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The molecular field approximation and the Keldysh technique are used to develop a general 
theory of nonlinear nonequilibrium processes in structural and spin glasses in the quantum case. 
A calculation is reported of a nonequilibrium single-particle distribution function of molecular 
fields. A description is given of slow relaxation of the profiles of lines in the optical spectra of 
structural order-disorder glasses. The three-particle correlator in a Heisenberg spin glnss is 
calculated. 

1. INTRODUCTION 

The molecular-field approximation is used in the pres- 
ent paper to develop a general theory of nonlinear nonequi- 
librium processes in quantum glasses. For brevity, we shall 
use the single term "structural glasses" for dipole and proton 
glasses and we shall also consider jointly spin glasses. From 
the physical point of view these three types of glass differ 
only in respect of the specific nature of the Hamiltonian, 
which is not very important in the general theory. Therefore, 
all the systems discussed below will be simply called quan- 
tum glasses, bearing in mind that in all cases the quantum 
effects are important. In discussing specific results we shall 
naturally employ specific Hamiltonians. 

There is a highly developed theory of the molecular 
field for spin glasses in the classical limit both for the static 
case and for the dynamic equilibrium case (see, for example, 
the reviews in Refs. 1 and 2).  However, nonequilibrium pro- 
cesses, which form the basis of all the physics of the investi- 
gated systems, have been largely ignored (see, for example, 
Refs. 1,3, and 18). There is as yet no general theory of these 
processes for macroscopic times. The present paper is spe- 
cifically intended to provide such a theory. We shall consid- 
er the most general case of quantum properties because they 
are important in the case of both structural and spin glasses. 

The following comments should be made. Unfortunate- 
ly, it is very difficult to go beyond the molecular-field ap- 
proximation. Therefore, a natural question arises whether 
the results obtained in this approximation represent reality. 
It is generally accepted1-' that the molecular field theory 
describes experiments qualitatively and can serve as the lan- 
guage for discussing the phenomena observed experimental- 
ly. However, no attempt should be made to carry out any 
specific quantitative fitting of the theory to the experimental 
results and only the qualitative approach should be em- 
ployed. We hope that this applies also to the description of 
nonequilibrium processes in quantum glasses for the full 
range of times (from quantum to macroscopic), governing 
slow relaxation, although this can naturally be demonstrat- 
ed only by going outside the molecular-field approximation. 

In an earlier communication4 the present author devel- 
oped a static theory of quantum glasses under nonergodic 
conditions. This problem has been known for a long time,5 
but it was solved first only r e ~ e n t l y . ~  It was demonstrated 
there that nonergodic and quantum properties can be sepa- 
rated in a certain sense and that a closed system of equations 

can be written down for all the quantities of interest to us. 
This theory includes naturally the Matsubara times T 

and the Matsubara frequencies w, = 2 m T .  It would seem 
that a description of any irreversible process, including one 
which is strongly nonlinear, can be obtained by analytic con- 
tinuation using appropriate Matsubara frequencies. How- 
ever, it is found that this approach can give only the intraval- 
ley susceptibilities. Intervalley transitions simply do not 
appear when analytic continuation is employed. 

This is naturally due to nonergodicity of our systems. A 
theorem on analytic continuation has been is derived for er- 
godic systems and may not be valid in the nonergodic case. 
Physically this is due to the fact that in developing a static 
theory it is assumed implicitly that in the limit t = - co 
(where t is time) a Gibbs distribution is already established. 
Some years ago, on the other hand, the problem of the role of 
the initial conditions in the physics of spin glasses has been 

It  has been found that the initial conditions 
play a decisive role in these systems. If we assume that a 
Gibbs distributions exists for t = - co, then only intraval- 
ley dynamics is obtained and nothing else. This is a classical 
analog of our conclusion in the quantum case. 

However, if this assumption is not made a completely 
different solution is clearly obtained. The authors of the 
cited investigations have been unable to identify the nature 
of this solution or its physical meaning. They have simply 
postulated that this is the Sompolinsky solution9-" closely 
related to the problems investigated by that author in the 
steady-state dynamic but this could not be 
proved in Refs. 6-8. 

