
Particle with internal angular momentum in a gravitational field 
1. B. Khriplovich 

Nuclear Physics Institute, Siberian Branch, USSR Academy of Sciences 
(Submitted 1 January 1988) 
Zh. Eksp. Teor. Fiz. 96,385-390 (August 1989) 

We give a simple and general derivation of the equations of motion of a particle with internal 
angular momentum in an external gravitational field. The gravitational analog of the Lorentz 
force is an extra term, producing nongeodesic motion. We present considerations that fix the 
general form of the wave equation for particles of arbitrary spin in electromagnetic and 
gravitational fields. 

1. The motion of a relativistic particle possessing inter- 
nal angular momentum in an external gravitational field was 
first examined long ago by Papapetrou. ' Using Fok's meth- 
od2 to derive the equations of motion, he demonstrated that 
a particle with angular momentum moves along a nongeode- 
sic path. Similar results were subsequently obtained by Bar- 
ducci, Casalbuoni, and Lusanna,%nd by R a ~ n d a l , ~  using 
Grassmann variables for a spin- 1/2 particle in a gravitation- 
al field. 

In this paper, the equations of motion of a particle with 
angular momentum are derived in a simple and general man- 
ner. In the process, a remarkable analogy will become evi- 
dent between the motion of a charged particle in an electro- 
magnetic field and a rotating particle in a gravitational field. 
The equations of motion thus derived are applicable to arbi- 
trary particle spin. For spin 1/2, they are identical with the 
equations obtained in Refs. 3 and 4. 

The intimate connection between classical and quan- 
tum mechanical considerations in the present approach 
makes it possible to obtain a general form of the relativistic 
wave equation for a particle of arbitrary spin in an external 
field. For integer spin, the equation that we have found is the 
same as that previously proposed by Christensen and Duff.5 

2. It is well known that for a particle in an external field, 
either electromagnetic or gravitational, the canonical mo- 
mentump, = iM, enters into the relativistic wave equation 
through the combination of terms 

Here e is the charge on the particle, A, is the electromagnetic 
vector potential, T,,ab = - is the spin coupling of the 
gravitational field, and the Zab are generators of the Lorentz 
group for the representation whereby the wave function $of 
the particle in question is transformed. Greek subscripts and 
superscripts refer to world lines, and Roman to tetrads. 
Bearing in mind that we shall eventually pass to the classical 
mechanics limit, we retain only terms up to first order in 
Planck's constant fi. Note that when the operator n, is ap- 
plied repeatedly, Christoffel symbols appear along with the 
8,. Because of the factor fi however, these terms are always 
small, and we shall henceforth ignore them. 

We can obtain the Heisenberg equations of motion us- 
ing the covariant Hamiltonian 

We work in a metric with signature + - - - . Below we 
shall discuss how to consistently incorporate into this Ham- 

iltonian terms explicitly containing the electromagnetic field 

and the Riemann tensor 

To proceed to the classical limit, we represent the wave 
function in the customary form $-exp(iS/fi). Then 
p, $ = itia, +- ( - a, S) $, so that in p, the small quantum 
constant fi no longer appears, nor does it appear in the elec- 
tromagnetic term - eA, in n, . This leaves the gravitation- 
al contribution - fixab to Up, which in general van- 
ishes in the classical limit fi-*O. We shall assume, however, 
that the spin of the particle is so large that its internal angu- 
lar momentum tensor Fb = fixab has a classical limit. Thus, 
as before, we shall use ( 1 ) as the classical Hamiltonian for 
the time being, with II, =p,, = eA,, =S"br,,ab. It then 
simply remains to specify the classical Poisson brackets. 
These have the standard form 

Here vac = diag ( 1, - 1, - 1, - 1 ) is the metric of flat 
space. The equations of motion can now be found without 
difficulty: 

(5) 

If the term containing the Christoffel symbol T;, on the 
right-hand side of Eq. (5 )  arises as a result of the nonvanish- 
ing Poisson brackets -(g"",II,), the remaining two terms in 
the expression for the force are due to the nonvanishing Pois- 
son bracket {n,,n,). Equation (5 )  may obviously be re- 
written in covariant form: 

Since the Hamiltonian ( 1 ) has dimensions of energy 
squared, the dimensionality of the conjugate variable s is 
somewhat unusual. Transforming to proper time via the re- 
lation s = 7/2m, we may write out Eqs. (4)  and (6)  in a 
more familiar guise: 
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It must be emphasized that as before, the quantity ga8xaiP 
remains an integral of the equations of motion (5),  (61, 
(6a), which is fully consistent with the obvious condition 

Furthermore, we note that for massless particles, which 
follow trajectories with dr  = 0, Eqs. (4)-(6) must be used 
(with e = 0, of course, since there are no charged massless 
particles), wheres is a parameter that varies along the trajec- 
tory (see Ref. 6, for example). 

