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The frequency dispersion of the electric conductivity of a polycrystal in a strong electric field is 
determined by a method which is a generalization of the classical percolation approach previously 
proposed [B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors, 
Springer, 19841 to determine the static hopping conductivity. It is shown that the spatial 
distribution of the current fluctuations in the polycrystal forms a percolation structure with a 
frequency dependent correlation radius and with amodulation depth A"", where A is the variance 
of the heights of the intercrystalline barriers, and t and s are the critical exponents of the electric 
conductivity. For strong electric fields, a frequency-dependent nonlinearity criterion is obtained 
and the field dependence of the electric conductivity is plotted for the entire essential frequency 
range in an arbitrary number of dimensions. 

1. INTRODUCTION 

A simple model of a polycrystal was proposed in Ref. 2 
for the case when the screening radius is much smaller than 
the average crystallite dimension and the electric conductiv- 
ity is limited by intergranular barriers whose heights are dis- 
tributed over a rather wide interval. In this model a poly- 
crystal is set in correspondence in the ohmic regime with a 
regular lattice of dimensionality d, whose sites correspond to 
the internal regions of the crystallites, and the bonds corre- 
spond to the intercrystallite barriers modeled by conductiv- 
ities of the form 

where a, is the conductivity of the inner part of the micro- 
crystal, A is the variance of the intercrystalline barriers in 
units ofthe temperature T , p  is a random quantity uniformly 
distributed in the interval (0,1), c, is the barrier capacitance 
(whose fluctuations we neglect), and w is the frequency of 
the external electric field. 

This model was used to analyze consistently the static 
conductivity in weak and strong electric fields,'t3 the fre- 
quency dispersion of the conductivity in weak electric 
 field^,^ and to consider in addition nonlinear effects in the 
conductivity of a one-dimensional p~lycrystal.~ What re- 
mained uninvestigated was the conductivity of two- and 
three-dimensional polycrystals in strong alternating electric 
fields. The quasi-equilibrium finite-cluster approxima- 
t i ~ n , ~ . '  which yields the dispersion of the conductivity in the 
ohmic regime, cannot be used for strong alternating electric 
fields. The point is that in such fields it is difficult to intro- 

based on an analysis of the spatial distribution of the current 
fluctuations in a polycrystal. 

2. CONNECTION BETWEEN THE PERCOLATION APPROACH 
AND THE SPATIAL DISTRIBUTION OF CURRENT 
FLUCTUATIONS IN A POLYCRYSTAL 

A prominent place in disordered systems is occupied by 
metal-dielectric mixtures consisting of two components 
having substantially different conductivities, a,, of the me- 
tallic phase and ud of the dielectric. The usual method of 
modeling such randomly inhomogeneous objects is to study 
the conductivities of lattices with branches having random 
conductivities and distributed independently of one anther, 
with a density 

The main feature of such a percolation system is the presence 
of a characteristic spatial scale-the correlation length 
L ( X  - X, ), which can exceed by many times the minimum 
spatial scale a that is equal to the lattice period. The correla- 
tion radius is particularly large in a small vicinity of the 
concentration percolation threshold x,-in the scaling re- 
gion in which the metal-dielectric transition takes place. 
Since L ( x  - X, ) is in this region the only parameter having 
the dimension of length and determining the concentration 
dependences, the conductivity of a metal-dielectric mixture 
can be described by the complex scaling function T (z) intro- 
duced in Ref. 10: 

duce a connectivity criterion that determines the size of the 
Here h = a, /a, is the analog of the magnetic field in phase- 

quasi-equilibrium cluster, since the barrier heights become 
transition theory, (2) as a function of the complex variable 

dependent on the voltage drops across them. 
z has as its asymptotes 

A novel method is therefore proposed here for the cal- 
culation of the frequency dispersion of the conductivity. It I s n s x 
differs from the quasi-equilibrium clusters and is essentially z - ~ ,  ] z I > l ,  n---<argz<n+--, t 2 t 2  
a direct generalization, to include alternating electric fields Y (z)= 

S n S n 
of any intensity, of the clayical percolation approach pro- ! nf, l z l ~ 1 ,  --- 
posed by Shklovskii and Efros,and also by Ambegaokar, t 2 G a r g z f  -- t 2 '  

Halperin, and Langer, for the solution of the problem of 
static hopping cond~c t ion .~ .~  The approach proposed here is and the critical exponents q, s, and t satisfy the known rela- 
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tion q = t /s - t, while their numerical values depend on the 
dimensionality of space. 

