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An analysis is made of the influence of a random potential with Gaussian white noise statistics on 
light scattering accompanied by the excitation of a longitudinal optical ( L O )  phonon, which is of 
interest in studies ofmixed semiconductor crystals where a random potential appears as a result 
of fluctuations of crystal components. A theoretical description of exciton states in a random 
potential is developed allowing for their multiple scattering by this potential. The probability of 
the scattering of light in the range of localized exciton states is calculated by a new method 
suitable for multistage processes and based on the one-instanton approximation utilizing the 
approach of Lipatov, Brezin and Parisi. The results can be simplified greatly in the region of the 
ground state of an exciton, both below and above the maximum of an absorption band due to this 
stage. Such properties of the 1L0 scattering process as the dependence of the cross section on the 
frequency of the exciting light at the temperature of a crystal can then be expressed in terms of 
simple physical characteristics of the exciton stages. It is shown that a combined analysis of the 
data on the scattering and absorption of light in the region of the ground state of an exciton 
provides full information on the exciton lifetime both in the range of localized states and in the 
range of positive energies where an exciton is scattered weakly by a random potential. A good 
agreement is obtained with the available experimental data. 

1. INTRODUCTION 

Investigations of disordered isoelectronic solid solu- 
tions of semiconductor crystals1-' have shown that exciton 
states undergo major changes under the influence of a fluctu- 
ation potential created by a random distribution of atoms of 
the components of a crystal. The results of such investiga- 
tions require the use of modern field theory methods, which 
go beyond perturbation t h e ~ r y , ~ - ' ~  and provide interesting 
opportunities for experimental confirmation of the theoreti- 
cal predictions in a wide range of the values of the coupling 
constant. 

Optical experimental methods currently used in studies 
of solid solutions include reflection, absorption, lumines- 
cence, and resonance scattering of light. Information on the 
spectral density of excitons is provided by the deflection and 
absorption spectra, but systematic data on the absorption 
are not yet available. In many cases it is easier to study the 
processes of emission of light as a result of resonant excita- 
tion."' Such processes carry information on the nature and 
properties of the resonant states of an exciton, and also on 
the lifetimes and symmetry of its localized states6Scattering 
characterized by the loss of one longitudinal optical vibra- 
tion quantum (1LO scattering) is observed in a spectral 
range quite far from an exciting line. This and the low disper- 
sion of the LO branch make it easier to identify and study it. 
In the case of excitation to localized exciton states the 1LO 
scattering process is indistinguishable from luminescence. 

The 1LO scattering in the "forbidden" geometry, when 
the interaction of an exciton with LO phonons is described 
by the intraband Frohlich interaction, is affected by a ran- 
dom potential to a greater extent than other scattering pro- 
cesses of the first or higher orders. This is due to a redistribu- 
tion of the contributions made to the scattering amplitude by 
various states in the Rydberg exciton series. 

In the case of perfect crystals the amplitude of the 1LO 

scattering in the forbidden geometry is a complex function of 
the wave vector q = k - k' transferred in the scattering pro- 
cess, where k and k' are the wave vectors of the incident and 
scattered photons, and of the frequency w of the exciting 
light.I"l6 Consequently, in a wide region w -E,  near a reso- 
nance (cg is the width of the band gap) the main contribu- 
tion to the amplitude comes from those exciton states which 
satisfy the condition a q n 2 z  1, where a  is the Bohr radius of 
an exciton, n is the principal quantum number, and deeper 
states with n  such that aqn2 < 1 are effectively excluded from 
the scattering process. 

In the case of isoelectronic solid  solution^^'*^^ and crys- 
tals containing there is no short-range order and, 
therefore, the law of conservation of momentum is not 
obeyed so that q#k - k'. Consequently, the main contribu- 
tion to the scattering amplitude comes from deep states of an 
exciton and the form factors of these states impose fewest 
restrictions on the phonon wave vector, particularly on the 
ground state of an exciton. The 1LO scattering process re- 
sembles a two-phonon process because of the occurrence of 
the elastic scattering of excitons by defects or by a random 
potential. 