However, it is clear from the results of Refs. 6-8 that in 
investigating the steady-state dynamic solution with inter- 
valley dynamics or in study of transient phenomena we can- 
not begin with a Gibbs initial state, but we must assume that 
the zeroth state at  t = - co is of different nature. 

We shall use the Keldysh technique.14 In this case a 
random exchange interaction is included either to the zeroth 
Hamiltonian or in the interaction form. We can easily show 
(we shall not do  this, but the reader is directed to, for exam- 
ple, Ref. 15) that in the former case it is necessary to use, 
exactly as in the static case, the replica method and this 
yields an analytic continuation of the solution obtained by 
the present a ~ t h o r . ~  This is to be expected if we bear in mind 
that a Gibbs distribution is assumed to exist at  t = - co. In 
the second case it is found that there is no need to use any 

152 Sov. Phys. JETP 69 (I ) ,  July 1989 0038-56461 189/070152-09$04.00 @ 1989 American lnst~tute of Physics 152 



replicas, but it is essential to assume the existence of slow 
logarithmic dynamics and to attribute the nonergodicity to 
breakdown of the fluctuation-dissipation theory. 

This slow dynamics corresponding to intervalley transi- 
tions is inthe steady-state case fully analogous to that dis- 
cussed by the present author and H ~ r n e r . ' . ~ ~ ' ~ " ~ ' ~  

However, in the transient case, which is of main interest 
to us, we shall construct a general theory of nonlinear non- 
equilibrium processes in quantum glasses. 

It is very interesting to consider how one can avoid the 
use of the replica method. It is found that the Keldysh tech- 
nique includes a perfectly general mechanism which causes 
vacuum loops to vanish. It is this mechanism that replaces 
the replica method. 

After developing a general theory, we shall consider a 
number of specific tasks and calculate the corresponding 
generalized nonlinear susceptibilities. We shall consider 
only two problems. In the earlier paper4 it was pointed out 
that there is a problem of slow relaxation of the spectrum of 
structural glasses on application of an external field. We 
shall solve this problem below to arbitrary order in terms of 
an external field, i.e., we shall tackle the general nonlinear 
problem. 

The second task is related to a three-particle correlation 
function of a Heisenberg spin glass. It is well known that at 
finite frequencies a three-frequency correlation function of a 
Heisenberg ferromagnet differs from zero even in the para- 
magnetic range of temperatures. This gives rise to a number 
of interesting phenomena in the scattering of polarized light 
or of polarized neutrons. We shall study such a correlation 
function for a spin glass and also consider the problem of its 
slow relaxation under nonlinear conditions. 

2. DERIVATION OF THE PRINCIPAL EQUATIONS 

We shall consider, as stated in the Introduction, Hamil- 
tonians of three types. The first is the Hamiltonian of displa- 
cive structural glasses (which include dipole glasses) : 

H = -  z Jikm,mk + U (mi. r , )  , 

where m and r are the displacement and momentum, made 
dimensionless as a result of division by the lattice constant; 
w, is the oscillator frequency. This Hamiltonian was dis- 
cussed in detail in Ref. 4. 

The second Hamiltonian represents order-disorder 
structural glasses4 

where Sf and S :  are the spin operators for the spin S = 1/2, 
whereas A is a constant governing tunneling. 

The third system describes ordinary Heisenberg spin 
glasses with the Hamiltonian 

where h is the external magnetic field. In all cases the quanti- 
ty J,, is the random exchange interaction with the average 
value amounting to zero and with 

We shall write down the general expressions for the Hamil- 
tonian of Eq. ( 1 ), and the generalization to the other Hamil- 
tonians will be self-evident. 