The problem of the conductivity of a polycrystalline 
semiconductor has at first glance nothing in common with 
the structure of the percolation problem. The distribution 
density of the conductivities ( 1 ) differs from the density (2 )  
primarily because the former does not contain a parameter 
on which the polycrystal conductivity can have a threshold 
dependence. The problem of the conductivity of a polycrys- 
tal has therefore likewise no correlation length having a sin- 
gular dependence on this parameter. This means that to use 
percolation theory to determine the conductivity of a poly- 
crystal it is necessary to introduce a parameter analogous to 
the metallic-phase concentration x in Eq. (2).  

This can be done by calculating the distribution of the 
current fluctuations in the polycrystal by the effective-medi- 
um method. We single out an arbitrary branch having a con- 
ductivity a and determine the current I flowing through it 
under the assumption that the remainder of the lattice is a 
homogeneous medium of conductivity g. Since this problem 
has been solved in detail by Kirpatrick," we take the liberty 
of presenting directly the result 

Here ( V )  = (E )a is the average voltage drop on a length a, 

and the parametersp and c represent the real and imaginary 
parts of the conductivity of the homogeneous medium. Since 
p is random, it follows that by fixing p and c we set each 
random distribution of the conductivities a in correspon- 
dence with some distribution of the currents I; we proceed 
now to study this distribution. We begin with the static limit 
w = 0 and set the initial lattice in correspondence with an 
"effective" one having conductivities 

where 

is a dimensionless random quantity having a distribution 
density 

1 

Of greatest interest is the leading term of the expansion of 
P ( 5 )  in terms of A ' ,  which is obtained by going in it to the 
limit A- CO: 

Comparison of (9)  and (2)  shows that the effective lattice 
introduced by us is a percolation system with conductivities 
a, = uode and a, = 0. The parameterp plays the role 
of the density of the "metallic" phase that characterizes the 
spatial distribution of current fluctuations with amplitude 
I - ePpA.  The current fluctuations, can therefore be de- 
scribed by a correlation length that depends on the loga- 
rithm of the amplitude of these fluctuations. 

This raises the question: how are the conductivities of 

the initial and effective lattices connected? To obtain the 
answer it suffices to note that Eq. (4)  differs only by a con- 
stant factor from the equation for a series connection of con- 
ductors having the conductivities of a random element and 
of an homogeneous medium. The construction of an effec- 
tive lattice from the initial one reduces therefore to adding a 
limiting resistor to each branch. Obviously, this procedure 
can only decrease the conductivity of each branch and of the 
system as a whole. The conductivity of the effective lattice 
can therefore be regarded as the lower-bound of the conduc- 
tivity of the polycrystal. The conductivity of the effective 
lattice as a function of the parameter p, however, has an 
abrupt maximum 

This means that the following estimate is valid for the poly- 
crystal conductivity of interest to us: 

The stationary distribution of the current has here a percola- 
tion character and can be described by a correlation length 
LC -ahv ( Y  is the critical exponent of the correlation radi- 
us). 

3. RENORMALIZATION GROUP OFTHE EFFECTIVE MEDIUM 
AND FREQUENCY DISPERSION OFTHE POLYCRYSTAL 
CONDUCTIVITY 

We proceed now to analyze the nonstationary situation 
(w > 0).  To simplify the procedure, we introduce a dimen- 
sionless parameter u = - A- ' ln(wr) (where T = c0/u,,) 
that varies in the range 0 < u < 1 when the frequency of the 
external field runs through the interval e - A < wr < 1. In the 
new notation, the quantities of interest to us take the form 

The parameter F has the meaning of the capacitance of an 
element of the effective medium.By analogy with the static 
case, we calulate the distribution densities of the real and 
imaginary parts of the conductivities of the effective-lattice 
elements 