Our aim will be to derive a relationship between the 
characteristics of the 1LO scattering process in disordered 
solid solutions excited in the range of localized excitons and 
the corresponding characteristics of delocalized states of ex- 
citons, and also such characteristics of excitons as the spec- 
tral density and the probability of scattering accompanied by 
the emission of two LO phonons. 

2. MAIN RELATIONSHIPS 

We shall assume that the motion of an exciton in a solid 
solution is governed by the large-scale potential with the 
Gaussian white noise statistics. The problem of the motion 
of an exciton in such a random potential can be reduced to 
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the single-particle case by assuming that the potential acts 
on a heavy particle, i.e., on a hole, and that the hole mass is 
considerably greater than the electron mass m, )m,. Then, 
in the limiting case of low localization energies of an exciton 
r, )a (r, is the exciton localization radius) the random po- 
tential acts on the motion of the center of mass of an exciton 
and in the limiting case of r, < a  an electron is bound by the 
Coulomb potential to a deeply localized hole. When the dif- 
ference between the electron and hole masses is large, the 
constants of the interaction with the random potential and 
the Coulomb energies differ little in these two limiting cases: 
the difference is of the order of m , / m , ,  so that we can expect 
a single-particle approach to be valid in a wide range of pa- 
rameters. The real situation in isoelectronic solutions with 
anion sub~titution' ,~-~ is probably close to that discussed 
here. 

We shall consider only the first of these limiting cases 
and represent the Hamiltonian of an exciton in the form 

A 
H=HR+h,,  H ,  = - -A,-V (R) , 

2 M 

Here, H, and h, are the Hamiltonians of the motion of the 
center of mass of an exciton and of its relative motion; E~ is 
the effective permittivity of the investigated crystal. The oth- 
er limiting case gives the Hamiltonian described by Eq. ( 1 ), 
but with M replaced with m, and ,u with m,. 

The Green function of an exciton can be represented in 
the form 

where p, ( r )  represents the normalized wave functions of 
the relative motion of an exciton, which are not affected by 
the random potential when the Hamiltonian is selected in 
the form given by the system ( 1 ); w, are the eigenvalues of 
the Hamiltonian h,; 9;,, is the Green function of the mo- 
tion of the center of mass of an exciton and differs for differ- 
ent statesit only by a shift of the energy by w~ . In the absence 
'of the fluctuation potential, we have 

We shall measure energies from the bottom of the band of 
the 1s state in the virtual-crystal approximation, i.e., we shall 
assume that w,, = 0. 

The interaction of an exciton with longitudinal optical 
phonons can be represented in the form 

(4n) '" 
F q  (r) = - P 

[exp (iqcr) -exp (-iqvr) 1, qcs"=q -. 
4a me v 

The amplitude of the scattering accompanied by the 
emission of one phonon can be written as follows: 

Ar-kr ( a )  =gLoBoL0H"'!3~p(0, r; a) F q  ( r )  

Here, H'" is the Hamiltonian of the electromagnetic interac- 
tion, and w and w' are the frequencies of the incident and 
scattered photons. Equation (6 )  implies integration with re- 
spect to d"r and d3p. Using the representation of Eq. (2)  and 
omitting factors which will be unimportant in subsequent 
analysis, we shall consider the expression 

. , A' a L k ,  ( a )  =Otp(a)-ai)~q 3 p - q ; k ,  (a'-ahr). ( 7 )  

Calculation of the probability requires averaging over con- 
figurations of the square of the modulus of the scattering 
amplitude. We shall consider this expression in the specific 
case when aK', .  (w). We shall do this by representing the 
function being averaged in the form 

The averaging restores the full symmetry of a crystal, so that 
the average value of the amplitude ( a )  is of the dipole-for- 
bidden nature, exactly as in a perfect crystal. '"I6 Therefore, 
the contribution to the scattering cross section of the ground 
state of an exciton because of ( a )  is proportional to a small 
quantity ( k  - k')2a2; the contributions ofall other states are 
suppressed by broadening of the exciton states in solid solu- 
tions. The observed enhancement of the scattering in the 
region of a resonance and its new properties in solid solu- 
tions should be described by the amplitude fluctuations Sa. 