The zeroth Hamiltonian in Eq. ( 1 ) will be assumed to 
be the quadratic part of U(m,r): 

so that the part of the Hamiltonian associated with the inter- 
action can be written as follows: 

In Eqs. (2 ) and ( 3 ) we shall assume subsequently that 

It is well known that the S matrix has the following 
form in the Keldysh technique: 

where T, denotes ordering over a contour c shown in Fig. 1, 
which first goes from t = - w to t = + cc and then in the 
opposite direction. This contour can be split into two, c + 

and cc ,  as shown in Fig. 1. 
The Green function is defined as a matrix in terms of 

m(t ,  ): 

The rules for the Keldysh diagram technique are the same as 
usual. The difference from the conventional technique at 
zero temperature (see, for example, Ref. 19) is an allowance 
for the matrix structure Da8 ( t  - t ' ) . In each order of pertur- 
bation theory we have, instead of the usual product of the 
Green functions, a sum of these functions and a = + is 
assigned a symbol + 1, whereas a = - is assigned - 1. 
For example, the graph in Fig. 2 has the following form (the 
usual factors are omitted) : 

where 

FIG. 1. 
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FIG. 2. 

We can easily see that perturbation theory can be reformu- 
lated in terms of the usual S matrix. We shall assume that 

It should be noted that the system ( 1 0 )  contains essentially 
two fields m  + ( t )  and instead of a complex profile c = c + 

+ c- ,  we obtain one simple profile c + . Naturally, pertur- 
bation theory should also be developed for two fields m + , 
but with one contour. This can be done quite easily, as fol- 
lows. The zeroth approximation is a function D  $) ( t  - t  ' ) 
which is obtained from Eq. ( 8 )  by substituting S,  = 1 .  We 
shall write down this function for the zeroth Hamiltonian of 
Eq. ( 5  1. However, we must note first that in the most general 
case we haveI4 

where K is the correlation function of the field m  ( t ) ,  where- 
as DR and fl are the retarded and advanced Green func- 
tions. In the w representation we find that the fluctuation- 
dissipation theorem is satisfied under equilibrium condi- 
tions:. 

0 
I m D R ( a ) =  - t h - K ( a ) .  

2T 
It is clear from Eq. ( 5 )  that 

a 
K , ( a )  =' /?nba cth- 16 (a-ma) f 6  (a+%) 1, 

2T 

~ ~ ~ ( ~ ) = ~ / ~ b a ~ { l / ( o - a ~ + i 6 )  - l / ( o + o o + i 6 ) ) ,  ( 13) 

D o A ( ~ ) = { D o R ( ~ ) ) * .  

Once the zeroth Green functions are defined in terms of ( 1 1 ) 
and ( 1 3 ) ,  the complete Green functions can be calculated 
from 

D,,( t - t ' )  = - i ( T { m a ( t ) m B ( t ' ) S ) > ,  ( 1 4 )  

where T denotes the usual time ordering and S is defined by 
Eq. ( 10). Perturbation theory developed on the basis of Eqs. 
( 7 ) ,  ( 8 ) ,  and ( 13) is fully identical with perturbation theory 
based on Eqs. ( l o ) ,  ( 13),  and ( 14).  However, the latter is 
more convenient. 

We must now average the S matrix in Eq. ( l o ) ,  with 
allowance for Eq. ( 4 ) ,  over the exchange integrals J, ,  . We 
begin, however, by discussing the general procedure for 
averaging over random external fields that in general may 
depend on time. 

We shall assume that our field m ( t )  interacts with a 
Gaussian random external field p ( t )  characterized by the 
interaction Hamiltonian 

TheSmatrixofEq. ( 10) with V from Eq. ( 15) canin general 
be averaged over the random field p ( t ) ,  because there is no 
denominator in the case of the S matrix of Eq. ( 10).  Averag- 
ing Eq. ( 10) over p ( t ) ,  we obviously obtain 

We shall now show that any loop obtained from Eq. ( 1 6 )  
vanishes exactly. This means that in reality all the loops cor- 
responding to an external field, i.e., vacuum loops, vanish 
and the correlation function of the external field is not renor- 
malized, as should be the case. The simplest loop can be 
expressed in terms of a time integral of an expression propor- 
tional to 

Using the explicit expression for Da8 in Eq. ( 1 1 ) and the 
simple fact that 

we can easily show that Eq. ( 1 7 )  does indeed vanish. This 
happens because the external field p ( t )  does not have the 
index a and, consequently, the correlation function L ( t )  is 
independent of a andP. A similar mechanism causes vanish- 
ing of any vacuum loop. 