1 

P ( a , t ) =  J '[a-n(p.u.  I L . A ) I ~ L E - Z ( ~ , U ,  1,. ~ ) j d p .  (15) 
0 

The functions S(p,uy,A) and ?(p,u,p,A) are determined 
from relations ( 12)-( 14), and just as in the static case we are 
interested here in the leading term of the expansion of the 
distribution density in powers of A-': 

Po (6. E) = lim P (b ,  F) 
A+ rn 

Obviously, the result of this limiting transition depends 
strongly on the relation betweenp and u. Simple calculation 
shows that for p < u 
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(16) 
forp = u 

po (a ,  c) 

and for p > u 
~ , ( a ,  c)= (e(2u-p) [ ( 2 ~ 1 - - ~ ) 6 ( 6 - - 1 )  + ( ~ - 1 1 )  6  (o--mj I 

+ e ( p - 2 u ) u s ( 6 - ~ ) } s ( C - ~ )  +[ ( P - ( L ) ~ ( ~ - - W )  

where 8 ( x )  is the Heaviside step function. 
Let us assume that the spatial distribution ( 16)-( 18) of 

the conductivities can be characterized by a correlation 
length, and let us try to find the L (p,u) dependence. To this 
end we consider the renormalization approximation of the 
distribution density P(u,F), which has the meaning of aver- 
aging over the small-scale fluctuations under the scale trans- 
formation L + bL, where b > 1 : 

p,,,, (a ,  c) =W {Pn (8, ?) 1. (19) 
h 

The operator W reduces to averaging of the real and imagi- 
nary parts of the conductivity G (  u:', ..., u?) of the trans- 
formed cell (N is the number of elements in the ce11).I2 An 
explicit form of this transformation can be obtained from the 
obvious relation 

where A = e'P-  "'" . This is legitimate because the conduc- 
tivity of the cell, regardless of its shape and dimensionality, 
is the ratio of two homogeneous functions, and the degree of 
the numerator is greater by unity than that of the denomina- 
tor. It follows from (20), however, that the transformation 
( 19) depends on the parameter A, which has different limit- 
ing values as A + w , depending on the relation betweenp and 
u, 

To make the reasoning that follows more lucid, we turn 
to Fig. 1, which shows the region in which the functions 
((T(p,u)) (F(p,u)) of interest us to are defined. In the part of 
the square OFCD above the diagonal OC we havep < u and a 
large A the imaginary part of the current is exponentially 
small compared with the real. In this region we should there- 
fore be interested only in the distribution density of the real 
part of the effective conductivity 

FIG. 1. Regions in which the real and imaginary parts of the effective 
conductivity are defined. The hatches indicate the directions in which 
R e ( d n  ( p ) )  changes in the upper half of the squares and Im(dn ( u ) )  in 
the lower half. The line AB and AGindicate the position of the singularity 
of ( u e " ( p , u ) ) .  

since it is just what we need to calculate the average conduc- 
tivity 

( a )  = lim (6,) 
n- m 

= lim 1 a P ,  (a.  E )  dE d b .  
n+ m 

The structure of the transformation (2 1 ) , however, is such 
that in this region of variation of the parametersp and u the 
density P(5) is independently transformed in the limit 
A -  W .  This circumstances can be easily seen by putting 
A = 0 (for p < u and A - w ) and integrating ( 2  1 ) with re- 
spect to c .  We obtain then 

P.,, ( 6 )  = 1 b, . . . &,P,(B,) . . . Pn(6,)S[6-G(@,, . . . , a x )  I .  

The initial distribution density P,(a) is obtained by inte- 
grating expressions ( 16) with respect to c 

and describes a percolation structure with a correlation radi- 
us LC -alp, - p 1 - " . The dependence of ~ e ( u "  (P) ) onp is 
given by Eq. ( 10). 