We shall find later the average Green function (9fq ) of 
an exciton. Since the averaging procedure does not affect the 
internal motion of an exciton, we shall drop the index A. 
Bearing in mind the relationship between the Green function 
and the scattering ma t r i~ ,~ ' , ~%e  shall write down (9tq) in 
the form 

As a result of averaging over the Gaussian distribution of the 
potential the problem reduces to that of a field theory char- 
acterized by p (Ref. 10). The averaging procedure restores 
the homogeneity of a crystal, so that 

and Tkk can be expressed in terms of the irreducible part of 
the scattering matrix rkk : 

Therefore, (27 ) can be represented in the form 

! 9 k q ( a ) )  )=ti (k- q)Gr ( a ) ) .  (12) 

where 

The imaginary part of Gk (a) found for the case k z O  
governs the normalized (to unity) coefficient of absorption 
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type described by Eq. (21), which are evident even before 
averaging, are the faster (compared with the contribution of 
the amplitude-average) fall away from a resonance and the 
vanishing in the absence of the random potential. 

of light at a frequency w accompanied by the formation of a k 
exciton state: 

3. CALCULATION OF AVERAGED FUNCTIONS 
where 

rn 

We shall consider the task of calculating the average 

Since the spectral dependence of the scattering cross section 
includes also the functions G,=, (w) and G,.=, (w'), it fol- 
lows that the knowledge of the spectral density of the ground 
state of an exciton makes it possible to use the experimental 
data on the absorption of light in an analysis of the scattering 
experiments. We shall show that the scattering experiments 
provide information on the behavior of the imaginary part of 
the scattering matrix r, (w) in the region of the ground 
state of an exciton when w >O. This function can also be 
reconstructed from the spectral density of the 1s state of an 
exciton. In fact, according to Ref. 24, we have 

in the range of large negative values using the one-instanton 
approximation, i.e., in the approximation which is linear in 
respect of the density of the bound states. For each matrix we 
shall use the replica representation; right from the beginning 
it is convenient to separate one of the matrices and to use its 
frequency argument to introduce the following dimension- 
less variables: 

n 

X {fiv(kv)Jiv(kv') esp (-PI )p,=o. (23) 

The complete replicaaspace consists of L orthogonal sub- 
spaces. The operator J acting on the function of Sv is 

a 
3,. (kv)= j d3x (2n) -h erp (iy.x) Y ,.(XI - 

a pv (XI ' 
(24) where 

and energies are measured in an experimental spectrum in 
such a way that the first moment of the spectral density van- 
ishes. In the limit of large negative energies we can calculate 
I?,, (w) explicitly and the result will be given later. 

Using Eq. ( 12) and restoring the indices A, we find that 
(apart from small corrections) the quantity (a) is described 
by 

The deviation of the Green function from its value aver- 
aged over the configurations is given, in the first approxima- 
tion, by 

Averaging mixes the replica subspaces and gives rise to 
an interaction of the type 

where t,, is the quantum-mechanical scattering matrix for 
the specific configuration. Further complications of this 
expression, associated with inclusion of corrections for the 
average value of the scattering matrix, have the structure where 

Summation of progressions gives the following expression 
for lSa/': The total action after averaging is 

i.e., it can be regarded as the sum of L independent function- 
als together with their cross interaction. The one-instanton 
approximation corresponds to the contribution Eq. (22) 
which is linear in respect of the density of bound states. We 
shall separate this contribution by finding and summing the 

A calculation of the quantity in Eq. (21) reduces to averag- 
ing of the products of the scattering matrices. The general 
properties of the fluctuation-induced contributions of the 
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contributions of all the saddle points in the functional of the 
action and calculate them independently. In finding the con- 
tribution of a saddle point with a numberp, which gives rise 
to a potential well with a level w,, located in the coordinate 
space at a point R E, we recall that all the other functional 
integrals differ from zero because of the cross interaction, 
i.e., because of fluctuations in the vicinity of this well with its 
center point R irrespectively of the value of the energy 
argument of this or other matrix. Analysis of the case with 
more than one saddle point is outside the scope of the one- 
instanton approximation. In our calculations we shall adopt 
the method of Refs. 10-13. 

