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A new class of self-dual solutions is considered, defined on a manifold with boundary and 
exhibiting a topological charge Q = 1/N. The contribution ($$) of the fluctuations to the 
fermion condensate is calculated in the supersymmetric version of the CF"'- ' model. The result 
is found to be finite, which implies spontaneous breaking of the discrete chiral symmetry. The 
Atiyah-Patodi-Singer ( APS) index theorem is discussed in detail for manifolds with boundary. 
The necessity of imposing global boundary conditions in this case is explained. 

1. INTRODUCTION tain solutions of the classical equations-torons7 with 

The purpose of the present paper is to describe solutions 
with fractional topological charge Q in two-dimensional 
C p -  ' -theories and to analyze the physical consequences 
of their existence. 

A similar problem for the two-dimensional O(3)u- 
model and for four-dimensional supersymmetric gluodyna- 
mics withSU(3) gauge group was considered respectively in 
Refs. 1 and 2, where it was shown that solutions with half- 
integer topological charge give a nonvanishing contribution 
to the fermion condensate ($$) and thus guarantee sponta- 
neous breaking of the discrete chiral symmetry in the theo- 
ries under discussion. The purpose of the present paper is to 
go outside the framework of the SU(2) group and to demon- 
strate for the example of a two-dimensional supersymmetric 
a-model based on the SU(N) group (so-called C p  - ' theo- 
ries) the existence of a stable solution with Q = 1/N. Fur- 
thermore, we will demonstrate that the solution we obtained 
yields a nonvanishing contribution to the condensate ($$) 
and that the use of the quasiclassical approximation is fully 
justified. 

It is important to stress the fact that the transition from 
the group SU(2) to the group SU(N) is not simply an arith- 
metic problem. The analysis of theSU(N) case carried out in 
this paper allows one to look at the problem of admissible 
boundary conditions from more general positions. We shall 
convince ourselves that it is necessary to impose global 
boundary conditions on the fermionic fields3 This singles 
out exactly the admissible values of the topological charge 
Q- 1/N. Solutions with other fractional values of Q turn out 
to be unstable. Thus, a consideration of the a model with 
group SU(N) allowed one to formulate a general principle 
for imposing admissible boundary conditions. We hope that 
the present analysis will help in the future to solve a similar 
problem for the physically more interesting problem of the 
four-dimensional SU(N) gauge theory. 

Before describing in detail the configurations with frac- 
tional values of Q we recall that the integer nature of Q for 
the instanton (Refs. 4 3 )  is related to the compactification of 
the physical space to a sphere, i.e., with an identification of 
all points which are infinitely remote. A choice of different 
boundary conditions can lead to fractional topological 
charges. In particular, in SU(N) gluodynamics defined on 
the hypertorus T, X TI X TI X TI the introduction of so- 
called twisted boundary conditions6 has allowed one to ob- 

Q = 1/N and with the action S = (8d /g2  ) ( l/N). 
Some words are appropriate here regarding the super- 

symmetric CF"'- ' model proper (Refs. 8,9) and on the mo- 
tivation for considering solutions with fractional topological 
charge in this case (Ref. 10). 

As is known, the model exhibits a naive chiral U( 1 ) 
symmetry $-.exp(iay5 )$, violated by the anomaly 

However, the discrete symmetry Z2 xZ, is preserved. On 
the other hand, an exact assertion exists (Ref. 9), to the 
effect that at large N there appears a fermion condensate 
($$) #O. This in turn signals a violation of the Z, symme- 
try mentioned above, and the existence of N vacuum states, 
labeled by the phase of the condensate (q$), 
cc exp{2?rk /N} (Ref. 10). It is natural to expect that a simi- 
lar behavior is characteristic not only for N- CC, but for a 
theory with finite arbitrary N too. A strong argument in 
favor of this hypothesis is the calculation of the Witten in- 
dex,'' which is exactly equal to Nand determines the num- 
ber of vacuum states of the theory. Nevertheless, although 
one is confident that a condensate ($$) exists, standard in- 
stanton calculations yield a zero contribution to ($$) and 
can only assure a nonvanishing value of the correlatorI2 

The reason for this, as one can easily glean from Eq. ( 1 ), is 
the fact that an instanton is characterized by 2N fermionic 
zero modes. At the same time ($$) can "swallow" only two 
of them, leading to the trivial vanishing of the instanton con- 
tribution to (?$). 