We must note a considerable difference between the in- 
teraction of Eq. ( 1 5 )  with a random external field and the 
analogous interaction with a Gaussian random field which is 
in thermodynamic equilibrium. In the latter case the S ma- 
trix can be averaged, in its general form, over the field p, and 
instead of Eq. ( 16),  we now obtain 

S=T exp{- $ d t  d t ' x  (0,) da (0,) wLa, (t-r') 

Equation ( 19) differs from Eq. ( 16) only because La8 is 
now strongly dependent on the indices a andP. The compo- 
nents of L ,  can be expressed in analogy with Eq. ( 1 1  ), in 
terms of the correlation function of L  and G R ,  GA for the 
field p ( t ) .  We obtain Eq. ( 1 6 )  if we ignore GR and GA. 
Therefore, a thermodynamic-equilibrium Gaussian field 
differs from an external random Gaussian field by the pres- 
ence of GR and GA, which describe the reaction of the field 
p ( t )  on the interaction of the field m ( t )  and give rise to 
renormalization of the correlation function Lap ( t ) .  In the 
case of the usual random field p ( t )  there is no such reaction 
in Eqs. ( 1 5 )  and ( 16) and, therefore, the field p ( t )  is "insen- 
sitive" to m  ( t )  . 

We can thus see that averaging over external fields in 
the S matrix of Eq. ( 10) is a trivial matter. This applies also 
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to the averaging over static random quantities such as over 
the random exchange interaction J,,  . No replicas appear and 
instead we have a nonlocality on the time scale, which is 
similar to that which appeared in Eq. ( 16).  

Substituting V from Eq. ( 5 )  into Eq. ( l o ) ,  and averag- 
ing over Ji, , we find from Eq. ( 4 )  that 

As already pointed out in the Introduction, we shall consider 
only the molecular field theory. A standard decoupling cor- 
responding to this approximation makes it possible to derive 
from Eq. ( 2 0 )  the molecular field equations for our problem, 
which are in fact equations for the correlation function Dap : 

The averaging in the system ( 2 1 )  is carried out over the 
zeroth Hamiltonian H, defined by Eq. (5) .  

We shall now show that the system of the molecular 
field equations ( 2 1 )  has a very simple physical meaning. We 
note that, according to Eq. ( 19) and the arguments discus- 
sion used to derive Eq. ( 1 9 ) ,  the system ( 2 1 )  describes the 
case when our field m ( t )  interacts with a certain dynamic 
equilibrium quantum field h ( t ) .  In this case the Hamilto- 
nian for the field m and the S matrix are as follows: 

H=-hrn+U(m, r ) .  

The last line of Eq. ( 2 2 )  contains a correlation of an equilib- 
rium field h, similar to Lao in Eq. ( 1 9 ) ,  and this equation 
shows how the former is related to the field correlation func- 
tion D a o ( t ) .  

We shall now introduce prior averaging over the config- 
urations J,, a quantum molecular field: 

It is clear from Eq. ( 2 3 )  that in the zeroth molecular-field 
approximation, i.e., in the case of a large number of the near- 
est neighbors and when Eq. ( 4 )  is obeyed, the field h ( t )  is 
indeed a Gaussian thermodynamic quantity with the corre- 
lation function Lap ( t )  of Eq. ( 2 2 ) .  

It therefore follows that our molecular field equations 
describe a very simple situation: the system contains random 
molecular fields hi ( t )  which fluctuate in time. Such a pic- 
ture differs radically from the usual situation, such as that 
encountered in a ferromagnet when molecular fields do not 
fluctuate in time but are essentially static quantities. 

