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Experimental and theoretical investigations were made of electromagnetic excitation of sound in 
a metal plate, characterized by a complex dispersion law in a magnetic field H perpendicular to 
the surface. Experiments were carried out on tungsten at frequencies w / 2 ~  = 400-800 MHz in 
magnetic fields H - 100-4000 Oe. Acoustic vibrations of two types were excited: an acoustic 
normal mode traveling at the velocity of sound so in the metal and an anomalous (fast) sound 
with a phase velocity equal to the Fermi velocity of the conduction electrons v %  so. The 
interaction between these two acoustic signals led to the following effects: 1 ) oscillations of the 
output acoustic signal in the magnetic field Hwith a constant period governed by ballistic 
transport of energy of the electromagnetic wave into the metal by specific electron groups; 2) 
resonant changes in the amplitude of these oscillations in a field Hnear a diamagnetic resonance 
at w =: 52 (a = eH /mc ) ;  3 ) an inversion of the acoustic signal lines due to a change in the 
frequency by an amount Af =:so/2d ( d  is the plate thickness) and a periodic recovery of the line 
profiles with a period 2AJ: This theory is in good agreement with the experimental results. 

1. INTRODUCTION 

Electromagnetic generation of sound in metals is due to 
the interaction of the conduction electrons with an electro- 
magnetic wave and with lattice vibrations. It is usual to con- 
sider the conversion of an electromagnetic wave into sound 
in a skin layer.'-l4 This excites an acoustic wave representing 
a normal acoustic mode traveling in the metal at the velocity 
of sound so. We shall show that under conditions of a strong 
spatial dispersion (ql> 1, q is the wave vector of the acoustic 
wave and 1 is the mean free path of electrons) the character- 
istics of the dynamics of the conduction electrons in a mag- 
netic field applied to a metal can result in excitation of acous- 
tic waves traveling at a velocity equal to the Fermi velocity v 
of electrons. These acoustic vibrations are generated in the 
bulk of a metal via ballistic transport of energy by an electro- 
magnetic wave from a skin layer by specific electron groups. 
In other words, electrons facilitating anomalous penetration 
of the electromagnetic field into the investigated metal excite 
sound traveling at the electron velocity. We shall call these 
acoustic vibrations the anomalous (fast) sound. A similar 
physical factor results in the transport of acoustic pulses at a 
velocity u ("precursors" '5 '16) by the conduction electrons in 
metals. The effect was first i n~es t i ga t ed '~ , ' ~  in a geometry 
such that a magnetic field H was parallel to the surface of the 
sample and perpendicular to the wave vector of sound q. 

We shall report experimental and theoretical investiga- 
tions of electromagnetic excitation of sound in a metal plate 
characterized by a complex dispersion law (actual experi- 
ments were carried out on tungsten) subjected to a magnetic 
field H perpendicular to the surface. The same geometry was 
used in an earlier inve~ti~at ion ' l . '~  of electromagnetic exci- 
tation of sound as a result of the interaction of electrons with 
an electromagnetic field in the skin layer, but the excitation 
of anomalous sound was not considered because this effect 
was small. A Doppler-shifted cyclotron resonance and a 
doppleron-phonon resonance were investigated in Refs. 11 
and 12. A brief comm~nication'~ on electromagnetic excita- 

tion of sound in tungsten at frequencies w / 2 ~  = 400-800 
MHz in magnetic fields H - 100-4000 Oe revealed a com- 
plex oscillatory dependence of the amplitude U of the gener- 
ated sound on H. In the range of frequencies and magnetic 
fields used in Ref. 17 there were significant effects of the 
generation of anomalous sound. The amplitude of this sound 
was characterized by an oscillatory dependence on the mag- 
netic field Hand when the condition 

was satisfied, a diamagnetic resonance was observed (52 is 
the cyclotron frequency). These oscillations were similar to 
the Gantmakher-Kaner  oscillation^'^ and to the diamagne- 
tic r e s ~ n a n c e ' ~ . ~ ~  due to anomalous penetration of electro- 
magnetic waves into a metal. Interference of anomalous 
sound and a normal acoustic mode of the investigated metal 
resulted in frequency inversion of the amplitude of the gener- 
ated sound U(H)  when the frequency was altered by an 
amount -s,/d ( d  is the thickness of the metal plate) and a 
periodic (period 2s0/d) recovery of the line profile. 

