) and ( 14) cor- 
respond to the minimum of the potential (35). This means 
that, by expanding it around the stationary points, we can 
investigate the quantum-mechanical precession of the angu- 
lar momenta. This is described by the wave function (4)  
with the coefficients given by (32) in which $, (x)  are the 
wave functions of the simple harmonic o~cillator. '~ 

Let us now examine the structural change in the quan- 
tum-mechanical RM states as I  increases within the band in 
which bifurcation occurs at the critical point I,. The low- 
lying levels in the band with Z<j  are described by the strong 
coupling scheme and are of no interest for the phenomenon 
investigated here. 

QUANTUM-MECHANICAL PRECESSION FOR /<I< I, 

In this range, the angular momentum j breaks away 
from the symmetry axis (when j is high enough) and the 
stationary state ( 14) is established. The two degenerate 
minima of the potential (35) at the point _+ k, correspond 
to this state. The energy of the low-lying RM levels is given 
by 

where the precession frequency is 
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and becomes identical with (24) in the classical limit if we 
take into account the difference between the Hamiltonians 
( 1 ) and (30). The above formulas refer to motion in one of 
the wells, and determine the corresponding values of the 
Hamiltonian (30) with broker C, symmetry. To improve the 
approximation, we can use instead of (32) the symmetrized 
combinations 

ar,  ( k )  =s-"'(k)  {$ , (x-xu)  + ( - l ) r - 3 - n $ , ( ~ + ~ 0 ) ) / 2 1 b  

where x, is the equilibrium position corresponding to k, and 
J,, is the overlap integral of the functions $,, (x  - x,) and 
d,, ( X  + x,). Averaging the Hamiltonian (30) over the pro- 
jection functions (38), we can find the exponentially small 
increments on the energies of the lowest-lying RM levels 
that depend on the signature. They appear because the angu- 
lar momenta I and j can tunnel through the barrier between 
the two degenerate stationary states. Consequently, in the 
region that we are considering, the E I,' ' ( I )  and E I,- ' ( I )  
curves that correspond to the energies of the low-lying RM 
levels with different signatures approach one another. 

We shall now use the expressions given by (32) for the 
coefficients a,, to evaluate the probabilities of electromag- 
netic transitions in a band. The technique for doing this re- 
duces to the replacement of the summation over K with inte- 
gration with respect to x, and the expansion of the integrand 
into a series in the small deviation x. The final expression for 
the reduced transition probability takes the form of a series 
in powers of the small parameter S given by ( 3 1 ) . 

For I < I,, there are according to (29) three types ofM 1 
transition with frequencies R and R +_ w, , respectively. 
The transition frequency between levels in neighboring RM 
with equal quantum numbers n is R (if we ignore exponen- 
tially small terms). The reduced probability of such transi- 
tions is 

3 B ( M i ,  Zn+I-i n )  = - p ~ '  (gj-gx) 
8n 

wherep, is the nuclear magnetism, g, is the collective gyro- 
magnetic ratio, and gj = g, + (g, - g, )/2j + 1 f 1 ) for 
j = I + 1/2 (g, and g, are the orbital and spin gyromagnetic 
ratios of the nucleon). In accordance with the classical 
expression (29), this reduced probability has a smooth de- 
pendence on I. Transitions of this type between the lowest- 
lying levels of neighboring RM are observed experimentally. 
M 1 transitions between levels with quantum numbers I, and 
I - 1 n + 1 and with combination frequencies R f w , 
should depend on the signature as indicated by (29). These 
transitions involve not only the lowest-lying RM levels, but 
also other levels, so that they are not observed experimental- 
ly. A similar method can be used to evaluate the E 2 transi- 
tions, and the electric quadrupole and magnetic dipole mo- 
ments in a band. E 2 transitions between levels with the same 
n and also the static moments should have a smooth depend- 
ence on I .  

QUANTUM-MECHANICAL PRECESSION FOR I> I, 

The stationary state ( 10) corresponds to the minimum 
of the potential for k = x = 0. Simple manipulation then 
leads to the following relation for the energy of the lowest- 
lying levels in the multiplet: 

E n ( [ )  =Eo ( I ) + o ,  ( I )  ( n f 1 1 2 ) ,  (40) 

where the frequency is 

w> ( I )  =2  [ a I z ( I - j )  2+albi( I+ '1%) ( j - t 1 I 2 )  ] I h  (41 

and becomes identical with the classical formula ( 19) when 
Iand jare large. Since the coefficients a, have the symmetry 
properties indicated by ( 5 ) ,  we find that the parity of the 
quantum number n is the same as the parity of I - j. Hence 
the lowest-lying RM levels with even I - j have n = 0,2,4 .... 
(favored band) and those with odd values of this difference 
have n = 1,3,5,.. . . ( unfavored band). 