In the special case of spin 1/2, the resulting equations of 
motion are the same as those derived in Refs. 3 and 4. But 
this is just the case in which the treatment of the terms in 
Eqs. (5),  (6) ,  and (6a) containing the Riemann tensor is 
somewhat dubious. The small magnitude of fi, which ap- 
pears in Fb , is totally uncompensated here, and the effect in 
question can scarcely be discriminated from the background 
of other quantum effects. 

The last term on the right-hand side of ( 5 ) ,  (6),  and 
(6a) is the new force, which compels a rotating body to de- 
viate from a geodesic path. Our derivation makes its nature 
perfectly clear. Like the Lorentz force, it arises by virtue of 
the nonvanishing Poisson brackets {na,n,}, or in the 
quantum case because of the fact that n, and no do not 
commute. The correspondence here is obvious: eFa8ct 
- isab Ra8,,, the integral momentum Fb is the analog of 

the charge e, and the Riemann tensor is the analog of the 
electromagnetic field. The new force under consideration 
might be designated the gravitational Lorentz force. 

3. Making use of the Poisson brackets (3),  it is straight- 
forward to derive the equation of motion for the angular 
momentum tensor from the Hamiltonian ( 1 ) . In terms of 
the variables s, we have 

There is a small problem here, however. In the rest frame of a 
point particle, the angular momentum tensor has only spa- 
tial components. The covariant statement of this fact is 

V,, is a tetrad. But it is not difficult to show that Eqs. (5)  
and (7)  in no way guarantee the required constancy of 
i a F b .  

An escape from this quandary is suggested by the 
squared form of the Dirac equation in an external electro- 
magnetic field-one adds the term eFa,Fb to the Hamilto- 
nian ( 1 ) .  Moreover, in conjunction with the symmetry 
R,,,, =Red,,, the aforementioned analogy eF,,ct 
- +FbR,,,d suggests the form of yet another term, 
- +Rob,, Fb Fd . The resulting corrected Hamiltonian 

then yields for the equation of motion of the angular momen- 
tum 

At this point, it can readily be shown, using Eqs. (6a) and 
( lo ) ,  that we indeed have 

In calculating the derivative 

it is important not to forget to differentiate the tetrad V,, 
i.e., to calculate its Poisson bracket with the Hamiltonian. 
The definition of the spin coupling to the gravitational field 
must also be taken into account: 

r,, a b = i / 4  ( V v a ;  p V b v - V v b ;  p V a v ) .  (12) 

Finally, by virtue of ( lo ) ,  we obviously have 
Sob Sab = const. 

Notice that at the same time the equation for the spin is 
modified, the Hamiltonian (9)  leads to an additional term 
proportional to the product of the field strength and the Rie- 
mann tensor in the equations for Dx/Dr. As for the newly 
appearing electromagnetic term, it has essentially been 
known for a long time. It represents the same force that gives 
rise to the Stern-Gerlach splitting of a polarized beam of 
neutral particles in a nonuniform magnetic field. We shall 
not consider such terms here, however, as they are high- 
order quantities in the small ratio of the body dimensions to 
the characteristic scale of variation of the fields. 

Turning to the nonrelativistic limit, one can readily 
demonstrate that the interaction eFabFb corresponds to a 
gyromagnetic ratio g = 2. If this term were chosen with an 
arbitrary coefficient, then for self-consistency, i.e., for (8)  to 
hold, the Hamiltonian would have to incorporate one more 
term, so that the total electromagnetic correction to the 
Hamiltonian ( 1 ) would look like 

The foregoing discussion is, in principle, a reformula- 
tion of a well-known derivation of the equations of motion 
for a particle with spin, given by Frenke17 and by Bargmann, 
Michel, and Telegdi8 A similar change in the Hamiltonian 
(9)  would be necessary in the event of a change in the coeffi- 
cient of R , , , , F ~ F ~ .  It is thus clear that in any case the 
choice of (9)  for the Hamiltonian of a charged particle with 
internal angular momentum is the simplest and most eco- 
nomical. We shall return to this question below. 