Below the diagonal OC the real part of the current is 
exponentially small compared with the imaginary. Just as in 
the preceding case, we consider the distribution density of 
the imaginary part of the effective-medium conductivity 

which is needed to calculate 

For p > u the parameter A = w in the limit as A - a, and 
averaging over (T greatly simplifies the transformation (2 1 ) : 

171 Sov. Phys. JETP 69 (I), July 1989 A. Ya. Vinnikov 171 



The initial distribution density can be obtained by averaging 
the distribution ( 18) over 5 

Ifc, 1 this density describes a percolation system with radi- 
cally differing component conductivities a, = c and 
ad = l / ( d  - 1 ). The concentration ratio of the components 
with a, and ad depends on the frequency. 

To  interpret Eq. (25), we must turn to Fig. 2, which 
shows a successive chain of simplifications of the diagram of 
an element of the effective medium by discarding conductiv- 
ities whose contribution to the imaginary part of the current 
is exponentially small at the given combination of param- 
eters ( p >  u, c S  1 ). I t  can be seen that the phase with the 
concentration u and with the conductivity c contains those 
initial-lattice elements where the relaxation frequency ex- 
ceeds the external-field frequency w.  This means that during 
the entire period 27r/w the microcrystals that make contact 
through such barriers are in equilibrium, i.e., they form a 
"quasi-equilibrium cluster." The connectivitiy condition 
that determines the spatial distribution of these clusters is 
exactly the same as obtained in Ref. 4 from physical consid- 
erations. 

Our theory corroborates thus the method of quasi-equi- 
librium finite clusters. The electric conductivity of a metal- 
dielectric mixture with a distribution density (25) can be 
expressed with the aid of the scaling function Y (z)  defined 
in Eq. ( 3 ) :  

FIG. 2. Sequence of simplifications of the equivalent circuit of an 
element of an effective random medium for A, 1 and p > u. Dis- 
carding the exponentially small terms of the imaginary part re- 
veals in the effective lattice two "fractions": branches with con- 
centration ( 1-u) and with unity capacitance. 

The correlation radius of such a random system is obviously 
a function of the parameter u, i.e., of the frequency 

L (o) =aAv In-'(m/o,) 

When p = u the distribution density ( 17) describes a 
two-component mixture with metallic- and dielectric-phase 
concentrationsp and 1 - p, respectively, and with complex 
conductivities equal for c %  1 to 

1 i 
o,=lf ic, u d  = +- 

( d - I )  ( d - I )  

I t  is easy to verify that if c $ l  the complex number 
z = (p  - p, )/hs" lands in the region where the function 
Y (z)  is defined, so that a t p  = u the complex conductivity of 
the effective lattice is 

P-P (dff ( p  = u ) ) = 6 de-pAu.h8Y (*) 
We have thus the following situation (see Fig. 1) :  in the 
region OF'C where Re (dff ( p ) )  is defined we have Im 
(cfff  ( u )  ) in the triangle OCD, while on the diagonal OC the 
function (aeff (p  = u ) )  is fully defined. Let us consider the 
condition for joining the functions constructed by us along 
the diagonal OC. To this end we turn to Fig. 3a, which shows 
~ e ( u ~ " ( ~ = u ) ) a n d R e ( a ~ ~ ( ~ =  u - 0 ) ) , a n d t o F i g 3 ( b ) ,  
which shows Im (dff (p = u )  ) and lm(ueff (p  = u + 0 )  )on 
the diagonal OC (the common factor e p A  is omitted). I t  
can be seen that the joining condition is satisfied exactly at  
c = a. Then, however, the frequency dependence of the 
electric conductivity acquires a logarithmic divergence at  
w = w, = ~ - ' e - ~ ' ~ .  This singularity (which is typical of 
the method of quasi-equilibrium finite clusters) can in our 
case be smoothed out by choosing for the parameter c a finite 

0 .  

/ 
/ 

1 0 
/ 

Ln- - 
( a - ~ l ' c ~  

FIG. 3. Joining of the real ( a )  and imaginary (b) parts 
of the conductivity on the diagonal OC. The dashed 
curves are the dependences corresponding to the con- 
dition p = u. 
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value on the basis of simple physical consideration. From the 
definition of the quasi-nonequilibrium clusters it follows 
that the potentials of the sites belonging to one and the same 
cluster are equal. Such a formation has in an external field 
the electric properties of a metallic particle. Therefore as the 
frequency is lowered, w-w,, the dielectric constant of a 
metal-dielectric mixture with a metallic-phase concentra- 
tion x = A- ' In (w/w, ) will increase like 

e (a) -&,Aq In -"(elm,). 

