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The electromagnetic properties of a transition layer of microscopic thickness at the interface 
between two media are investigated within the framework of a macroscopic theory. Independent 
thermodynamic variables are found and an expansion is obtained for the surface electromagnetic 
energy of the interface between two dielectric crystals. A system of gauge-invariant boundary 
conditions is derived for the Maxwell equations (electrostatic and magnetostatic) on a two- 
dimensional transition layer. The interaction of bulk electromagnetic waves (including glancing 
ones) with a plane two-dimensional crystal defect such as a stacking fault or a twinning plane, and 
the propagation of surface waves near such a 2 0  defect, are investigated. A possible existence of 
two types of deeply penetrating surface electromagnetic waves with TM and T E  polarization on a 
plane crystal defect is predicted. The conditions are found under which the dispersion law of the 
surface electromagnetic wave on a polarizable defective 2 0  layer takes the form w K k typical of 
the spectrum of two-dimensional plasmons. 

The physical properties of a transition layer between 
two media are in general different from the properties of the 
media themselves. Although the thickness of the transition 
region is as a rule small and is of the order of the interatomic 
distance, its distinctive electromagnetic properties (e.g., po- 
larization or conductivity) are manifested in macroscopic 
electrodynamic phenomena such as reflection and refraction 
of light,'.' propagation of surface electromagnetic waves,3t4 
and others. The description of these phenomena does not 
require the use of microscopic models of the thin transition 
layer, for its properties can be taken into account in the effec- 
tice boundary conditions for the electromagnetic fields on 
both sides of the layer. Such an approach obviates the need 
for calculating in explicit form the distribution of the elec- 
tromagnetic fields over the layer thickness, something im- 
possible for a layer of atomic thickness in the framework of 
the macroscopic theory. In this question, however, one still 
encounters contradictions between the description of a thin 
dielectric layer of macroscopic thickness smaller than the 
~avelength,~.%n the one hand, and the phenomenological 
description of the dielectric properties of a transition layer of 
vanishingly small thickness,' on the other. 

We derive in the present paper a system of gauge-invar- 
iant macroscopic boundary conditions for the Maxwell 
equations on a two-dimensional transition layer of micro- 
scopic (atomic) thickness in transparent dielectric media. 
The proposed system of equations does not contradict the 
description of a transition layer with macroscopic thickness 
smaller than the ~ a v e l e n g t h , ~ . ~  and supplements the phe- 
nomenological description of the dielectric properties of a 
surface.' By way of example of the use of the macroscopic- 
electrodynamics equations for a 2 0  layer we consider the 
interaction between a plane defect of a dielectric crystal and 
propagation of surface waves near such a defect. The possi- 
bility is predicted of the existence of two (in contrast to the 
analysis in Ref. 5 )  types of deeply penetrating electromag- 
netic surface waves-with T E  and TM polarization- on a 
plane crystal defect. The considered surface waves on a 
plane crystal defect are analogous with respect to their po- 
larization and dispersion to two fundamental (zero-gap) 

modes of a symmetric dielectric planar waveguide of macro- 
scopic thickness smaller than the wavelength (see, e.g., Ref. 
6 ) .  

1. EQUATIONS OF MACROSCOPIC ELECTRODYNAMICS OF 
A 2DPOLARlZABLE OR CONDUCTING TRANSITION LAYER 

We begin the discussion of the electromagnetic proper- 
ties with the electrostatics and magnetostatics of dielectrics. 
In this case the boundary conditions for the bulk equations 
in the contacting dielectric media can be obtained by vari- 
ation of the total volume and surface free energy of the sys- 
tem. To vary the density of the volume free energy F it is 
convenient to use the known expression7 

where E, H, D, and B are the electric and magnetic fields and 
inductions. To obtain an expression for the variation of the 
surface-energy density a of the boundary of the dielectrics it 
must be recognized that the contribution of the singular 
properties of the transition layer to the electromagnetic phe- 
nomena in the system is relatively small. Therefore the sur- 
face energy a can depend only on those independent electro- 
magnetic variables that are defined on the interface in the 
absence of its singular properties." In our case these vari- 
ables are the electric and magnetic field components E, and 
H, tangential to the interface and continuous on it, and the 
normal components D, and B, of the induction vectors (the 
Greek subscripts, unlike the Latin ones, will take on hereaf- 
ter the values 1 and 2 and will number the coordinate axes in 
the tangent plane; D, = D,n,,  where n, is a unit vector nor- 
mal to the boundary and directed from medium 1 to medium 
2) .  The variation of the density of the interface surface elec- 
tromagnetic energy a takes therefore in the general case the 
form 

i.e., a = a (@,E,, *, H, ) ; the meaning of the variables @, *, 
C,*, A ,* in the identity (2 )  will be made clear below. 
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Taking into account (2)  and the bulk electrostatics and 
electromagnetics equations 

the variation SE; of the total surface energy takes the form 

where p and qb are the electric and magnetic potentials on the 
interface (they are continuous on it if the surface layer has 
no singular properties). 