It is natural to expect (and this is borne out by experi- 
ence of working with the group SU(2); Refs. 1,2) that the 
self-dual solution with Q = 1/N will have only two zero 
modes and can therefore guarantee a nonvanishing value of 
($$). It is exactly this which serves as a motivation for the 
introduction of torons" into the theory. 

The plan of the paper is the following. In Sec. 2 the 
C p -  ' theory is formulated and various methods for the 
description of solutions with fractional Q are discussed. In 
Sec. 3 an equation is derived for the modes describing quan- 
tum fluctuations in the vicinity of the classical solution. Sec- 
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tion 4 carries an important conceptual load: it describes the 
requirements imposed on the modes. These requirements are 
based on quite general principles, such as the APS index 
t h e ~ r e m . ~  As shown in Sec. 5, these requirements single out 
completely definite fractional values Q- 1/N, guarantee the 
stability of the corresponding solutions, and yield a nonvan- 
ishing contribution to (&). 

2. THE CPN-' MODEL. TORONS 

In order to describe the toron solution we discuss the 
duality equations and the Lagrangian of the usual (non-su- 
persymmetric)CP"- ' model. The modification made nec- 
essary by the presence of fermions will be discussed in the 
following sections. In terms of a complex N-component unit 
spinor nu (a = 1, ..., N), transforming according to the fun- 
damental representation of SU(N), the action, topological 
charge, and duality equations have the following form 
(Refs. 8,9,13): 

Dp(n,, )a=iepv(Dvn,l)a. 

Here A,,  p = 1,2 is an auxiliary gauge field. It is easy to see 
that in addition to the SU(N) symmetry, the Lagrangian is 
also invariant with respect to local U( 1 ) gauge transforma- 
tions: 

We place the classical solution in an SU(2) subgroup 
labeled by the indices a = 1,2. Then it is easy to show that 
the self-duality equations (2)  are automatically satisfied for 
an arbitrary analytic function pa,,, : 

(na)cl=~rr(~)lJ~GI,  lpJ2'japa, ~ ~ - 1 ~ 2 ,  z=xj+ix2. 

(4)  

From the definition (2)  of Q it is clear that the topologi- 
cal charge is determined by the phase acquired by the spinor 
nu after traversing a circle of large radius: 

The standard instanton with Q = 1 corresponds to the func- 
tion p, (z) : 

expressed in terms of the unit vectors ua ,va associated with 
the SU(2) subgroup we have selected. Indeed, since pa (2) 
depends only on z, the self-duality equations are automati- 
cally satisfied. Moreover, after traversing a circle of large 

FIG. 1.  

radius, the spinor nu acquires a phase 2n- which according to 
Eq. (5)  corresponds to Q = 1. 

We are now ready, following the logic of Refs. 1 and 2, 
to describe a self-dual solution defined on N Riemann sur- 
faces and exhibiting Q = 1/N. In the same manner as for the 
O(3)a-model (which is equivalent to a CP'- ' theory with 
N = 2),2' the solution is defined by taking the limit A-0, 
corresponding to a regularization of the fixed points of the 
orbifold (see below) : 

A characteristic feature of the solution ( 7 ) ,  just as in 
the cases discussed in Refs. 1,2, is the existence of a cut. We 
are thus led to the problem of describing a system defined on 
a manifold with boundary (see Fig. 1 ) . 

If from the outset A = 0 one sets then (n, ),, 
= va exp(it3 /N), which according to Eq. (3)  corresponds to 

a gauge rotation of the pure vacuum solution. At a first 
glance this means that such a configuration cannot cause any 
physical effects. The experience with the O(3 )a-model1 and 
SU(2) gauge theory2 as well as the analysis we have carried 
out shows that this is not so. We convince ourselves that in 
the supersymmetric C P - '  model the solution (7) for 
A -0 insures a nonvanishing value of the chiral condensate. 

Below we set a = 0,A = 1 without loss ofgenerality. We 
thus place the toron at the origin and measure all quantities 
on the scale of the parameter A. The dependence on A can be 
reestablished by dimensionalizing the final expressions. 

Some words are in order about the interpretation of the 
toron solution (see footnote1' ). For the sake ofconcreteness 
we consider the case N = 2. We map the manifold with cut 
(Fig. 1) conformally onto a disk of radius R (Fig. 2): 

In terms of the variable w the physical space corresponds to 
the interior of the disk of radius R. Defining the theory in the 
disk and taking the limit R -t oo at the end of the computa- 
tions, we arrive at the original formulation of the theory on 
two-dimensional Euclidean space. In this interpretation the 

FIG. 2. 
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FIG. 3. 

toron solution is "smeared" out over all of space, and in this 
respect it is strongly reminiscent of the solution of Ref. 7. 