In view of the natural physical uncertainity of the boundary 
of a quasi-equilibrium cluster, this divergence should be 
"smeared-out" over a frequency region Iln(w/w, ) 1 - 1. 
This, however, restricts the limiting value dielectric con- 
stant to E(W, ) -E( ,A~.  Equating this value of that given by 
our solution E a c1 ', we obtain the dependence of c on A: 

I t  is easy to verify that in this case the condition for joining 
the real parts of the conductivity are likewise not violated. 
This estimate yields the depth of modulation of the spatial 
distribution of the current (its value coincides with c). In 
addition we obtain a nontrivial estimate of the tangent of the 
dielectric-loss angle in the region of the transition from the 
high-frequency to the static regime: 

tg 6 (u,) cc A-"". (29)  

Let us list some results. Our analysis has shown that the 
entire frequency range is divided by the frequency w ,  into 
two intervals. w < w, the real part of the conductivity is inde- 
pendent of frequency: 

If w > w, , accordingly, the imaginary part of the conductiv- 
ity is equal to 

The missing branches can be calculated by the Kramers- 
Kronig relations, which take in this situation the form13 

As always, dispersion relations yield not the true conductiv- 
ity but certain functions that satisfy formally Eqs. (32)  and 
(33). In  our case this circumstance is manifest in the form of 
unphysical jumps of the derivatives at  w = w, (see Fig. 4). 
The onset of these singularities is due to the fact that in the 
course of the joining we continue the solutions obtained in 
the regions where A is zero or infinite to the point where 

FIG. 4. General picture of the frequency dispersion of theelectric conduc- 
tivity. A dashed line shows the logarithmic divergence that arises in the 
approximation of quasi-equilibrium finte clusters; 1 - R e ( u ( o ) ) ,  
2 - Im(u (o ) ) .  

A = 1. The equation derived by us can therfore not be used in 
the immediate vicinity of w,. Greatest interest attaches thus 
to the asymptotic equations, which can be used in a large 
frequency interval 

Relation (34) practically coincides with the one obtainable 
by the method of quasi-equilibrium finite  cluster^.^ 

4. LIMIT ON THE GROWTH OF THE SPATIAL SCALE OF 
CURRENT FLUCTUATIONS IN A STRONG ELECTRIC FIELD, 
AND NONLINEAR EFFECTS IN ELECTRIC CONDUCTIVITY 

The question of the influence of a strong electric field on 
the electric conductivity of a polycrystal can also be investi- 
gated in the context of the approach described above. I t  is 
known that the field dependence of the conductivity of a 
polycrystal is due to the strong exponential nonlinearity of 
the current-voltage characteristics of the potential barriers 
that separate the crystallites: 

J=J, exp (- y A )  sh (36) 

Here V is the voltage drop across the barrier, J the current 
flowing through the barrier, and e the electron charge. In 
this case the connection between the barrier current and vol- 
tage is no longer determined by Ohm's law, but by the com- 
plicated nonlinear equation 

t+r(p)sh(z,)=!  ( 1 ) .  (37) 

where 
e 5- 

U = -- 
2T' 

Equation (37)  must be linearized to derive from it a 
relation for the field-dependent barrier conductivity. Since 
the problem has no small parameter, we use, just as in Ref. 5, 
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the optimum-linearization method.I4 Assuming j ( t )  to be a 
given function of the time, we replace the operator in the left- 
hand side of (37) by a linear one, by introducing a field- 
dependent effective relaxation frequency 

?j+y (p) u=j(t). (38) 

The parameter y ( p )  can be determined from the condition 
that the mean squared difference of the left-hand sides of 
(37) and (38) be a minimum: 

12 

d -- 1 [r  (p)  sh u-y (p) u]'dt=O. 
d~ (P) f ,  

In the case of a periodic external signal the instants of time t, 
and t, must be chosen to satisfy the relation t, - t ,  = 2a/w. 
We obtain thus the equation 