Taking ( 1 ) and the electro- and magnetostatics equa- 
tions into account, the variation SF, of the volume energy of 
the contacting dielectric media 1 and 2 is equal to 

Using (3)  and (4) ,  from the condition that the total 
free energy of the system is a minimum, SFv + SF, = 0, we 
obtain the following quasi-static boundary conditions on the 
interface surface Z = const of 2 dielectric media: 

Equations (5)  and (6)  make clear the meaning of the 
parameters in the thermodynamic identity (2) :  the quanti- 
ties @ and 4 have the meaning of surface jumps of the electric 
and magnetic scalar potentials (analogs of the potential of 
an electric double layer9); the quantities C z  and A ,* have 
the meaning of surface jumps of the tangential components 
of the electric and magnetic vector potentials C and A: 

where e,, is a unit completely antisymmetric tensor. In ad- 
dition, it follows from the form of the identity (2) that in the 
case of electro- and magnetostatics the quantities @ and *are 
proportional to the densities of the normal components of 
the surface electric and magnetic polarizations, and the 
quantities C: and A ,* are proportional to the densities of the 
tangential components of the corresponding surface polari- 
zations. The identity (2)  itself can then be regarded as a 
generalization, to include the case of an interface of two die- 
lectrics, of the Gibbs-Lippmann relation for electrocapil- 
lary phenomena on the interface of two conductors: E, = 0, 
@ = const.' 

The set ofboundary conditions (5 )  and (6)  for the elec- 
tro- and magnetostatics equations is closed by the thermody- 

namic expansions for the surface parameters @, 4, C: ,  A z .  
These expansions can be easily obtained by using a new ther- 
modynamic potential ii = a - (Dn@ + Bn4)/4.rr that satis- 
fies the thermodynamic identity 

i.e., ii = Z(Dn ,E, ,B, ,H, ). 
From this identity we can obtain the following linear 

expansions: 

In these expansions, the parameters @"', C:"', $O', 

A ,*(O' have, in accordance with the foregoing, the meaning 
of components of residual surface electric and magnetic po- 
larizations. The coefficients a, b,,, d,,J; g ,,,, I, are t -  - t 
invariant, and the coefficients m, p, , q, , r,, are t - - t non- 
invariant, i.e., they differ from zero only on surfaces having a 
magnetic structure (these coefficients describe the surface 
magnetoelectric effect). The vectors d, , I, , p,, , q, differ 
from zero only on boundaries having no inversion centers 
(e.g., on asymmetric crystal media). Note that the electro- 
magnetic properties of a plane isotropic centrosymmetric 
transition layer are described in general by the four indepen- 
dent parameters a, b , ,A g, ,  (b,,, = b,S ,,,, g,,, = g,S,, 1. 

We proceed now to describe the electrodynamic proper- 
ties of interfaces of media (with allowance for the retarda- 
tion of the electromagnetic waves). We know that the Max- 
well equations in dielectrics can be rewritten in the 
gauge-invariant form 

where p, $, C, and A are the scalar and vector electric and 
magnetic potentials. Recognizing that the transition-layer 
parameters @, *, C z ,  A introduced above have been de- 
fined as surface discontinuities of the corresponding poten- 
tials, it follows from ( 14) that the gauge-invariant boundary 
conditions for the Maxwell equations on the interface of two 
media take the form 

where 

The system of boundary conditions ( 15) and ( 16) is 
closed by the linear expansions ( lo)-( 13), in which now all 
the coefficients must in general be regarded as functions of 
the frequency w. It follows from the form of the boundary 
conditions ( 15) and ( 16), with the expansions ( lo)-( 13) 
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taken into account, that a description of the electrodynamic 
(in the general case, dielectric) properties of the transition 
layer actually contains the expansion of the boundary condi- 
tions for the Maxwell equations in terms of the small param- 
eters kd * < 1 and wd */c< 1, which are proportional to the 
effective thickness d * of the transition layer ( k  is the two- 
dimensional wave number). In such a description one must 
take into account the surface discontinuities of the tangen- 
tial components of both the magnetic field H, and the elec- 
tric field E,, which are in general of the same order on a 
dielectric (polarizable) 2 0  transition layer. This property of 
a 2 0  polarizable layer will be demonstrated below in the 
description of the surface electromagnetic waves localized 
near a plane defect of a dielectric crystal. 