One can proceed differently and map conformally onto 
the exterior of a circle of radius A-0 (Fig. 3 ) .  In this case 
the toron solution can be interpreted as a point effect (for 
A-0). Since the Lagrangian (2)  is invariant under confor- 
mal mappings, the magnitude of the toron action S,, = n/f 
does not depend on the presence of the dimensional param- 
eters A and R. 

Thus, the description of the self-dual solution with frac- 
tional topological charge on a manifold with boundary does 
not present particular difficulties. Problems arise elsewhere: 
is this solution stable with respect to quantum fluctuations? 
Is the toron contribution to ($$) non-zero after taking the 
limit A -0 (or R - co )? Anticipating the events we note that 
although on the manifolds with boundary under considera- 
tion one can construct solutions with arbitrary topological 
charge, only certain values of Q- 1/N correspond to stable 
solutions. 

There exists an alternative point of view on the toron 
solution. It is related to a compactification of the complex Z 
plane into a sphere and identification of the appropriate 
points (for details see the Appendix of Ref. 1 ). The manifold 
constructed this way is an orbifold. We shall not dwell here 
in detail on this question, since it is more convenient techni- 
cally to work with the initial manifold of Fig. 1. 

Thus, in order to answer the questions posed above it is 
necessary to calculate the quantum fluctuations superposed 
on the classical solution and to determine the toron measure. 
The sections that follow are dedicated to the consideration of 
these problems. 

To summarize one may assert the following. The stan- 
dard instanton solution is defined on a compact manifold 
without boundary (a  sphere). The toron solution can be de- 
fined only on a manifold with boundary. In this case all the 
characteristic sizes z which determine the physical quanti- 
ties (action, etc. ) are characterized by an external parameter 
A-0. Thus one interprets the toron solution as a point de- 
fect for A = 0, regularized in such a manner that the self- 
duality equations should be satisfied also for nonzero values 
of A. As we shall see below, such a regularization of a point 
defect insures a nonvanishing value for ($$) for A -0. In 
addition, in asymptotically free theories (and the C P ' -  ' 
models belong to this category) when z-A - O,g(z- A -t 0)  - 0, the standard quasiclassical calcula- 
tion, based on the toron solution, is fully controllable. 

3. THE EIGENVALUE PROBLEM FOR FLUCTUATIONS IN THE 
FIELD OF A TORON 

As is usual for quasiclassical calculation, it is necessary 
to expand the field nu in the vicinity of the classical solution 
( N ,  ),, . Retaining only the quadratic terms we are led to the 
expression (Refs. 12,14-16): 

Here Sn, is a fluctuation describing a small deviation from 
the classical solution, and p, (2) is the toron solution, de- 
fined by the expression (7).  The supplementary condition 
Snapa written out in Eq. (9)  is a consequence of the con- 
straint nuna = l(n,),, +SnaI2= 1. 

Further, following Ref. 16, we first consider fluctu- 
ations 

which do not belong to the subspace of the SU(2) subgroup 
spanned by the unit vectors u, and u, , Eq. (7) .  Here w, is a 
constant unit vector, orthogonal to both vectors u, and u, . 
We separately consider the fluctuations 

6n,=ta17, a=l, 2 ,  t,= ( v ~ A " ~ - u  a z  -'IN ) / IP I ,  

belonging to the SU(2) subgroup which contains the classi- 
cal solution (7)  and which are orthogonal to the latter. 

Thus, the additional requirements Sn, (n, ),, = 0 
which is due to the constraint is satisfied and the problem 
reduces to the determination of the scalar functions G, Eq. 
( lo),  and F, Eq. ( 11 ). Crucial for the subsequent analysis is 
the following change of variables: 

The physical meaning of 7 and q, is obvious: they are the 
corresponding coordinates on the sphere obtained by com- 
pactification of the complex z plane with boundary (Fig. 1 ) . 
In terms of the variables 7 and q, the problem of diagonaliz- 
ing the quadratic form (9)  we are interested in reduces to the 
well-known equations for the d-functions. Indeed, substitut- 
ing the relations (10)-(12) into Eq. (9)  we are led to the 
following expression for the quadratic form: 