There are two types of M 1 transition in a band. Their 
frequencies are R + w, and R - w, and the correspond- 
ing reduced probabilities are 

For I it then follows from (41) that 
w, ( I )  ~ 2 a ,  (I - j) = R. Hence, the M 1 transitions with 
frequencies R + w, (unfavored-favored), which by (41 ) 
are proportional to ( 1 - w , /R)  2, are highly suppressed as 
compared with the transitions of frequency R - w ,  (fa- 
vored-unfavored) . Consequently, we should observe a char- 
acteristic zigzag dependence on I for the reduced transition 
probabilities (42). The reason for this behavior can be eluci- 
dated by considering the expression for the classical quantity 
j + , ( t )  given by (22), whose Fourier components determine 
the transition pr~bability. '~ The E 2 transition probability 
between low-lying levels of neighboring multiplets and the 
static moments in a band do not have as well-defined zigzag 
dependence as the M 1 transitions because the oscillating 
terms in the expressions for these quantities are proportional 
to the small parameter 6. We emphasize that the energies, 
static moments, and transition probabilities in an aligned 
band do not depend in the harmonic approximation on ef- 
fects associated with the nonadiabatic rotation of the core, 
the change in the Coriolis interaction (the constant b , ) ,  or 
the hexadecapole deformation. 

The harmonic approximation thus enables us to follow 
the qualitative changes in the spectrum of rotational excita- 
tions that accompany the quantum-mechanical bifurcation. 
The mutual approach of the E I, + ' ( I )  and E I, - ' ( I ) ,  curves 
that correspond to levels with different signature (favored, 
unfavored), and the change in the nature of the dependence 
on I in M 1 transition probabilities between these levels, 
which is responsible for the zigzag on the smooth variation 
as the critical point is crossed from right to left, can be re- 
garded as the bifurcation criteria. 

The harmonic approximation is invalid in the neighbor- 
hood of the critical point, and the exact solutions corre- 
sponding to the Hamiltonian (30) must be used to follow 
how these qualitative changes take place. Figure 2 shows the 
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FIG. 2. Energies of low-lying levels in rotational multiplets and the re- 
duced M 1 transition probabilities between low-lying levels near the criti- 
cal point I , ,  calculated for the following values of the parameters of the 
effective Hamiltonian (30): b,/a, = - 1.0, a,/a, = - 2X 
b,/a, = - c,/a, = - 5. l o 3 .  The solid line joins the following 
points: @--even I-j, 0-odd I-j. The dotted line represents the harmonic 
approximation. 

energies and reduced M 1 transition probabilities as a func- 
tions of I  near the critical point I, .  These curves were ob- 
tained by numerical diagonalization of the Hamiltonian and 
by using the harmonic approximation. The mutual approach 
of levels of opposite parity is not very clear in comparison 
with the fast variation in the level energy in multiplets with 
different I. To exhibit this effect we must remove the regular 
part containing the main dependence on I  from the energy 
En ( I ) .  It is convenient to take this to be the energy E,(I )  of 
the lowest level in the aligned configuration. The difference 
E - E, for the precessional motion in the region I >  I, is 
then shown by ( 4 0 )  and (41 ) to increase in proportion to the 
first power of the angular momentum, whereas the dimen- 
sionless quantity [ E ( I )  - Eo(I )  ] / a ,  (21  + 1 ) remains con- 
stant in the limit of large I. On the contrary, for I  < I , ,  this 
quantity is proportional to I  since V ( k , )  in ( 3 6 )  is negative 
and its absolute magnitude decreases as I  approaches I, .  It is 
thus clear why a set of equidistant levels, shifted relative to 
the origin by half the separation between them, i.e., 
(w , ( I ) / 2 a ,  (21 + 1 ) ), appears on the right hand side of the 
lower graph of Fig. 2. The difference between Fig. 2 and the 
harmonic approximation is that there is now a transition 
region between different regimes of precessional motion. 
The width of this region decreases as the size of the configu- 
ration space of states on the right hand side of (4), i.e., the 
quantum number j, increases. 