After reversal of the sign of the constant g,, we shall 
separate the K th term of the asymptotic series 

The result of the action operator j is 

The conditions for an extremum of the total action are given 
by the equations (P = 0 )  

We shall consider a saddle point with a number p and as- 
sume that a nontrivial solution exists only for the p t h  sub- 
space: 

The equation for @, is 

The operators for quantum fluctuations in thepth  subspace 
have the usual form" 

4(Ilc3 (x) QC3 (x') 
ML"[-A+1-3@c2(x) 16 (x-x') + 

and the corresponding determinants D (  1 ) and D( 1/3 ) are 
calculated after separation of collective variables and regu- 
larization,I2 using the eigenvalues and eigenfunctions of the 
equation 

Our calculations gave for D (  1/3) and D (  1) values amount- 
ing to 1.47 1 and 10.56 when 957 eigenvalues of Eq. (38) 
were included exactly; this result was in good agreement 
with that reported in Ref. 12. In the case of the remaining 
(L - 1) subspaces the fluctuation operators are 

A comparison of Eq. (39) with the expressions in Ref. 

25 shows that the operator of longitudinal fluctuations does 
not appear in the latter case. I t  is clear from Eq. (39) that in 
all these subspaces, where v#p,  the determinants cancel out 
for n = 0. The corresponding functional integrals give 
preexponential functions in the calculation of which we shall 
use the eigenfunctions and the eigenvalues of the Schro- 
dinger equation: 

This equation has one bound state a = Is, E ,, = w,, , and the 
wave function of this state is identical with the solution of the 
classical equation (36) : 

Calculation of the functional integral for vf p gives the usu- 
al expression for the scattering matrix 

where 

The results of the calculation of the functional integral 
for thepth subspace after summation of an asymptotic Bore1 
series'' can be written n the form 

The S function appears as a result of integration with respect 
to three collective variables RE , which govern the position of 
the solution of Eq. (36) in the coordinate space. This solu- 
tion relates the arguments of all the t matrices by a shared 
conservation law, because in all subspaces the quantum cal- 
culations fit the same solution of Eq. (36).  We then have 

, . 
(43) 

1, (k,) = (2n) dJx e r p  (iy,.x) Qc3 (x) (41.) ', 

I,, = 3 ddx QcTL (x) . 
The numerical values of these quantities are as follows: 

Analytic continuation of Eq. (42) to the range of nega- 
tive coupling (interaction) constants, calculation ofthe pole 
contribution to the integral with respect to dt, and summa- 
tion of the results of calculations obtained for all L saddle 
points give the final result which can be represented conve- 
niently in the form 
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tuation potential depends also on the state of the Rydberg 
series to which the exciton belongs: 

,,=I v=t - - 
Y ,.(q)e:kg 

~ [ i  imt°k; (?)I  JJ t< k; (2). (44) MAA, ( q f  k-k') = 

I S  V#W 

D,"(o) 

A& ' 
Here, [Im t* ] ,, is the imaginary part of the pole contribu- + ~ d ~ { y ~ . ( ~ ) F q - k r  [ G P - ~ + L ,  A ( a ' ) .  
tion to Eq. (41) andp(z) is the density ofbound states in the D,"(m) 

one-instanton approximation: 
x (tL,+kr,kp (0.1 -6 (p-q) rkSkr ( o r )  ) I } (48) 

We can see from Eq. (21) that the expression for the 
scattering probability contains terms with pairs of complex- 
conjugate t matrices and with energy arguments differing 
only in the sign of the imaginary correction. These terms 
determine the probability and accurate calculation of their 
values requires introduction of finite damping of bound 
states 1/1 ( a ) .  The poles of the complex-conjugate t matrices 
then shift relative to one another by an amount 2i+(w). 
Their contributions to Eq. (44) are additive, so that the sign 
of the damping governs also the sign of the pole contribution 
to the integral with respect to dt in Eq. (42). 