2. EXPERIMENT 

Transformation of electromagnetic and acoustic waves 
was investigated in transmission geometry. An acoustic sig- 
nal was generated or recorded on one side of a tungsten plate 
and an electromagnetic one on the other. This hybrid mea- 
surement method was described in greater detail in Ref. 12. 
Plane-parallel tungsten plates of thickness d~ 1.95-2.00 
mm were cut by spark machining from a single crystal char- 
acterized by a resistivity ratio p,, , /p, , , = 4. lo4. The 
low-temperature setup was described in Ref. 21. Experi- 
ments were carried out in the qllH(([100] geometry at fre- 
quencies f = w/2a = 400-800 MHz. The magnetic field was 
varied within the range 0-4 kOe and measurements were 
made at temperatures 4.2-1.5 K. All the measurements were 
carried out under conditions of continuous oscillations, so 
that special attention had to be paid to suppress stray leakage 
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FIG. 1 .  Dependence of the derivative dull /aH on the magnetic 
field H: a)  experimental results, the upper curve corresponds to 
f = 524.09 MHz and the lower one to f = 523.33 MHz; b )  calcu- 
lations carried out for o / v  = 10, d / I  = 1/2, where the upper 
curve corresponds to f = 500 + Af MHz, and the lower one to 
f = 500 MHz. 
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of the power to the input of the receiving channel. In all the 
experiments the level of such leakage was below the sensitiv- 
ity threshold of the receiving channel, which was - 130- 
140 dB/W. The power supplied to a sample was less than 50 
mW. 

Arrangements were made to record the following two 
components of an acoustic signal U during the same experi- 
ment: UII (H) IJE(0) and U, (H)lE(O), and also the deriva- 
tives aUII /aH and aU,/dH [E(O) is the intensity of the 
electric field on the surface of the sample z = 01. The depen- 
dence of the signal UII (H) exhibited a monotonic fall on 
increase in H. This dependence had been investigated by us 
for tungsten in an earlier studyI2 at frequencies up to 150 
MHz. On increase in the frequency, when its value exceeded 
400 MHz, we observed oscillations in weak magnetic fields 
(qR > 1) and these oscillations modulated the monotonic 
Ull (H) curve (R is the Larmor radius of an electron). Fig- 
ure la  of our earlier study'' reproduced the oscillatory part 
of the signal UII (H) representing a superposition of the har- 
monics with very different periods. These periods corre- 
sponded to different groups of carriers in tungsten. The de- 
pendence of the oscillation periods on the magnetic field was 
determined by a spectral analysis of the signal U I I  (H) whose 
Fourier spectrum is shown in Fig. I b in Ref. 17. It was estab- 
lished that the positions of singularities in the Fourier spec- 
tra were independent of the frequency f and that the UII (H) 
oscillations due to each group had a constant period in a 
magnetic field. 

A strong dependence of the profile of the Ull ( H )  lines 
on the frequency f was observed. A change in the frequency f 
by an amount Afz0.7 MHz resulted in line inversion. The 
line profile was restored periodically in a magnetic field 
when the frequency was altered at a period 2Af. The frequen- 
cy inversion of the UII ( H , f )  lines is shown in Fig. 2 of Ref. 
17. For example, large-period oscillations were inverted in 

the frequency interval Af = 0.763 MHz. 
Field dependences of the derivative du l l  (H)/dH were 

investigated in order to reveal resonance singularities in the 
signal. Figure la  shows the derivatives of the signal UII (H)  
with respect to H. A singularity in a field H z  160 Oe corre- 
sponding to the condition R = w can be seen in Fig. la. The 
line profile of d u l l  (H)/aH, like that of Ull (H),  depended 
strongly on the frequency f and exhibited inversion in a fre- 
quency interval Af. It was found that an increase in the fre- 
quency shifted the resonance in a magnetic field (in the di- 
rection of higher values of H) by an amount proportional to 
the frequency f. 