We note that the standard requirement of single-va- 
luedness for the functions F,Gaexp(i lp) , l= O,l, ... is not 
mandatory since our initial manifold (Fig. 1 ) had a bound- 
ary for p = 0 and 2 ~ .  Thus the points p = 0 and p = 237 are 
not identified. However, as can be seen from the expression 
(7),  the toron solution is defined on a Riemann surface of N 
sheets with the appropriate gluing of the N th  sheet to the 
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first and the corresponding identification. This guarantees 
exactly a p-dependence of the functions F,G of the form 

As will be seen below the behavior ( 14) is responsible 
for the existence of regular solutions. One could proceed oth- 
erwise, namely require the regularity of the functions F and 
G. This would inevitably lead to Eq. ( 14). Thus, taking into 
account Eqs. ( 13) and (14) we are led to the following 
eigenvalue problem: 

The regular solutions of Eqs. ( 15) are well known and 
are described, e.g., in Ref. 17. The result has the form 

F-exp i - p  d ,-,, , ( q ) ,  hF=j(j+3), m,j=07 1,. . . ( ", '+' 

We note that the eigenvalues (16) agree exactly with the 
values obtained in instanton calculations (Ref. 16). How- 
ever the degree of degeneracy g, of each of the modes is 
different in the two cases. If this were not so, on account of 
the agreement of the eigenvalue~il~ the toron and the instan- 
ton determinants 

a exp ( b ~ 6 i . M . ~ b n ~ )  a (h) -'llgl 

would coincide exactly, which is obviously not the case. A 
similar situation has arisen in the O(3)o-model (Ref. I ) ,  
where important consequences of this difference were point- 
ed out. Additional requirements which will be d i s cus~~d  in 
the following section, single out from the whole set of solu- 
tions (16) the admissible ones and determine the degree of 
degeneracy of each of the modes. As usual, in computing the 
functional integral, it is necessary to normalize to the vacu- 
um solution, which for definiteness we align with the vector 
v,.  In this case the modes satisfy the standard equation for 
the Legendre polynomials: 

m 
6n.- (u., w.) exp( i  q~ ) P~. ( q )  , U.u.=O, i).v.=b 

with the eigenvalues A =  jv + 1 ) . 

Before preoccupying ourselves fully with the selection 
of admissible modes from among those enumerated in Eqs. 
( 16) and ( 17 1 we briefly recall some results referring to the 
fermion determinant. 

In the quasiclassical approximation the correction to 
the action is defined by the expression (Ref. 12): 

Here 

is a two-component spinor each component of which trans- 
forms according to the fundamental representation of 
S U ( N ) .  In the sequel we shall need the following important 
property of the spinor $, : the eigenfunctions of its upper 
component $: satisfy exactly the corresponding bosonic 
equations (9)  and thus the eigenvalues of the operator L, Eq. 
( 18), are equal to + il ;$. Strictly speaking this assertion 
refers only to non-zero modes. However, since the null ei- 
genfunctions are orthogonal to all the others, it is clear that 
they too coincide with the bosonic modes. Indeed, as in the 
boson case, separating the necessary structure which ensures 
orthogonally to the classical solution 

we are led to the following equations for the fermionic 
modes: 

Combining Eqs. (20) it is easy to see that the upper 
components G ,  and F ,  satisfy exactly the equations defined 
by the bosonic form (9 )  with eigenvaluesil = A , ,  and the 
lower components G, and F2 can be reconstructed uniquely 
from the upper components by means of Eq. (20). It is clear 
that the twofold degeneracy of the fermionic modes (the 
presence of solutions with [... 1.. . ] ) is a consequence of the 
chiral symmetry, and the eigenvalues coincide because of the 
supersymmetry of the model. 

The cancellation of the contributions of the non-zero 
modes of the bosons and fermions in the functional integral 
now looks perfectly obvious. In spite of this cancellation it is 
necessary to know (essentially owing to the existence of zero 
modes) which among the modes enumerated in Eqs. 
( 16), ( 17), ( 19) satisfy all the requirements to be discussed 
below. The next section is dedicated to developing the appro- 
priate criteria. 