The expression (44) can be used also to calculate the 
average value of one matrix. It is then imaginary, i.e., it gov- 
erns the imaginary part of the pole term of the scattering 
matrix 

Here, y = (fi/2Mw) 'I2q; Y ,, (q) is the normalized (to uni- 
ty) wave function of a localized state of the center of mass of 
an exciton. 

Ifw is positive, we can use the fact that the square of the 
modulus of the first term in Eq. (21 ) includes a contribution 
to the existence of a pole Gq (a), which is of the form 

A2h LO 
F-,+k92n6 ( o - o ' - ~ , - ~ ~ ) .  (49) 

In the limit of sufficiently large positive values of w, when 
(+'iq2/2M) > Im T,, (w) (i.e., when the Ioffe-Regel' crite- 
rion is obeyed), we can make the substitution: 

where p(z)  is defined by Eq. (45). 

4. CALCULATION OFTHE SCATTERING EFFICIENCY 

The first two terms in the square of the modulus on the 
right-hand side of Eq. (21) correspond to different se- 
quences of the processes of the elastic scattering of an exci- 
ton and its interaction with a phonon. The third term also 
creates two contributions which are revealed by averaging 
and are combined with the first and second terms, respec- 
tively. 

We shall give the results of the averaging for a specific 
sequence of the processes of the elastic scattering of an exci- 
ton and its interaction with a phonon (we shall assume that 
the elastic scattering occurs first) at a resonance on the ex- 
citing frequency scale. 

In the range of localized exciton states the main contri- 
bution comes from multiple poles of the scattering matrix: 

The total damping fl (w) of a bound exciton state in a fluc- 

(50)  
The function Ti,&,& (w) represents the low-temperature 
probability of the elastic scattering of an exciton by a fluctu- 
ation potential, whereas at high temperatures we must in- 
clude in r$&,,, (w) also the processes of the interaction with 
phonons. 

Bearing in mind that for positive energies we have 

Id" tkqym) ttkA(w)n* (a-oi - -- hq2 ) = ~ r n  tkkA(o) ,  
2M 

(51) 
we find after averaging that 

(6a2,,,,,;.) = [In1 GI? (6))ir:Q;.q.~(~)1 

x [ F : ~ : ~ G ~  (w') ~2 (to') F'.$+L,] 

x 2nfi (o - o' - R?:,~,). (52) 

The expressions (47), (48), and (52) give the dependences 
of the 1LO scattering probability on the frequency of the 
exciting light and on the parameters of a crystal in two parts 
of the spectrum important in experiments and located in the 
vicinity of the frequency of a resonance of the incident light 
with the ground state of an exciton. Under these conditions 
the main contribution to the scattering amplitude comes 
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from the ground state of an exciton. We shall consider later 
this contribution in greater detail. 

5. DISCUSSION OF RESULTS 

The fluctuation terms in the scattering probability of 
Eqs. (47) and (52) describe, in contrast to Eq. (18), an 
allowed process, and (as shown below) ensure that the effi- 
ciency of the scattering per unit volume of a crystal increases 
in the region of a resonance, whereas the scattering de- 
scribed by the average value of the amplitude of Eq. (18) 
becomes weaker than in the case of a perfect crystal because 
of the broadening of the spectral density of an exciton. In 
fact, the absorption coefficient for the ground state of Eq. 
( 14) has its maximum value at a,,, = A, (w,,, ), which 
apart from a factor can be described by 

The quantity Tkk (w,,, ) is close in value to the half-width of 
an absorption band. As soon as the broadening of the exciton 
states due to the random potential exceeds the homogeneous 
damping yk, (w) (or the longitudinal-transverse splitting 
in the case of the ground state), the cross section for the 
scattering in a resonance with these states becomes weaker 
by a factor[ykk (w)/Tkk(w)I2, compared with a perfect 
crystal. Therefore, the cross section described by the average 
amplitude of Eq. ( 18) reaches a value comparable with that 
for a perfect crystal only when the exciting frequency shifts 
by Sw % I",, (w,,, ) from a resonance. 