Knowing y (p )  we can represent the initial nonlinear system 
by a linear circuit in which each element contains a certain 
"linearized" electric conductivity 

One must not forget, of course, that the integrals in the right- 
hand side of (39) contain the time dependence of the barrier 
voltage u(t). In our approach, it is natural to find this func- 
tion from expression (4)  for the current, obtained in the 
effective-medium approximation: 

d (e-pA+i~e-uA) eiwt 

X( y (p) + (d- l) e-pA+ie-YA[ I+ (d-I) c ]  ) . (41) 

Substituting (41 ) in (39) we get for y (p)  the transcendental 
equation 

where I, ( y )  is a Bessel function of imaginary argument. 
The problem of nonlinear electric conductivity of a 

polycrystal reduces thus to an analysis of Eq. (42) and of the 
ensuing renormalization-group equations of the linearized 
problem. In accord with the logic of our method, we must 
begin with a determination of the distributions of the real 
and imaginary parts of the effective conductivity 

We determine the y ( p )  dependence in the integral (44) 
from (42) and the functions i?(y(p),p,u,A) and 
Z.(y(p ),p,u,A) from (43). To calculate the integral (44) we 
must change to a new integration variable 

The connection between the old and new variable can be 
obtained with the aid of (42). This connection becomes par- 
ticularly simple A )  1 if, as usual, we neglect the exponential- 
ly small terms. We have then forp<u 

and for p > u 

a (E l  p=q+0(q-u) --- 7 v(O)=O, q ( I ) = l - -  a (E l  
A ' 

(46) 

where the field dependence of the parameter a ( E )  is given 
by the simple given 

The meaning o fa (E)  is clear from the plot of (45) in Fig. 5. 
IfpA is the unperturbed barrier height, then 7 A  is the bar- 
rier height with allowance for the incident voltage a ( E ) .  It 
follows from (47) that at sufficiently high values of the argu- 
ment 

By making the change of variables p + 7 we easily cal- 
culate the distribution density P,,(S,Z), and the result differs 
from that in the linear case [Eqs. ( 16)-( 18) 1 only in that 
the parametersp and u must now be replaced by p' and u': 

The argument ofa(E) ,  however, depends on the lattice peri- 
od a, which increases after each renormalization-group 
transformation. In a strong electric field the number of pa- 
rameters that determine the renormalization group of the 
effective medium is thus increased by unity. 

FIG. 5 .  Effective height of the barriers vs its unperturbed height in a 
strong alternating electric field. Atp > u the length a ( E )  of the horizontal 
"shelf' is proportional to the number of barriers that satisfy the "reso- 
nance" condition and are responsible for the absorption. 
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It is difficult to obtain the explicit form of the a ( E )  
transformation after each enhancement. To clarify this tran- 
formation in the region of small and large scales, however, it 
suffices to recall that the definition of the field ( E  ) also con- 
tains the length, so that the scaling results depend on how we 
define the mean field acting in the system. In an infinite me- 
dium, at fixedp' and u', a natural definition of the mean field 
is 

where (V,) is the average voltage drop over a scale 
LC -alp, - p' ( " . In each enhancement we must multiply 
the parameter a by a quantity b > 1. At not too large a num- 
ber k of iterations we have abh <LC and the renormalization 
approximation affects only the microscale, leaving LC un- 
changed. The increase of a (E) after each renormalization is 
then given by 

where ( V, ) = (E )LC.  Starting with k * = In LC /In a thereis 
left in the system only one spatial scale L C ,  and the renormal- 
ization transformation leaves the parameter a (E) invariant: 

TDL, T 

The limiting forms of the equations in (49) are therefore 

These equations contain a fundamentally important ef- 
fect, namely, the growth of the spatial scale of the fluctu- 
ations is limited in a strong electric field. In fact, consider the 
p l (p )  dependence plotted in Fig. 6. It can be seen that in a 
strong field that satisfies the condition eEL, > T first intro- 
duced by Shklovski'i15 this function has a jump at a certain 
field-dependent value 