3. THEORY 

Propagation of electromagnetic and acoustic waves in a 
metal and their mutual transformation are described by a 
system of equations consisting of the Maxwell equations, a 
linearized transport equation for the conduction electrons, 
and equations describing the lattice vibrations (see, for ex- 
ample, Ref. 8). The boundary conditions for this system of 
equations are as follows: the continuity of the tangential 
components of the alternating electric and magnetic fields 
on the metal surfaces z = 0 and z = d; vanishing of the vol- 
tages on these surfaces; specular reflection of electrons from 
the boundary [the coordinate axes were selected as follows: 
zlJn, H, q; n is the normal to the surface of the metal plate; 
xllE(0); E(0)  is the vector ofthe electric field of the electro- 
magnetic wave in vacuum]. 

Outside the region of strong coupling of sound with 
normal electromagnetic modes in a metal, and also in the 
case of a weak coupling between the waves, the coefficient of 
conversion of an electromagnetic wave into sound is small in 
terms of the parameter s,/v. 1n this case the equations for the 
electromagnetic and acoustic fields are independent in the 
leading approximation and the coupling of the waves occurs 
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in accordance with perturbation theory. When an acoustic 
wave propagates along a high-order symmetry axis of a crys- 
tal, the longitudinal and two transverse modes are indepen- 
dent. In a transverse magnetic field the equations and their 
solutions are simpler if we introduce circular polarization 
for the displacement vector U: Us = Ux + isU,, where 
s = 1. The acoustic wave field on the z = d surface has the 
form1' (Uswe-'"')  

iE,'(O) dk  
U. ( d ,  H )  = j - kq, ( k )  

n p , ~ , L  - kZ-9,' k ' - 4 i n ~ c - ~ o ~  ( k )  

wherep, is the mass density of the investigated crystal; q, is 
the wave vector of sound which includes electron damping 
and renormalization of the velocity during propagation of 
sound in the metal; us (k )  is a Fourier component of the 
electrical conductivity; 77, (k)  is a Fourier component of the 
"deformation conductivity"; the general form of these Four- 
ier components Carl be found in Ref. 1 1. 

Equation (2)  describes electromagnetic excitation of 
sound by the deformation mechanism of the electron- 
phonon interaction. In the range of frequencies and magnet- 
ic fields of interest to us the conditions for a strong spatial 
inhomogeneity are realized: 

FIG. 2. Calculated dependences of IP, I and p, on w/R for 
W / V  = 1O:a) limitingpoint ( x  = I ) ,  d / l =  1;  b) limitingsection 
( w >  1, w = 1 or 21, d / l =  1/2; c )  extremal drift, d / l =  1 / 2 .  
Curves labeled 1 apply to the positive polarization and curves 
labeled 2 apply to the negative polarization. 

( Y  is the relaxation frequency of electrons). As shown in 
Ref. 11, in this case we can ignore the induction force in the 
equations describing the lattice vibrations. 