In the range w < 0 the fluctuation contribution to the 
cross section is given by Eqs. (47) and (48). When (w 1 is 
sufficiently high, Eq. (48) is dominated by the term with t@ 
which does not contain any additional small factors. The 
results of the calculations can be represented in the form 

2 n g ~ ~ '  r k k  (01 
y"(6)) [ w - A k k  (a) 1 2 + r k k 2  (a) 0-QOL0 

7 

where the integral 

x J -1 j d3x 0,' (r) e''' 1 ' / F::"' I '. 
( 2 ~ )  

gives the dependence of the strength of the Frijhlich interac- 
tion on the depth w of a bound state. This dependence is 
plotted in Fig. 1. 

The above expression describes the scattering involving 
the states of excitons localized in isolated fluctuation wells 
each of which contains one level. Such wells are the most 
probable and they determine the asymptote of the density of 
states in the fluctuation p ~ t e n t i a l . ~ - ' ~ " ~  In the case of sys- 
tems with a weak exciton-phonon interaction at tempera- 
tures which are low compared with the localization energy, 
an exciton can only escape by radiative recombination. 

Equation (54) is derived on the assumption that the 

FIG. 1. The dependence ofthe integral J , ,  ( 0 )  on the depth of a localized 
exciton state is shown on the left ( w  <O) .  The dependence of the form 
factor of the exciton-phonon interaction on w  is shown on the right 
( w > 0 ) ;  qc, = ( 2 M w / f ~ ) " ~ ,  and R,, is the binding energy of an exciton. 
Curves 1-3 correspond to m , / m ,  = 2,4, and 8, respectively. 

nature of the broadening of an exciton state in a well corre- 
sponds to a weak exciton-phonon interaction similar to an 
assumption made earlier in Ref. 5. Under this condition a 
level broadens into a band consisting of a narrow zero- 
phonon line and its acoustic phonon wing, whereas the inter- 
action with the optical phonons shifts the whole pattern by 
frequencies which are multiples of the optical phonon fre- 
quency. The half-width of the zero-phonon line y'yw) for an 
isolated well is a quantum limit which is zero because decay 
processes involving phonons are impossible. We can there- 
fore expect the low-temperature half-width to be limited by 
the radiative processes. This picture is supported qualita- 
tively by the observed5 strong increase in the quantum effi- 
ciency of the luminescence emitted due to localized excitons. 
The existence of a narrow zero-phonon line is essential for 
the appearance of narrow LO lines in the scattering spec- 
trum. When the temperature is increased, such a narrow 
zero-phonon line in the spectrum of a localized exciton 
broadens and is transferred to the acoustic wing. This should 
be accompanied by "quenching" of narrow LO scattering 
lines and their replacement by wide bands due to simulta- 
neous participation of optical and acoustic phonons. 

A large parameter which governs an increase in the 
scattering in the region of localized states of an exciton, com- 
pared with a perfect crystal, is the ratio r,, (w)/yl" (a). 
The scattering reaches an asymptote described by Eq. ( 18) 
when this ratio becomes less than or of the order of unity. 

I t  should be noted that the dependence of the second 
factor in Eq. (54) on w can be deduced from independent 
measurements of the absorption coefficient for the 1s state of 
an exciton. Therefore, simultaneous determination of a (w) 
and of the scattering cross section gives new information on 
JLO (w)/yl' and, consequently, new information about the 
dependence of yl" on the depth w of a bound state. 

In the limit of strong absorption of the incident light, 
when the scattering length is governed by the depth of pene- 
tration of light into a crystal, i.e., by the reciprocal of the 
absorption coefficient, the dependence of the cross section is 
identical with the dependence of J,,/y1' apart from the de- 
nominator (w - OOL0 ) -2. 