On the other hand, in the case of a 2 0  conducting layer 
in a dielectric layer (e.g., an inversion layer in a heterojunc- 
tion), the tensor b,, in the expansion ( 11 ) is proportional to 
u,, /w, where o;,,, = up, (w,H,) is the tensor of the 2 0  con- 
ductivity (dissipative and Hall-effect, or dynamic) of the 
layer. Therefore in the considered low-frequency region 
wd */c< 1 the coefficients b,, are considerably larger than 
all other coefficients (which depend little on frequency) in 
the expansions (10)-(13), i.e., in this case, as follows from 
( 15 ) and ( 16), the surface discontinuities of the tangential 
components of the electric field are negligibly small com- 
pared with the discontinuities of the magnetic-field tangen- 
tial components. The macroscopic boundary conditions for 
the Maxwell equation on a 2 0  conducting layer in a dielec- 
tric medium become much simpler compared with a 2 0  po- 
larizable layer, and take the form (see, e.g., Refs. 5 and 10) 

where j, = u,,,E, is the surface current density in the 2 0  
conducting layer. 

2. INTERACTION OF ELECTROMAGNETIC WAVES WITH A 
PLANE DEFECT OF A CRYSTAL. SURFACE WAVES 

The obtained electrodynamic boundary conditions on a 
2 0  transition layer can be used to calculate the coefficients 
of reflection and transformation of electromagnetic waves 
incident on a plane 2 0  lattice defect such as a stacking fault 
or a twinning plane, and also to investigate surface waves on 
such a plane defect. The unique property of a plane crystal 
defect is that the dielectric constants and magnetic permea- 
bilities of the media on the two sides of its surface are exactly 
equal so that if the defect layer has no unique (excess) elec- 
trodynamic properties the electromagnetic waves pass 
through its plane without any change and no surface waves 
propagate near such a defect. A similar situation obtains also 
in the case of an elastocapillary interaction of bulk acoustic 
waves with a e lane crvstal defect, and also when surface elas- 
tic waves propagate near such a d e f e ~ t . ~ . " . ~ ~  

When the boundary conditions ( 15) and ( 16) are used 
to describe the electrodynamic properties of a plane crystal 
defect it must be recognized that in this case the electromag- 
netic fields E,, , D, , H, , and B, on the singular surface must 
be regarded as the arithmetic means of the corresponding 
fields near the singular plane in the adjoining media 1 and 2: 

etc. 

This property of a plane defect reflects its symmetry 
with respect to interchange of the media that make contact 
through its surface (cf. the analogous description of the elas- 
tocapillary properties of a plane crystal defect".12). 

Let the plane of a 2 0  defect be perpendicular to the 
optic axis Z of a uniaxial nonmagnetic dielectric crystal. Us- 
ing the boundary conditions ( 15) and ( 16) and taking the 
expansions (10)-(13) and the definitions (18) into ac- 
count, it can be shown that the reflection coefficient R of the 
amplitude of the electric field of a linearly polarized electro- 
magnetic wave normally incident on the plane defect is equal 
to 

and the transmission coefficient D is given by 

where&,, = eyy +E,  is the dielectric constant of the uniaxial 
crystal. 

On the other hand, for an incident glancing wave (inci- 
dence angle 0-a/2) the amplitude reflection coefficient R 
can be verified to tend to - 1, and the transmission coeffi- 
cient to zero. The parameter kd * < 1 defines a glancing-angle 
interval g, = a /2  - B in which the reflection coefficient is 
close to unity: g, 5 kd *. The parameter d * is equal to 
d,* = g ,  - &,,a in the case of reflection of a polarized wave 
from a plane defect of a uniaxial crystal, and to 
d: = b,/~,, - f for reflection from an s-polarized wave. If 
one of the parameters d z ,  of a plane defect is zero, the reflec- 
tion coefficient R of glancing waves of the respective polar- 
ization tends to zero, and the transmission coefficient D 
tends to unity (the defect layer is effectively "bleached"). If, 
however, the relationg, = &,a = b, /~ , ,  or bI/&,, = f = g i s  
satisfied for the parameters of a plane defect, we have for 
interaction ofp-  or s-polarized bulk electromagnetic waves 
with such a 2 0  defect R = 0 and ID I = 1 for all incidence 
angles. 