It is convenient to calculate the integral in Eq. ( 2 )  along 
a contour in the complex k plane by closing it in the upper 
half-plane. The integrand has poles and branch points which 
are contained in the transport coefficients us (k )  and 77, (k)  . 
The branch points are due to electrons from the vicinity of a 
limiting point (limiting section) or of extremal drift, which 
effect the ballistic mechanism of anomalous penetration of 
an electromagnetic field into a metal.18 The positions of the 
poles in Eq. (2) ,  associated with a normal acoustic wave, is 
given by the equation 

Poles of the second type are of electromagnetic origin and 
represent the solution of the dispersion equation 

In the case under discussion defined by Eq. ( 3 )  the roots of 
Eq. (5 )  correspond to the anomalous skin effect (Im k cc Re 
k)  and there are no solutions in the form of weakly damped 
waves characterized by Re k)  Im k (for example, doppler- 
ons ) . 

It follows that the amplitude of the output sound Ux (d, 
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H )  of Eq. (2) is a sum of three terms which are damped 
exponentially at different distances. The first term U,,, due 
to a pole of Eq. (4), is the amplitude of a normal acoustic 
wave in a metal propagating at a velocity so and damped out 
at a depth L,, = (Im q; I )  a v/w. The second term U,,, 
governed by the component of the field of the anomalous 
skin effect, is rapidly damped out within the skin depth 
6-(cpF/3dw ~ e ~ ) ' / ~ g L , ,  ( N  is the concentration of 
quasiparticles and p,  is the Fermi momentum). The third 
term represents anomalous sound traveling at the velocity v 
in a metal. Generation of this sound is an acoustic analog of 
the Gantmakher-Kaner effect because it is due to the branch 
points of the kinetic coefficients us (k )  and 7, (k) .  The am- 
plitude of this term and the electromagnetic field penetrat- 
ing anomalously are damped out in a depth of the order of 
the mean free path of electrons I .  The observed effects are 
associated with the interaction and competition of these 
three sound excitation mechanisms. At low frequencies 
( W  < Y )  characterized by La, ) I  the term U,, exceeding con- 
siderably the other two terms is characterized by resonant 
dependences on H due to a Doppler-shifted cyclotron reso- 
nance and a doppleron-phonon r e ~ o n a n c e . " ~ ~ ~  At high fre- 
quencies when the condition (3)  is satisfied and 

the relative contribution of the term U,, (H) to electromag- 
netic excitation of sound becomes greater. In experiments on 
tungsten at high frequencies [defined by Eqs. (3)  and (6)  1 
the region of Doppler-shifted cyclotron resonances22 

(v, .., is the extremal average velocity of electrons along the 
vector H; r, is an integer) and the region of doppleron- 
phonon resonancez3 

correspond to strong magnetic fields H >  1 kOe. In the range 
H < 1 kOe the amplitude U,, (H) is a monotonic function of 
Hand the most interesting and informative is the component 
U,, of electromagnetic excitation of sound. 

The singularities of the behavior U,, (11) account for 
the oscillatory behavior of the generation of sound by an 
electromagnetic field. The acoustic component U,, in Eq. 
(2)  [representing a residue of the pole of Eq. (4)  ] is 

The dependence of the deformation conductivity 7, (q, ) on 
the applied magnetic field has no singularities in the range 
H < 1 kOe (Ref. 1 1 ). The phase velocity of sound described 
by Eq. (9)  and generated in the metal is w/Re q, -so. 

The amplitude U,, will be found by deriving expres- 
sions for the coefficients a, (k )  and 7, (k )  in Eq. (2) .  We 
shall assume that the components of the deformation poten- 
tial tensor can be written in a form corresponding to an iso- 
tropic dispersion lawI3: 

where p is a coefficient with the dimensions of mass and of 
value which is of the same order as the cyclotron mass of the 

conduction electrons. The anisotropy of the electron energy 
E = E (p )  will be allowed for in the dependence of the longi- 
tudinal velocity v, on the phase T of the transverse motion of 
electrons: 

u,(p, ,  T ) = V , ( P , )  + A u Z ( p : ,  T ) .  (11) 

Here, 

1 
6, (p , )  = -$dTU, (P,,  T) 

2n 

is the average velocity of electrons along H. 
In this model the values of us (k )  and 7, ( k )  for a given 

sheet of the Fermi surface can be expressed in terms of the 
same function: 