4. Starting with the Hamiltonian (9) ,  we can write 
down a single wave equation for a particle with spin in exter- 
nal fields: 

Here D, is the covariant derivative, incorporating both the 
spin coupling and, as necessary, a Christoffel symbol. We 
shall not discuss here any supplementary conditions placed 
upon the wave function $. 

Let us compare ( 14) with other, more familiar wave 
equations. We start with the electromagnetic interaction. 
For spin 1/2, we obviously wind up with the usual squared 
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Dirac equation. If we wished to incorporate the anol~lalous 
magnetic moment into this equation, it would have to in- 
clude a term corresponding to the second term in ( 13). We 
then have an obvious problem: such an interaction, with a 
mass in the denominator, grows with increasing energy and 
destroys the renormalizability of the theory. 

For spin s = 1, the choice g = 2 corresponds to the 
Yang-Mills coupling of the electromagnetic interaction of 
charged vector bosons. With the Higgs mechanism for gen- 
erating the mass of charged vector fields, such a theory is 
renormalizable. But even when mass is coupled rigorously 
into the nonrenormalizable electromagnetics of vector parti- 
cles,g = 2 corresponds to the slowest growth of divergences. 
Note, by the way, that the minimal coupling of the electro- 
magnetic interaction in the Proca formalism for massive vec- 
tor particles corresponds to the choiceg = 1. Then even the 
second term in ( 13) explicitly demonstrates the nonrenor- 
malizability of this theory. 

The electrodynamics of higher spins is nonrenormaliza- 
ble, but here as well the choice g = 2 would correspond to 
the slowest growth of divergences. Notice that neither the 
Rarita-Schwinger equation for spin 3/2, with minimal cou- 
pling of the electromagnetic interaction, nor the Fierz-Pauli 
formalism for the electrodynamics of spin-2 particles9 is con- 
sistent with Eq. ( 14), and neither yields g = 2. 

The gravitational interaction is not renormalizable, no 
matter what the spin of the particle. In this latter case as 
well, however, similar considerations fix the coefficient of 
Rob,, Bab X e d .  Changing it, as compared with (9)  and ( 14), 
would require the introduction of additional terms which 
are singular in the mass, and which are like the second term 
in ( 13) : the change would thereby encourage the additional 
growth of divergences in the theory. From that standpoint, 
the choice of the Hamiltonian (9)  and the wave equation 
( 14) is actually the best one available. 

Let us begin now the s = 1/2. The squared Dirac equa- 
tion in a gravitational field is 

Henceforth we take f i  = 1; we shall not consider the electro- 
magnetic interaction any further. The equation proposed by 
Christensen and Duff is consistent with (15)-our equa- 
tion leads to a coefficient of 1/8 instead of 1/4. But in the 
present case, our line of argument based on (8)  no longer 
works; the properties of the spin matrices 

here are such that the term in question degenerates in one 
way or another into a scalar curvature R with absolutely no 
consequences whatsoever for the motion of the spin. 

For s = 3/2, our equation ( 14) is consistent with the 
equation proposed in Ref. 5, and the coefficient of 
Rob, ZUb XCd fortuitously agree. As for the squared form of 
the Rarita-Schwinger equation in a gravitational field, 

the principal term in the Riemann tensor affecting the mo- 
tion of the spin is reproduced in either approach. The two 
approaches yield different coefficients of R ,  however: once 
again, it becomes 1/8 instead of 1/4. An additional term 
R : I,Y containing the Ricci tensor also makes its appearance. 

The important thing, however, is that in the most inter- 
esting case-that of an Einstein space with R : = 0 and 
R = 0-Eq. (14) is trivially identical with Eq. (15), and 
entirely nontrivially identical with ( 16). 

It is easy to avoid the departure of ( 15) from the Dirac 
equation which occurs for R # O  by modifying Eq. ( 14) for 
half-odd-integer spins: 

We have thereby also partially removed the discrepancy 
with the Rarita-Schwinger equation ( 16). The additional 
term $R has no effect at all on the actual motion of the spin. 

As for higher half-odd-integer spins, Eq. ( 17), by virtue 
of the foregoing considerations, is preferable to the equation 
put forth in Ref. 5. 

A curious situation arises for integer spins: Eq. (14) 
(which is identical to the corresponding equation of Ref. 5 )  
exactly reproduces the equations in the Feynman gauge for 
the photon and graviton in an external gravitational field: 

Not only is the most important term with the Riemann ten- 
sor reproduced in Eq. ( 19), but so are all terms containing 
the Ricci tensor in the other equations. 
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