The presence of even so weak a perturbation as the 
plane of a 2 0  defect in the volume of a crystal can lead thus to 
total reflection from it of glancing electromagnetic waves 
with R = - 1, i.e., to impossibility of propagation of a ho- 
mogeneous bulk wave of corresponding polarization along 
the plane of the defect. This property of the reflection of 
glancing waves is closely connected with the appearance in a 
crystal of inhomogeneous waves localized near a plane de- 
fect-surface waves. 

To describe surface electromagnetic waves on a 2 0  de- 
fect orthogonal to the optical Z axis of a uniaxial dielectric 
crystal, we seek the solution for the fields in the form 

(E, H )  ( ' b 2 '  aexp { f x , ,  .z+i(kx--ot)), 

where 

are the eigenvalues of the Maxwell equations in the crystal 
for inhomogeneous ordinary and extraordinary electromag- 
netic waves, respectively. Using Maxwell's equations and 
the considered system of boundary conditions for them on 
the defect plane Z = 0 we obtain the following system of 
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equations for the polarization and the spectrum of the sur- 
face waves: 

It will be shown below that in the case of a 2 0  polarizable 
defect layer all four parameters a,  b, f, and g, are of the order 
of its effective thickness d * ,  it being assumed that 
kd * - wd * / c  < 1. Therefore, from among the four equations 
(22)-(25) only Eqs. (22) and (24) describe long-wave sur- 
face waves. 

Equation (22) describes a symmetric (Hi1) = Hi2') 
TM-polarized surface wave (E:" = Ei2' = O), the disper- 
sion equation for which is 

As seen from (22'), a TM-polarized surface electro- 
magnetic wave exists on a plane defect of a crystal if 

This surface wave is similar to the fundamental (zero- 
gap) TM mode of a symmetric dielectric plane waveguide in 
the long-wave limit. It can be shown in fact that for a plate of 
macroscopic thickness d  of a uniaxial crystal with dielectric 
constant Z,, = Z,, # Z,, (2 axis normal to the plate), located 
in a uniaxial medium with dielectric constant 
E, = E,, #E,, the dispersion equation for the symmetric 
( H i ' '  = H J 2 ' )  TM mode is 

where 

is the eigenvalue of the Maxwell equations for an inhomo- 
geneous extraordinary electromagnetic wave in the crystal 
from which this plate is taken, and the parameter x,  is de- 
scribed by (2  1 ) . 

In the long-wave limitp,d< 1 we get from (26) the dis- 
persion equation 

which is similar to (22'). It follows simultaneously from 
( 2 6 )  and (26') that the condition for the existence of a sur- 
face TM mode in the considered system is Z,, > E,, . A com- 
parison of (26') and (22') yields an estimate of the order of 
magnitude of the parameters g ,  and a of a plane 2 0  defect: 

Note that it follows from (26), (26'), and (22') that in 
the case 2, %E,, , E x ,  g~,, and in the wave-number interval 

the dispersion law of the surface TM mode in a dielectric 
waveguide system takes the form 

(or w' = 2c2k /g, (E,,E, ) ' I 2  for a 2 0  defect) typical of the 
spectrum of two-dimensional plasma oscillations. 

Equation (24) describes a symmetric TE-polarized sur- 
face wave ( H i 1 '  + Hb2' = 0) for which the dispersion equa- 
tion is 

This type of surface electromagnetic wave on a plane 2 0  
defect of a dielectrically isotropic crystal is described in Ref. 
5 for the case a = f = g,,, = 0. 

It is clear from (24') that a surface TE-polarized elec- 
tromagnetic wave exists on a plane defect of a crystal if 

This wave is analogous to the fundamental TE mode of 
a symmetric dielectric planar waveguide in the long-wave 
limit. Indeed, the dispersion equation for the symmetric 
(E:" = EJ2') TE mode of the macroscopic dielectrically 
anisotropic plate described above, in an external uniaxial 
medium, is of the form 

where 

is an eigenvalue of the Maxwell equations for an inhomogen- 
eous ordinary electromagnetic wave in the considered plate, 
and the parameter x,, is described by expression (21 j .  In the 
long-wave limit pod< 1 we obtain from (28) the dispersion 
equation 

which is similar to (24') (from (28) and (28') follows the 
condition for the existence of a surface TE mode in the con- 
sidered system: Ex, > &,, ). By comparing (28') with (24') 
we can estimate the order of magnitude of the parameters b, 
and f which characterize the plane defect: 

The estimates of the parameters a and b,  of a plane 2 0  defect 
of a nonmagnetic crystal, made in the framework of the pro- 
posed description, correspond to the values of the analogous 
parametersp and y introduced in Refs. 3 and 4 to describe a 
dielectric transition layer of macroscopic thickness d * in the 
limit kd * < I .  