CJ, ( ~ c ) = o ~ F , ( ~ ) ,  

where 

(uo is the conductivity and N is the electron density ), 
1 

t = p,/p, and a, and a, are the Fourier coefficients: 

1 
a,.' = - $ drel"u.  ( T ,  p,) dr 'A~ ,  (r', p,) 1, 

2n 

The existence of a gth order symmetry of the Fermi surface 
(relative to rotation about thep, axis) results in selection of 
the resonance serial number in the sums over r in accordance 
with Eq. ( 14) following the rule of Ref. 24: 

The function F, (k )  includes branch points of the complex 
variable k = k,, the positions of which are given by the rela- 
tionship 

where p ,  is the momentum of electrons in the vicinity of a 
limiting point or section of the Fermi surface (the velocity of 
electrons at these points is vllH), p, is the momentum of 
quasiparticles characterized by extremal drift and by 

Electrons from the vicinity of the limiting point and a limit- 
ing section give rise to a logarithmic branch point, whereas 
electrons characterized by an extremal drift create a root 
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branch point of the function Fs ( k )  (Ref. 18). 
In the case of a limiting section (limiting point), when 

electrons with the highest value of the momentum p, = p ,  
are selected, the function F, (k)  is 

where x = (p, /p, ) '; p ,  gp, p is the largest value of the mo- 
mentum at right-angles to the vector H; 

In the case of an elliptic limiting point, we have x = 1. 
A section of the Fermi surface characterized by an ex- 

tremal drift of carriers [Eq. ( 18) ] gives rise to the following 
form of the function F, (k) : 

We can readily see from Eqs. (19) and (20) that the 
amplitude U,, of Eq. (9)  includes a contribution of such 
values of k = q, b 1/1, for which the function 7, (q,, H )  in 
Eq. ( 12) has no singularities. Knowing the function F, (k )  
[Eqs. ( 19) and (20) 1 we can readily obtain expressions for 
the amplitude U,, (H) : 

Here, 

and the functions Y,t'32' (H, Y )  describe the profile of a line 
representing electromagnetic excitation of sound. The phase 

velocity of anomalous sound [Eq. (21 ) ] is governed by the 
drift velocity of electrons u. The signal is analogous to an 
acoustic pulse generated by sound and traveling at the Fermi 
ve10city.l~~'~ In the case of electrons corresponding to a 
limiting section [represented by the index ( 1 ) in Eq. (21 ) ] 
we have 

x [ l n  
L ( E + ~ ) ~ + ~ B . ~ I " '  - i arctg_ (22) 

E - 1  s f 1  

In the case of electrons characterized by an extremal drift 
[index (2)  in Eq. (21 ) 1, we find that 

A calculation of the line profiles of the functions 

was carried out on a computer. Figure 2 shows the depen- 
dences of the amplitude /Y,  I and of the phase p, on x = a/ 
w - H  in the cases of a limiting point, x = 1 (Fig. 2a), a 
limiting section, x > 1 (Fig. 2b), and extremal drift (Fig. 
2c). In all cases the curves with the positive polarization are 
identified by the number 1, whereas those with the negative 
polarization are characterized by 2. 

X exp[-d(E--l)/lI [x- (1-iP.) ' /(g-i~~)~], 

1. Limiting point ( x =  1) 

In the s = +_ 1 polarization the functions IY + (x)  I and 
p+ (x) behave similarly for different values of d /I and w/v. 
The dependences are monotonic and do not include a dia- 
magnetic resonance: an increase in the field reduces 
I Y + (x) 1 monotonically, whereas p+ (x )  rises monotonical- 
ly and both approach constant values (curves denoted by 1 ) . 