In the w > 0 range the scattering is described by Eq. 
(52). Near the ground state of an exciton, if we assume that 
A = 1s in all cases, we find that 
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Here, q, = (2Mw/fi) ' I 2 ;  T,,,> (w) represents the total prob- 
ability of the elastic scattering of an exciton in its ground 
state and ofits interaction with phonons. The formal similar- 
ity of Eqs. (54) and (56) is worth noting. 

The range of validity of Eq. (56) is limited by the in- 
equality Tq,,qfl ( a )  < w < 0k0, which follows from restric- 
tions imposed on the transformation (50) and from the fact 
that we are considering a contribution at resonance with the 
incident light. This is the strong absorption region where for 
w 2 e4p/2j13~i the absorption is governed by transitions to 
excited states of an exciton and its continuous spectrum. 
Consequently, the depth of penetration of light into a crystal 
is small and approximately constant. The general nature of 
the frequency dependence of the scattering cross section is 
governed by two resonance denominators which are shifted 
by the phonon frequency. Figure 1 shows the calculated de- 
pendence of the form factor jF:t'"j2 on w. If we eliminate 
from the experimental dependence the integrated scattering 
intensity in this region l F k 1 s ( 2  and the last factor in Eq. 
(56), we obtain the function a(w)/Tq,qo (0). 

Thermal quenching of the scattering process in the 
range w > 0 begins, as demonstrated by Eq. (56), at tem- 
peratures sufficiently high so that the temperature-depen- 
dent phonon contribution to Tq,,q,, ( a )  becomes comparable 
with the contribution of the elastic scattering and with the 
temperature-independent quantum limit of the phonon con- 
tribution. 

Additional information on the matrix describing the 
scattering of an exciton by the fluctuation potential in the 
range w > 0 can be obtained by comparing the intensities of 
the scattering characterized by the emission of one and two 
LO phonons. The calculation method described above pro- 
vides an opportunity of finding also the probability of multi- 
phonon processes. If we restrict ourselves to the range 
rq,,q,, < w < ft,fo, we find that 

where 

In the calculation of Eq. (57) it is assumed that a two- 
phonon process is excited at a frequency (w + a t o ) .  It is 
clear from Eq. (57) that the ratio Tkk ( a ) /  a,LOdetermines 
the effectiveness of the scattering of an exciton by the fluctu- 
ation potential in the 1LO resonant scattering process. A 
comparison with Eq. (16) shows that Tkk (w) can also be 
found from the data on the spectral density of the 1s state of 
an exciton. 

Considering the influence of fluctuations of the compo- 
sition of a solid solution on the process of the scattering in- 
volving LO phonons, we restricted ourselves to the electron 
subsystem on the assumption that the influence of fluctu- 
ations of the composition on the phonor~s is weak at least in 
that part of the lattice spectrum which participates in the 

scattering processes, i.e., fluctuations influence weakly the 
long-wavelength optical phonons. In fact, in the case of solu- 
tions of 111-V and 11-VI compounds investigated so far the 
lines of one- and many phonon scattering processes are al- 
most as narrow as in the case of perfect crystals. The high 
intensities of these lines compared with the other scattering 
processes demonstrates that the mechanism responsible for 
their appearance in the spectra of solid solutions is the Froh- 
lich interaction, as in the case of perfect crystals. This is 
supported also by the selection rules which are obeyed by the 
intensities of these lines. The additional (compared with 
perfect crystals) broadening of the LO scattering lines of 
solid solutions is small compared with the LO-TO splitting 
( a t 0  - a,") , which governs the average value of the Froh- 
lich interaction constant for each LO mode in a crystal 
(here, TO denotes transverse optical phonons). Hence we 
can assume that the fluctuation correction to the Frohlich 
interaction constant should also be small. 

An analysis shows that investigations of the scattering 
processes involving longitudinal optical phonons together 
with a determination of the spectral density of the ground 
state of an exciton can extend greatly the range of informa- 
tion which can be obtained about exciton states in disordered 
solid solutions. 

The authors regard it as their pleasant duty to thank 
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