3. MOLECULAR FIELD EQUATiONS UNDER NONERGODiC 
CONDITIONS 

The principal molecular field equations, i.e., the system 
( 2  1 ) , are valid in the ergodic and nonergodic regions. How- 
ever, in the nonergodic region we must make an additional 
approximation, namely we have to assume that our system 
has a continuous spectrum of exponentially long relaxation 
times. This assumption has been discussed in detail ear- 
1~~~1.3.9-13.16.17 for steady-state dynamics of classical spin 

glasses. Since nonergodic times are related to intervalley 
transitions and these, as pointed out by the present author in 
Ref. 4, depend weakly on whether the conditions are of the 
quantum kind, it is clear that the assumption of a continuous 
spectrum of nonergodic relaxation times should be made 
also in the quantum case. Following Refs. 1 ,  3, and 13, we 
shall assume that 

Duo ( t )  =D:: ( t )  f D:;' ( t )  

a 
D" ( t )  =DoR ( t )  - - I t  A' ( z ) Q  ( t ) ,  

a 
D" ( t )  =DoA ( t )  - - A f ( z ) 0  ( - t j ,  

In the system ( 2 4 ) ,  we separate from Dao the regular part 
D  $ ( t )  from the singular part D  $ ( t )  . Consequently, F, DR 
, and DA split into regular parts F,,, D  f, and D  {, and singu- 
lar parts related to q ( z )  and A ( z ) ,  which are functions of a 
logarithmic variable z .  These are unknown functions of the 
theory and they can be described by equations which are 
fully equivalent to the corresponding equations in Refs. 3  
and 13 [see Eq. ( 4 6 )  1. In the system ( 2 4 )  the last line de- 
fines the conditions for going to the limit in the case of the 
principal logarithms, 8 ( t )  = 0  when t  < O  and 8 ( t )  = 1 
when t  > 0, where T is the paramagnetic time and T is the 
temperature. 

The quantity D $) ( t )  in the system ( 2 4 )  changes after a 
characteristic microscopic time, whereas D  22 ( t )  changes 
after a macroscopic time 

If a - 0 ,  the times r and r, are parametrically separate. 
However, the nonergodicity is not manifested by slow relax- 
ation after a macroscopic time r,, but by the breakdown of 
the fluctuation-dissipation theorem in the case D  zi ( t ) .  It is 
the failure of this theorem that is a criterion of nonergodicity 
(for details see Refs. 1, 3, and 9-13). It should also be noted 
that the variable z satisfies the ultrametry condition 

for any macroscopic time t ,  , t , ,  or t , .  We can allow for the 
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ultrametry property of the variable z by a procedure similar 
to that used in Refs. 1, 3, and 13. Let us consider the follow- 
ing time interval: 

[ t o ,  t i ] ,  , tl-++m. (27) 

We shall separate this interval into jk + ' subintervals of du- 
ration 7: 

tl-to=~jk+i. (28) 

The size of the subinterval r is selected to be much greater 
than any microscopic time (w,r> 1, AT> 1, y r>  1 ), where 
w, and A are the parameters of the Hamiltonians ( 1 ) and 
(2 ) ,  whereas y is any damping which may occur during mi- 
croscopic time intervals. Any instant during the interval 
(27) can be represented as follows: 

where? changes in the interval [ - r/2,7/2]. It follows from 
the definition of z in Eq. (24) that D :i ( t )  changes after a 
time much longer than r ,  while D $? ( t )  still changes after a 
time much shorter than r. Therefore, we have D :$ ( t )  = 0, if 
t, # t, for any t and t ' and differs from zero only for a = 6. 
On the other hand, D $ ) ( t )  does not change during such 
time intervals. If we label instants of the time by a and t, we 
obtain 

Such a representation is fully analogous to the correspond- 
ing representation in the static theory of Ref. 4, but the 
meaning of the index a is now naturally different. We can see 
from Eq. (29) that t, is governed by k + 1 numbers a,. Let 
us assume that we now have j- W ,  so that since a, -j, we 
have 

z ( k t , )  =z,= (k-l+l)  Az, 

: (t i- to) =zn,,=z0= ( k + l )  Az, 

~ Z = C L  l ~ l ] - + O ,  k+m, j -m, 

It is clear from the system (31 ) thatz(t, - t,) considered in 
the limitj- m is governed only by the number l in  the hierar- 
chical ladder, but not by the specific values of a,. This im- 
plies ultrametry. 