4. ON THE REQUIREMENTS IMPOSED ON THE MODELS 

The selection criteria for modes are simplest to formu- 
late for the example of the CP ' theory, which is equivalent to 
the O(3)o-model. In this case the Lagrangian can be written 
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in a form which contains only physical degrees of freedom. 
In terms of a single complex field p (x ,  ,x, ) without any 
constraint, the Lagrangian of the O(3)u-model has the form 

This can be shown to be equivalent to the original formula- 
tion (2)  by means of the relation 

Here n, (n, ) is the magnitude of the projection of the spinor 
n, onto the directions u, (v, ). In addition we restrict our 
attention to the analysis of zero modes only, on account of 
the cancellation, noted above, of the contributions of the 
non-zero modes in supersymmetric theories. Recall (Ref. 
I ) ,  Eq. (7) that in terms of Eq. (22) the toron solution cor- 
responds to the function p(z)  = (A/z) and the equation 
for the zero mode is simply the Cauchy-Riemann equation: 

An important condition reducing the arbitrariness in 
the selection of zero modes is related to the finiteness re- 
quirement, which in the case of the O(3)u-model has the 
following form 

This condition, in addition to the single-valuedness require- 
ment on the physical plane (or, what amounts to the same, 
on one Riemann sheet) leads to the existence of only one 
nontrivial complex zero mode Sp, a l/z (Ref. 1 ) . 

In order to answer the question how the conditions list- 
ed above look in the formulation (2)  which contains a local 
gauge invariance and redundant degrees of freedom, we re- 
call that the number of nontrivial zero modes is determined 
by the difference between the number of zero modes in the 
field of the toron ( 16b) and in the field of the vacuum ( 17). 
In the vacuum field the solution (17) Sn, a u,P, with 
A = 0 corresponds to the values j = 0, m = 0. Thus the de- 
gree of degeneracy is in this case equal tog,,, = 2 (Ref. 3). 
In the toron field three values m = 0,1,2 correspond to the 
zero mode A, = 0 given by Eq. ( 16b) with j = 0. However, 
only two of these functions are orthogonal on the physical 
sheet (on the complete Riemann surface which contains two 
sheets, all three components are, of course, orthogonal): 

Thus, from the complete set of solutions ( 16) we select 
a system which is orthonormal on one physical sheet. As 
explained in Ref. 1 for the example of the O(3 )a-model, this 
leads exactly to a reduction of the degeneracy g, compared to 
the instanton case, such that the measure automatically re- 
tains its renormalization-group invariant form. 

Another requirement consists in the absence of singu- 
larities in the eigenfunctions in the whole range of their de- 
finition. This condition singles out from the whole set of 
solutions the regular ones, ( 16), which are proportional to 
d-functions. 

Thus in a toron field there are four zero modes (24); in 
free space there are only two. Consequently there exist only 
4-2 = 2 nontrivial zero modes in agreement with the exis- 

tence of the two parameters ( a )  which describe the position 
of the toron (7) (we recall that the parameter A - 0  in Eq. 
(7 ) is a regulator and not a collective variable). 

We now convince ourselves that both of the formula- 
tions described lead to the same result for the modes. For this 
we determine the relation between the fluctuations Sp, in 
the formulation (21) and the fluctuations Sn, in terms of 
Eq. (2) .  Using the relation (22) we have 

To the solution (24a) corresponds the zero mode Sp, = 1 
and to (24b), Sp, a l/z. As far as the mode Sp, = 1 is con- 
cerned, it is trivial and related to the possibility of variation 
of the boundary conditions (a  similar mode exists also in the 
absence of the toron, i.e., in vacuum). The other nontrivial 
mode Sp, a l/z had already been obtained independently. 

The lesson one can learn from the preceding analysis is 
the following. The mode Sp, a l/z in the formulation (2 1 ) 
is single-valued. The same mode, but in the formulation ( 2 )  
with local gauge invariance is not of this nature ( t ,  contains 
the factor ). However, the invariant quantity X S n ,  is 
a single-valued function. 

Thus, the requirement that has to be imposed on the 
eigenfunctions for theories with redundant degrees of free- 
dom [of the type of gauge theories (2)  ] consists in the sin- 
gle-valuedness of invariant quantities. Just such quantities 
have a physical meaning. 

The same requirement can be understood from a totally 
different point of view, namely that of the APS index 
theorem3 for manifolds with boundary. As is well known 
(Ref. 3), in order to calculate the number of fermionic zero 
modes in this case, it is necessary to impose global boundary 
conditions so that the operator ( 18) would be self-adjoint on 
the manifold with boundary. Since the operator L in Eq. 
( 18) is of first order, self-adjointness means simply the pos- 
sibility of integrating by parts and throwing away the total 
derivative. As is easy to see,3 this total derivative coincides 
with the integral J dy over the boundary Y of the scalar prod- 
uct of some eigenfunctions of the operator ( 18). Thus, the 
global boundary conditions have the form (Ref. 3) 

In particular, for the manifold of Fig. 1 with the boundary 
defined by the condition p = 2r ,p  = 0 we have 