Line profiles representing the amplitude lY - (x)  1 and 

the phase p- (x)  of the resonant polarization are shown in 
Fig. 2a (curves labeled 2) .  The dependence p (x)  for all the 
values of the parameters d / I  and W/Y is a monotonically de- 
creasing function of x and has a constant value in high mag- 
netic fields. The slope of p, (x) increases on reduction in the 
parameters d/l and v/w. The graph of IY_(x)l demon- 
strates resonant behavior due to a diamagnetic resonance. 
At the center of the x = 1 line (w = 0) there is a minimum 
of depth which increases on reduction in d /I and v/o. The 
resonance lines become narrower on reduction in the colli- 
sion frequency Y. 

2. Limiting section (x> 1) 

Figure 2b shows the amplitude /Y, (x) / and the phase 
p, (x) for the following set of parameters: x = 1 or 2; 
W/Y = 10; d /I = 1/2. The behavior of the nonresonant func- 
tions I Y + (x)  / and p+ (x )  is similar to that observed in the 
case when x = 1. In the presence of a limiting section a reso- 
nant singularity of the amplitude IT- (x)  1 is manifested 
more strongly than at a limiting point. The relative depth of 
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a minimum depends on the parameters d /I and v/w, exactly 
as in the preceding case. 

The physical reason for the appearance of a minimum of 
the functions / \V (H) I at a diamagnetic resonance is dis- 
crimination of electrons in the vicinity of a limiting point 
(limiting section) p, = p i  relative to the characteristics of 
their longitudinal and transverse motion. The point is that at 
the limiting point itself the electrons "pass through" (v( lH)  
and have no transverse motion (u,  = 0 )  so that their inter- 
action with a wave of frequency w is nonresonant. A reso- 
nance can be exhibited by electrons in the vicinity of a limit- 
ing point; these electrons are characterized by the 
momentum component p, =p,  - Sp, and the velocity com- 
ponent u, #O (SpZ - l/kl ) and they move in phase with the 
wave in question. Obviously, the number of the electrons 
passing through increases on increase in x and aIso on in- 
crease in the mean free path I. Therefore, the relative depth 
of a minimum of the function I \V- ( x )  I at x = 1 increases on 
increase in the parameters x and I. 

3. Extremal drift 

The profile of nonresonant polarization lines 1 \V + ( x )  1 
and p+ ( x )  is similar to that in the case of a limiting point. In 
the resonant polarization case a typical resonance pattern is 
observed (Fig. 2c) : the function / \ V  ( x )  1 has a sharp maxi- 
mum and its width is governed by the ratio w/v, whereas the 
amplitude is determined by the parameters d /I and w/v. The 
function p- ( x )  is in the form of a dispersion curve. Natural- 
ly, in the extremal drift case of Eq. (18) the function 
I V!- (x)  I has no minimum, because all the electrons belong- 
ing to this group have fixed values of the transverse velocity 
v, (p, =p,)  and at resonance (w = 0 )  they move in phase 
with the wave. 

The intensity of a diamagnetic resonance due to the 
electrons described by Eq. ( 18) is much greater than in the 
case of a limiting point or a limiting section. This is due to a 
singularity of the density of states of the resonant electrons25 
and the nature of singularities of Eqs. (22) and (23).  

In the range of magnetic fields far from a diamagnetic 
resonance ( R g w  or 0 % ~ )  the amplitudes \V, ( H )  are 
monotonic functions of H and are identical for both polari- 
zations. In this range of fields H the signal U,, ( H )  repre- 
senting the electromagnetic excitation of sound [Eq. (21 ) ]  
is described by a harmonic function of H ,  which is similar to 
the Gantmakher-Kaner oscillations. Near a resonance 
(Iw - R /  < Y )  the U,, (H) signal exhibits oscillations 
whereas the U, (H) signal undergoes a diamagnetic reso- 
nance. 