Consider the region p < u. From Fig. 7 it is clear that the 
jump ofp' (p) leads to a jumpwise change of the conductivity 
Re(ueff (p))  a t p  =p*. Obviously, this jump leads to a shift 

FIG. 7. Alternation of the character of the percolation phase transition by 
the jump of the function p ' ( p ) .  

of the maximum of Re(aeff (p)  ) with increase of the electric 
field and to the strong exponential field dependence predict- 
ed in Ref. 15 for the conductivity and confirmed in Ref. 16 by 
a direct computer calculation: 

The correlation radius of the current fluctuations in a poly- 
crystal decreases with increase of the electric field like 

We consider now the region p > u. In strong fields we 
can put, without loss of generality, c = m .  It turns out here 
that the limiting frequency w, is repalced by a higher fre- 
quency wT = T-' exp( - p*A). If w < wf the function 
R e ( m )  ) = d ( a )  does not depend on the frequency and is 
described by Eq. (54). Ifw > a: the real and imaginary parts 
(32) and ( 3 3 )  of the conductivity, calculated using the 
Kramers-Kronig relations, can be expressed in terms of the 
parameter t(w ) : 

d 
Re(o(o)  ) =a' (E )  +a0= e,rAq nq 

2t9+' (0) ' 
(56) 

The value of t(w) is determined from the simple transcen- 
dental equation 

which follows directly from (52). Equation (56)-(58) 
shows that nonlinear effects should be observed in the high- 
frequency conductivity in the frequency interval 

mc exp [ (a ' )  ""+"] -=Co-=Co, exp (a ' ) ,  ( 5 9 )  

and the condition for the validity of the linear approxima- 
tion is 

FIG. 6. Graphic solution of Eq. (51)  ( a )  and the corresponding p '(p)  
dependence ( b ) .  

This formula must be regarded as a direct generalization of 
Shklov~kii's '~ nonlinearity criterion for the static case to in- 
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clude the case of alternating fields. Interest attaches to the 
field dependence of the tangent of the dielectric-loss angle in 
the region of the transition from the high-frequency regime 
to the static one: 

It can be seen that the absorption increases in strong electric 
fields. This effect is due to equalization of the heights of the 
"resonance" barriers-a phenomenon whose possible exis- 
tence was pointed out by me first in Ref. 5. The general con- 
clusion that the degree of inhomogeneity of a polycrystalline 
semiconductor is decreased in a strong alternating electric 
field has thus been fully confirmed for the two- and three- 
dimensional cases. 

5. CONCLUSION 

The problem solved in the present paper is an example 
of a direct application of the renormalization-group method 
to an investigation of a system of the "percolation" type. The 
very possibility of this approach is due to the percolation 
structure of the spatial distribution of the local current fluc- 
tuations in the volume of the sample-a fact that is almost 
obvious and is implicitly used in the classical percolation- 
theory method. The present paper emphasizes, apparently 
for the first time ever, the role of the percolative current 
structure in electric-conduction systems of the hopping type, 
and establishes the connection between the current-fluctu- 
ation amplitude and the dispersion of the logarithm of the 
electric conductivity [Eq. (28) 1. It should be noted that the 
simplicity of the resultant renormalization group is due to 
the assumed large value of this parameter. This simplifica- 
tion leads to a certain loss of information, in particular to 
unphysical jumps of the derivatives at w = w, . The accuracy 
of the calculations confirms fully the accuracy of the classi- 

tion of the one-dimensional model.' This pertains in particu- 
lar to the field dependence of tan 8 (w ) , which has in the two- 
and three-dimensional cases an entirely different form that 
in the one-dimensional one. An explanation of these differ- 
ences is that the resistance of a one-dimensional polycrystal 
is proportional to the number of resonance barriers a ( E )  
that are connected in series (since we are considering a one- 
dimensional case). When the number of dimensions of the 
space is increased, resonance barriers can become connected 
in parallel, and this changes the field dependence of the ab- 
sorption. 

In conclusion, I thank B. I. Shklovskii and E. I. Levin 
for a most helpful discussion of the results, and A. M. Mesh- 
kov, A. S. Titkov, and S. G. Przhibel'skii for stimulating 
discussions. 
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