In more detail the application of the APS theorem' to 
our conditions is discussed in Ref. 19. We note here that if 
the manifold were without boundary and the eigenfunctions 
were single-valued, then the relation (26) would be auto- 
matically fulfilled. In the case under consideration the con- 
dition (26) is very strong: it requires that any invariant 
quantities should coincide on the two edges of the cut, i.e., 
for p = 277 and p = 0. But this coincides with the condition 
formulated above for the bosonic degrees of freedom. The 
fact that the bosonic and fermionic degrees of freedom are 
related has already been mentioned at the end of the preced- 
ing section. Here we emphasize the fact that the single-va- 
luedness requirement of the invariant quantities (rather 
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than the functions themselves) appears from a completely 
different side: the requirement that the operator should be 
self-adjoint and the condition (26) related to it. 

As was already said, the toron solution can be described 
on a disk (Fig. 2) or the exterior of a circle (Fig. 3). For the 
appropriate analysis, see Ref. 19. We note here that the num- 
ber of nontrivial fermion zero modes equals two, the same as 
for the bosonic modes. This assertion is valid both for the 
disk and for the manifold of Fig. 1. Indeed, the spinor ( 19) 
with vanishing lower component (P, = G, = 0)  and non- 
vanishing upper component equal to Fl = F ( A  = 0),  
GI = G(A = 0),  Eq. ( 16), automatically satisfies the equa- 
tions (20) with eigenvalue A = 0. 

Thus, the number of nontrivial bosonic and fermionic 
zero modes coincides. This assertion has a fairly general 
foundation (Ref. 18). 

As an application of the requirements considered above 
we describe the zero modes for the group SU(3) with 
Q = 1/3. As we shall see, for other fractional values of q for 
the group SU(3) it is impossible to satisfy the conditions 
discussed above. We interpret this fact as an instability of the 
corresponding configurations. Thus, the form of the group 
SU(3) uniquely fixes the admissible value Q = 1/3. The re- 
sult has a trivial generalization to arbitrary N. 

We start the analysis in the vacuum ( 17). The number 
of zero modes corresponding to the value j = 0 equals 
2 ( N  - 1 ), = , = 4 (see footnote 3 ) . We now consider 
modes in the toron field belonging to the distinguished 
SU(2) subgroup [the F functions ( 16b) 1. In this case it is 
easy to see that the requirements of orthogonality and single- 
valuedness of the scalar products on the physical sheet are 
satisfied only by one complex (two real) modes among the 
three (m = 0,1,2). The situation with the states along the 
unit vector w ,  [the G functions ( 16a) ] is less trivial. The 
value A = 0 corresponds to j = 0, m = 0,l in ( 16a). It is easy 
to show that one can construct two combinations from these 
solutions, satisfying all the imposed requirements: 

The modes (27) are mutually orthogonal: 
i zn 

J 4 J aqG:az.l=o (28) 
I 0 

and single-valued on the physical sheet: 

Indeed, the only nontrivial function of the angle q, occurs in 
Eq. (29) in the form c o s [ 2 ~  + p)/3], having the same limit 
for q -E -0 and q, - 277 - E. Thus, there are four zero modes 
(27), along the unit vector w,. Together with the two zero 
modes from the group SU(2) this ensures the existence of six 

zero modes in the toron field. Only 6 - 4 = 2 of them are 
nontrivial, which is due to the existence of four vacuum 
modes (see above). This number (two) agrees, of course, 
with the existence of two parameters a which characterize 
the position of the toron (7).  The number of nontrivial fer- 
mionic zero modes is also equal to two, and for the reason 
mentioned above their explicit expressions coincide exactly 
with the form of the bosonic zero modes. 

We note that the existence of exactly two nontrivial fer- 
mionic zero modes is a consequence of the index theorem for 
manifolds with boundary (Refs. 3,19) : 

n+-n-=2 [NQ] . (30) 

Here the square brackets [ 1 denote the integer part of a 
number. Only the specific realizations of this theorem are of 
interest. 