We can readily see that both the diamagnetic resonance 
and the oscillations are present for both components of the 
signal due to electromagnetic excitation of sound investigat- 
ed in our experiments: 

However, the observed dependences I U, ( H )  I and / U, ( H )  1 
may appear different. This is due to the following circum- 
stance. In the investigated range of magnetic fields and fre- 
quencies [Eq. ( 3 )  ] we find, to within small terms of the 
order of 1/91, that the relationships q+  ( H )  z q -  ( H )  (see, 
for example, Ref. 26) and v+ z v -  are satisfied and that 

both polarizations in the acoustic component (9 )  are identi- 
cal: U, + (H,  w) =: U, - (H,  w) and the corresponding signal 
is linearly polarized along the x axis. Therefore, the projec- 
tion of U, (H) represents interference between acoustic exci- 
tations of two types, whereas U, (H) is simply governed by 
the component of U,,: 

U,=U,t ( ~ , + + U , - ) i a .  u,= (U,+-V,-) /Zi. (24) 

4. DISCUSSION OF RESULTS 

In the described experiments on tungsten subjected to a 
normal magnetic field, an electromagnetic wave excited 
acoustic vibrations of two types: a normal acoustic mode 
U,,, propagating at the velocity of sound so, and an anoma- 
lous mode U,, traveling at a phase velocity equal to the Fer- 
mi velocity of the conduction electrons uss,. The interac- 
tion between these two acoustic signals led to effects of the 
following three types: 1)  an inversion of the U ( H )  lines as a 
result of a change in the frequency by an amount of Af and 
periodic recovery of the line profile with a period 2Af; 2)  
oscillations of the output acoustic signal U ( H )  and of 
d U ( H ) / d H  in a magnetic field H,  both characterized by a 
constant period; 3)  a resonant change in the structure of the 
oscillations of U ( H )  and d U ( H ) / d H  in a magnetic field H 
near w zR.  

1 ) Our experiments were carried out in the absence of a 
reference signal so that the observed dependences represent- 
ed interference between the acoustic excitations U,, of Eq. 
(9 )  and U,, of Eq. (21). As shown in Sec. 2, U,, (H,  w ) 
obtained in a range of magnetic fields H < 1 kOe was a mono- 
tonic function of H and was linearly polarized, whereas the 
component U,, oscillated as a function of H. Therefore, U,, 
( H )  acted as the "reference signal" of frequency w .  An am- 
plitude detector recorded a signal of the following form: 

in the case of circular polarization of U,, 

o+sQ 

so 

(25 
whereas in the linear polarization case, of U,, 

For simplicity, we assumed that I U,, I > I U,, ( in Eqs. (25) 
and (26). 

A change in the frequency in Eq. (25) modulated the 
phase of the oscillations as a function of the magnetic field H ,  
whereas in Eq. (26) there was modulation of the signal am- 
plitude. I t  is clear from Eqs. (25) and (26) that a change in 
the frequency by an amount Aw z ~ s , , / d  should result in in- 
version of the oscillations. The validity of separation of the 
sound signal generated by electromagnetic excitation into 
the reference U,, and oscillatory U,, components was con- 
firmed by the observation that the measured frequency of the 
line inversion Afzs,/d yielded the velocity s , , ~  2.88 x 10" 
cm/s, which was identical with the known value of the den- 
sity of sound s, in tungsten along the [ 1001 axis.12 
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2 )  Oscillations of the sound component U,, in a field H 
appeared for the same reason as the harmonic distribution of 
the electromagnetic field in a metal." The distribution was 
due to the fact that the interaction of electrons was strongest 
for that harmonic of a wave packet for which the wavelength 
was equal to the extremal displacement of an electron out- 
side the cyclotron period 27ru/fk. The oscillations had a con- 
stant period in terms of the field H a n d  this period was 

where S is the area of a section of the Fermi surface 
~ ( k )  = F~ out by thep, = const plane. 