Note that, as follows from (28), (28'), and (24'), in the 
case Ex, >E,, and in the wave-number interval 

the dispersion law for surface TE modes in a dielectric wave- 
guide system is of the form"' 
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(or w2 = 2c2k / b l  for a 2 0  defect), which is similar to (27) 
and is also typical of the spectrum of 2 0  plasma oscillations. 

The physical reason why just two types of long-wave 
surface electromagnetic waves can exist on a plane polariz- 
able 2 0  defect layer in a crystal is quite simple. The point is 
that in a dielectric crystal, in the absence of a plane defect, 
there can propagate in a given symmetric direction of two 
homogeneous bulk electromagnetic waves with mutually or- 
thogonal linear polarizations. Introduction into a crystal, 
however, of a slow decelerating (with locally increased po- 
larizability ) defect layer of proper orientation can transform 
each of the considered homogeneous electromagnetic waves 
into a weakly inhomogeneous surface wave. As seen from 
(22') and (24'), the depth of penetration S = l/?t,, of each 
of these surface waves into the crystal exceeds significantly 
the wavelength A: 6-/2 2/d *%A. If, however, d,* = 0 or 
d = 0 then, as seen from (22') and (24'), homogeneous 
( x ,  = 0 or K, = 0)  TM or TE bulk electromagnetic waves 
can propagate along the plane of the 2D defect, and the re- 
flection of glancingp and s waves from the 2 0  defect have no 
anomalies in this case. Similar physical factors lead to a pos- 
sible existence, on a plane crystal defect, of three types of 
deeply penetrating surface elastocapillary waves (with qua- 
si-longitudinal, quasi-transverse vertical, and pure shear 
horizontal polarization. ' ' - I 3  

The remaining waves, described by Eqs. (23) and (25), 
of the system considered correspond to antisymmetric gap 
(activational) modes of a symmetric planar dielectric wave- 
guide in the long-wave limit. In the case of the described 
macroscopic dielectric plate in an external uniaxial medium 
the dispersion equations for such modes take the following 
form for a TM-polarized mode (H;" = - HJ2') 

or in the limit p, d 4 I 

which corresponds to Eq. (23); for a TE mode 
(E;" = - E y ' )  we have 

x 0 = - p ,  C 
d 

tg P" - 2 
or in thep, d ( 1 limit, 

which corresponds to Eq. (25 ) . 
Thus, the number, polarization, and dispersion of long- 

wave surface electromagnetic wave on a plane defect of a 
crystal, described by Eqs. (22)-(251, agree fully with the 
description [Eqs. (26), (28), (30), and (3 1 ) ] of inhomo- 
geneous waves in a medium near a dielectrically anisotropic 
layer of finite macroscopic thickness din the limit kd- wd / 
c<  1. This circumstance attests, in our opinion, to the valid- 
ity of the description of the electrodynamic properties of a 

2 0  transition layer in the framework of the proposed system 
[ ( lo)-( 13), ( 15), ( 16) ] of the macroscopic boundary con- 
ditions for the Maxwell equations. 

We note in conclusion that if a 2 0  conducting layer 
(e.g., of  electron^'^-'^) is produced on a plane defect of a 
crystal, the only parameter that describes its properties in 
thedynamic regimewr, 1, wd */c< 1 ( r i s  the free-path time 
of the carriers in the 2 0  layer) will be in the isotropic case, as 
noted above, the negative parameter b,, (w) = - lb,, (w) 1 
in the expansion ( 11 ). Therefore only one type of TM sur- 
face electromagnetic wave can propagate near such a 2 0  
defect in a dielectric (or semiconducting) crystal, and is de- 
scribed by Eq. (23): 

These properties of surface electromagnetic waves near 
a 2 0  electron layer, which follow from the proposed phe- 
nomenological description, are also confirmed by more de- 
tailed calculations (see, e.g., Refs. 17 and 18 ) . 

The author is grateful to V. M. Agranovich, V. I. Al- 
'shits, A. F. Andreev, M. I. Kaganov, A. M. Kosevich, and 
M. I. Ryazanov for helpful discussions. 

"A similar principle of choosing the independent thermodynamic vari- 
ables of elastic surface energy was used earlier by Andreev and the au- 
thor to describe elastocapillary properties of crystal interfaces.' 
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