In concluding the present section we briefly describe 
the situation which arises when the number N increases. In 
going from N = 3 to N = 4 two new features appear: first, 
the zero mode acquires a phase exp(ip /4) [Eq. ( 16a) 1, in 
place of exp ( ip /3), for the SU(3) case; second, new modes 
appear together with the appearance of a new unit vector w, . 
These two facts have the consequence that there are two 
functions (depending nontrivially on the angle g,) which are 
proportional to cos [ ( 2 r  + p)/4] and cos [ (4n- + p)/4], 
out of which one can construct a linear combination propor- 
tional to cos [ (2n- + p)/4]  + cos [ (477 + p)/4]  which is 
single-valued on the edges of the cut (for q, + 0 and p - 2 ~ ) .  
The situation is generic: with the growth of N and the de- 
crease of the phase angle exp(ip /N) there appears an addi- 
tional term proportional to cos [ (2n-k + p) /N]  , related to 
the appearance of the unit vector w,. This guarantees the 
existence of two nontrivial zero modes (bosonic and fer- 
mionic) in accord with the existence of two parameters a, 
describing the position of the toron. These modes satisfy all 
the necessary requirements. 

Summarizing, it should be noted that from completely 
different points of view (the index theorem, Ref. 3, and the 
analysis of the C p -  ' -model in terms of the unconstrained 
field p) we have developed selection criteria for admissible 
modes. It turned out that the appropriate conditions for the 
group SU(N) are satisfied only by configurations with 
Q- l/N. In addition, the hermiticity of the Hamiltonian, the 
equality of gauge invariant quantities across the cut, the exis- 
tence of an othonormal set of eigenfunctions, all these ques- 
tions are interrelated in the formulation of the theory on a 
manifold with boundary. In addition to the quantities men- 
tioned, the distinguished character of configurations with 
Q- 1/N manifests itself in their stability.19 

Having shown that the modes determined above satisfy 
all the requirements, one can easily calculate the toron mea- 
sure and the condensate (&) in the supersymmetric 
C p -  ' model. As we explained, the contribution of the non- 
zero modes cancels exactly and therefore only the zero mode 
analysis carried out above is required. 

We recall (Refs. 12,14-16) that in the calculation ofthe 
functional integral Z in the quasiclassical approximation, 
each nontrivial bosonic zero mode leads to a factor M,dx,  . 
Here M ,  is the ultraviolet cutoff, ux, is the integration mea- 
sure with respect to a collective variable corresponding to 
this zero mode. Each fermionic zero mode is accompanied 
by a factor ~E/MA'~, where dc is the measure associated to 
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integration with respect to a collective Grassmann variable. 
Taking into account what was said, the toron measure 

takes the form 

Ztor0,-Mo2dZa (d2&/Mo) exp [ -n l f  (Mo)  1 =mdLad2&, 

m=Mo exp ( - n l f )  . (31) 

Here the factor M ; d  'a is due to the two bosons, and the 
factor d : /Mo is due to the two fermionic zero modes, men- 
tioned above. The factor exp( - T / '  is the contribution of 
the classical action of the toron ( 7 )  and the parameter a 
describes the position of the toron. Just as for the instanton 
calculations (Ref. 12), the expression (3  1 ) has an exactly 
renormalization-group-invariant form. This phenomenon is 
easily explained: as the action decreases the number of zero 
modes decreases, which regenerates exactly the renormal- 
ization-group invariant result. 

Now everything is prepared for the calculation of the 
chiral condensate ($$). Substituting the zero modes for the 
fields $and taking into account that the Brezin integral over 
the collective fermion variables in (3  1 ) is done according to 
the rule ~ZdgdZ = 1, we convince ourselves that 

( ip$)-m ha%. ( r - a )  * ( r - a )  =m. (32) 

During the last stage we used the value of the normalization 
integral for the zero mode, and subsequently removed the 
regularization by setting A = 0. 

As is known (Ref. 9 ) ,  the relation (32) signifies sponta- 
neous breaking of the discrete chiral symmetry. We note that 
an instanton may guarantee a nonvanishing value only for 
the correlator ( n $ $ ( x i ) )  (Ref. 12) in accord with the fact 
that the solution with Q = 1 changes the chiral charge AQ,  
(Eq. I ) ,  by two units and has two nontrivial zero modes. 
Thus the corresponding vacuum-to-vacuum transition is ac- 
companied by the creation of a pair $$, which is explicitly 
demonstrated by the calculation (32). 

5. CONCLUSION 

The main purpose of this paper was to describe a self- 
dual solution with Q = 1/N on a manifold with boundary 
and the analysis of the physical consequences related to this 
solution, on the example of the supersymmetric C£"?-' 
-model. Arguments were advanced in favor of an interpreta- 
tion of the toron as a point defect, regularized in such a man- 
ner that the self-duality equations are preserved and a non- 
zero value is guaranteed for ($$) after removing the 
regularization (A + 0).  