In numerical calculations, the constants in the Hamil- 
tonian ( 3 0 )  were assumed to have values typical for all the 
deformed nuclei of the isotopes of Dy, Er, and Yb with defor- 
mation parameters 0 , ~ 0 . 3 ,  (P4( ~ 0 . 0 5 .  The values a,  - 10 
keV, a, - a , .  10 - keV are typical for the even-even isotopes 
of these nuclei. We note that a ,  and a,  can also be determined 
as the coefficients of the expansion for the rotational level 
energy of an aligned band in an odd nucleus: 

The parameter b ,  determines the level splitting of a subshell 
in the quadrupole field of the nucleus: 

where 7t2=: 8 MeV and the factor that depends on the ampli- 
tudes u and v of the Bogolyubov transformation determines 
the occupancy of the j-level. The constant 

in the Hamiltonian is responsible for the level splitting in the 
hexadecapole field. To estimate x,, we can use the relation 
x4 = - 2x2 which is valid for a potential well with infinitely 
high walls. Formulas ( 4 4 )  and ( 4 5 )  lead to the following 
estimates for j = 13/2: 

For an isolated j-level, bifurcation occurs only when b, < 0, 
i.e., the subshell is more than half filled. The greater the 
absolute value ofp = bl /2a , ,  the greater the critical moment 
of inertia 1, ( 1 3 )  and the more developed the region in 
which the doubly degenerate stationary states ( 14) can ex- 
ist. Variations in the constants b, and c, appear mostly for 
I < I , .  The separation between these two curves is also a 
function of the parameter b,. The effect of increasing non- 
adiabaticity of rotation (the constant a , )  is greater for the 
higher members of a multiplet and eventually leads to an 
increase in the anharmonicity of the precession spectra. 

The reduced separation between these curves, which is 
observed for low-lying levels in multiplets, and is typical for 
bifurcation, can be seen in bands based on one-quasiparticle 
states in the upper part of the subshell with anomalous par- 
ity. Figure 3 shows experimental data, taken from Refs. 20- 

FIG. 3. Onset of bifurcation in the rotational spectra of the odd isotopes of 
Yb as the number of neutrons in the nucleus increases. The solid line joins 
the experimental points with even (@) and odd ( 0 )  values of the differ- 
ence I-j: 1 is the 7/2 + (633) band of the nucleus :AIYb,,, ; 2 is the same 
band for ig9Yb,, , 3  is the 5/2 + [642] band of +rYb,,, and 4 is the 3/2 + 

16511 band of :g3Yb,, . 
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22, on the rotational bands of the isotopes of Yb with an odd 
number of neutrons. We have selected bands based on states 
with quantum numbers KT [Nn, A ]  in the i,,,, subshell. In 
each band, we analyzed levels with spin between I = 13/2 
and the maximum values of I which, however, lay below the 
region of the first rotational anomaly (backbending) . This 
limitation ensured that the phenomenological theory based 
on the Hamiltonian (30) remained valid. The mutual ap- 
proach of the E A + ' (I) and E A -  ' (I) curves can be seen by 
investigating the I dependence of the quantity 

where E(I) is the level energy in a band. In contrast to Fig. 2, 
the energy in (47) is measured from the level with 
I = j = 13/2 because the graphical representation is then 
more convenient. The rotational constant a ,  in (47) was 
determined from the rotational levels of the aligned part of 
the band. The coalescence of curves corresponding to level 
sequences with odd and even values of the difference I-j 
serves as an indicator of the mutual approach of the 
Eb+ ' ( I )  and EA-'(I) curves. 

As the number of neutrons in the Yb isotopes increases, 
the levels in the i,,,, subshells with increasing quantum 
number K become filled, the Fermi surface rises above the 
midpoint of the subshell, and the constant b, in (44) be- 
comes negative. The critical moment of inertia I, increases 
as the absolute magnitude of 6, increases and the effect of the 
mutual approach of the E A ' ( I )  and E A -  ' ( I )  curves be- 
comes more noticeable. 

It is clear from Fig. 3 that bifurcation occurs for neu- 
tron numbers in the range 97-99, for which the occupancy of 
the subshell is close to one-half. In the aligned part of the 
'69 Yb band, the level sequence with odd I-j shows an irregu- 
larity in the disposition of levels (the corresponding points 
are not joined together in the figure). The reason for this 
anomaly, which is unrelated to bifurcation, is still not clear. 

The mutual approach of the curves is more clearly de- 
fined in 17' Yb than in Yb, although the occupancy of the 
i,,,, subshell is the same in the two nuclei. This can be ex- 

plained by a reduction in 6, in (44) due to the fact that the 
Fermi surface has risen as a result of the addition of two 
neutrons. A further possible factor that brings these curves 
closer together is the negative hexadecapole deformation 
(p, = 0 and p, = - 0.02 for 16' Yb and '"Yb, respective- 
ly). According to (45), this should increase the j-level split- 
ting. The constants in the Hamiltonian (30) are thus seen to 
be determined by internal nuclear dynamics, and the bifur- 
cation phenomenon that we have considered is a many-parti- 
cle effect. 
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