A spectral analysis made it possible to identify five os- 
cillation periods corresponding to different sections of the 
Fermi surface of tungsten (sections A and B of the hole octa- 
hedron and an extremal section H of the electron "jack") 
and limiting points on the "bowl" of the electron "jack" 
(point G) and on the hole ellipsoids (point K ) .  The quanti- 
ties ( 2 ~ )  - ldS/dk, = 6 found from the Fourier spectra 
were as follows: 5 ~ 0 . 5 2  ' for the section A; lzz0.168 
kL for the section B; 6 ~ 0 . 1 4 8  k' for the section H; 
5-0.186 k1 for the limiting point K; f~ 1.10 k' for the 
limiting point G. In the section A there were two harmonics 
A, and A,. For comparison, we shall now give the values of f 
obtained from the experiments on magnetoacoustic and size 
effects: f = 0.475-0.512 k' for the section A (Ref. 27); 
f = 0.168 + 0.002 .kL in the section B (Ref. 28); 
f = 0.143 + 0.002 k1 in the section H (Refs. 28 and 29); 
6 = 1.08 A-l for the limiting point G (Refs. 28 and 29). The 
calculated value f = 1.192 A- ' applies to the limiting points 
K (Ref. 30). 

3) The resonant change in the oscillation amplitude UIl 
(H) and in the derivative d U I  /aH in a field H near w =ll 
was attributed to a diamagnetic resonance. Figure l a  shows 
the dependence of the derivative d u l l  /dH on the magnetic 
field H at two frequencies. The characteristics of these 
curves were accounted for by an analysis of all the main 
diamagnetic resonance line profiles (Fig. 2 ) .  It was found 
that the experimental data in Fig. l a  were best described by a 
theoretical dependence d U l  (H) /dH when electromagnetic 
excitation of sound was due to electrons characterized by 
extremal drift (Fig. 2c) and a diamagnetic resonance was 
stronger than in the case of electrons from the vicinity of the 
limiting points and sections (Figs. 2a and 2b). Figure lb 
gives the results of a theoretical calculation of the depen- 
dence of d u l l  /dH on H. It is clear from this figure that the 
amplitude of dUII  /dH at w = R had a resonant peak of the 
envelope and the oscillation period near the resonance ex- 
hibited dispersion. The dispersion of the period was due to 
dispersion of the phase of the function \V._ (H) of Eq. (21) 
(Fig. 2c). 

A comparison of Figs. l a  and l b  demonstrated a good 
agreement between the theory and experiment. We therefore 
concluded that the observed singularity of dU, ,  ( H ) / d H  
(Fig. l a )  was governed by a diamagnetic resonance in the 
case of electromagnetic excitation of sound and was due to 
the transfer of acoustic excitation of carriers characterized 
by extremal drift. The value of the field Hzz 160 Oe corre- 
sponding to a diamagnetic resonance ( w  = R )  gave the cy- 
clotron mass m ~ 0 . 8 5 m ,  (m, is the mass of a free electron). 

This value was close to m ~ 0 . 9 3 m ,  representing the cyclo- 
tron mass of holes following v orbits on the octahedron, as 
determined in the experiments on the de Haas-van Alphen 
effect.,' Clearly, this resonance and the oscillations were due 
to the B orbits of the hole octahedron, which were localized 
on the Fermi surface close to the v orbits. Since the momen- 
tum p, was governed by the oscillation period of Eq. (27), 
we could estimate the drift velocity for this group of holes: 
~ ~ 0 . 2  x lo8 cm/s. This velocity was less than the velocity of 
carriers in the vicinity of limiting points of the hole octahe- 
dron amounting to v z  1 . 0 ~  10%m/s (Ref. 31). 

The penetrating component of the electromagnetic field 
E ( z )  was known to exist in the absence of a magnetic field3' 
and also for orientations of the field H relative to the surface 
of the metal other than those investigated by us. It therefore 
follows that in such cases we could expect generation of 
anomalous (fast) sound in a metal. 

The authors are grateful to V. F. Gantmakher for dis- - 
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