Other topics considered in the paper are related to the 
development of a selection criterion for admissible modes in 
the field of a toron. We have formulated the self-adjointness 
requirement for the Hamiltonian on a manifold with bound- 

ary. This ensured single-valuedness of the gauge-invariant 
quantities on the two sides of the cut. In turn, this means the 
validity of global boundary conditions for the fermionic 
modes (Ref. 3) and the stability of the classical configura- 
tion for the bosonic ones. This is the principle which selects 
the admissible values Q- 1/N. 

We conjecture that the formulated principle is general 
enough and will, in particular, determine the admissible val- 
ues of the fractional topological charge in a supersymmetric 
Yang-Mills theory with arbitrary gauge 

In conclusion, the author expresses his gratitude to A. 
Yu. Morozov, and A. A. Roslyi for useful discussions. 

I '  In the present paper we retain the term "toron" introduced in Ref. 7 and 
utilized in Refs. 1 and 2. By this we underline the fact that the solution 
minimizes the action and has topological charge Q = 1/N, i.e., exhibits 
all the properties characteristic for a toron in the sense of Ref. 7. 
The equivalence with a O(3)o-model is verified by using the relations: 
na = Tiff n, where ff are the ordinary Pauli matrices, and nu is a real 
unit vector, characterizing the dynamics of the O(3)o-model. 

31  We count the number of real zero modes. The solution ( 17) is defined 
up to a complex phase, which leads to the appearance of the additional 
factor 2. 

'A.  R. Zhitniskii, Zh. Eksp. Teor, Fiz. 94, No. 6 19 (1988) [Sov. Phys. 
JETP 67, 1095 (1988)l. 

'A. R. Zhitniskii, Preprint, Inst. Nucl. Phys. Siber. Sec. Acad. Sci. 
USSR, 88-95, Novosibirsk, 1985; Zh. Eksp. Teor. Fiz. 95, 24 (1988) 
[Sov. Phys. JETP, 68, 14 (1988)l. 
M. F. Atiyah, V. K. Patodi, and I. M. Singer, Math. Proc. Camb. Phil. 
SOC. 77,43; 78,405 (1975); 79,71 (1976). 

4A. A. Belavin and A. M. Polyakov, Pis'ma v ZhETF 22, 503 (1975) 
[JETP Lett. 22,245 ( 1975) 1 .  

'A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, 
Phys. Lett. 59B, 85 (1975). 

'G. 't Hooft, Nucl. Phys B 138, 1 (1978); B 153, 141 (1979). 
'G. 't Hooft, Commun. Math. Phys. 81,267 (1981 ). 
'E. Cremmer and J. Scherk, Phys. Lett. 74B, 341 ( 1978). 
9E. Witten, Nucl. Phys. B 149,285 (1979). 
''A. R. Zhitniskii, Yad. Fiz. 47,251 (1988) [Sov. J. Nucl. Phys. 47, 160 

(1988)l. 
" E. Witten, Nucl. Phys. B 202, 253 ( 1982). 
l 2  K. S. Narain, Nucl. Phys. B 243, 131 (1984). 
"A. D'Adda, P. DiVecchia, and M. Liischer, Nucl. Phys. B 146, 63 

( 1978). H. Eichenherr, Nucl. Phys. B 146,215 ( 1978). V. L. Golo and 
A. M. Perelomov, Phys. Lett. B79, 112 (1978). 

I4B. Berg and M. Liischer, Commun. Math. Phys. 69,57 (1979). 
I5V. A. Fateev, I. V. Frolov, and A. S. Schwartz, Yad. Fiz. 30, 1134 

(1979); [Sov. J. Nucl. Phys. 30, 590 (1979)l. 
16A., M. Din, P. DiVecchia, and W. J. Zakrzewski, Nucl. Phys. B 155,447 

(1979). 
l 7  N. Ya. Vilenkin, SpecialFunctions and the Theory of Group Representa- 

tions, American Mathematical Society, Providence ( 1968). 
''A. Yu. MO~OZOV and A. M. Perelomov, Nucl. Phys. B 271,620 ( 1986). 
I9A. R. Zhitniskii, Preprint, Inst. Nucl. Phys. Siber. Sec. Acad. Sci. 

USSR, 88-154, Novosibirsk, 1988. 
'OM. A. Shifman and A. I. Yainshtein, Nucl. Phys. B 296,445 (1988). 

A. Yu. Morozov, M. A. Olshanetsky, and M. A. Shifman, Nucl. Phys. B 
304,291 ( 1988). 

Translated by M. E. Mayer 

226 Sov. Phys. JETP 69 (2), August 1989 A. R. Zhitniskil 226 