We shall now substitute Eqs. (24) and (30) into Eq. 
(21 ). Then, in the exponential function in Eq. (2 1 ) we find 
two terms: 

n b u  -T,? -<I2 

ma, ( f )  =m,(t,+f), 

qab=q[z(to-tb) I ,  (32) 

The first term I ,  stems from the singular part D 22, and the 
second from the regular part. The term with DR'" - p") 
will be ignored because it is small in the zeroth order when 
expressed in terms of the principal logarithms. It should be 
noted that averaging using the S matrix from Eq. (32) 
should be carried out over the zeroth Hamiltonian of Eqs. 
(5 )  and ( 6 ) .  Then, the correlation functions decrease after 
time intervals of the order of w; ' and A -  I .  We can therefore 
assume that ma, (?) and map (?) in Eq. (32) commute. For 
the same reasons the integrals with respect to ? can be ex- 
tended over an interval [ - m , 03 ]. We finally obtain from 
Eq. (21) (i,il-.t,t'): 

(0 )  
D,, ( t- t ' )  =-i(T{m,. ( t )  m, , ( t l )S)>,  

In Eq. (33) the T product denotes ordering in respect of t, 
but not in respect of a, because ma ( t )  and m, ( t )  commute. 
For the same reason the expression for D'") is simplified by 
dropping the T-product symbol, so that D'") is independent 
in fact o f t  and t ', whereas in the term D gin, the T-ordering 
symbol in the S matrix orders the operators and map ( t  ') 
separately in respect of t and t '. However, the average in 
D does not then vanish, because the S matrix contains 
terms which mix ma, and mob. 

The system (33) is a complete set of equations for 
D $' ( t )  and D :Aob. It should be noted that essentially the 
system (33) represents a system of equations for a set of 
commuting fields m, ( t ) .  Such separation into commuting 
fields mu ( t )  is analogous to that adopted in Ref. 4, but in the 
present case it is important that the index a denotes a macro- 
scopic instant of time t,. In the case of such commuting 
fields the zeroth Hamiltonian is 

where H, (m,r) is defined in Eq. (5) .  It should be noted that, 
in spite of the fact that m, ( t )  commute, the indices a a n d p  
are retained and they will be very important later. 

Standard Stratonovich-Hubbard  transformation^'.^,'^ 
yield the following expression for the S matrix: 
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The symbol (...),,< denotes averaging over all the variables h 
and { which occur in Eq. (35). This averaging can be carried 
out explicitly as follows (see, for example, the analogous 
expression in Ref. 4)  : 

(1 ' )  ( h ' )  
(E .k i ,  .... . a k - , ) 2  - (E-0 .... rL,i+l)2 x e s p  ' i p , { ~ T  ! - BID (- / A t 1 )  

1 (. + (36) 

Here, 

and the dots in Eq. (36) denote products of intermediate 
numbers of variable expressions similar to those written 
down explicitly. 

Equations (35) and (36) are very similar to the corre- 
sponding expressions in Ref. 2, but there are two very impor- 
tant differences. Firstly, instead of fictitious replicas, we are 
dealing here with real indices a, B = + , - , corresponding 
to two different time profiles in the density matrix. Secondly, 
as before-and in contrast to Ref. &we are dealing with an 
S matrix and we can therefore consider processes far from 
equilibrium. 

4. INTRODUCTION OF THE FREE ENERGY AND THE 
EXPRESSION FOR THE S MATRIX IN TERMS OF A 
COMPLETE PROBABILITY FUNCTIONAL 

It is known from Refs. 1,2,4, and 13 that the basis of the 
theory of nonergodicity is provided by partial differential 
equations for the free energy, magnetization, and various 
distribution functions. In particular, we can calculate a com- 
plete probability functional of molecular fields. I . ' '  Using the 
results of Refs. 1, 4, and 13 we can write down directly the 
necessary expressions. However, we must bear in mind the 
following. Our technique generally differs from that used in 
Refs. 1,4, and 13. However, in spite of this technical differ- 
ence, all the recurrence relationships, partial differential 
equations, and distribution functions for the static case are 

identical with the results of Ref. 4. We shall not give here the 
fairly cumbersome derivations demonstrating this point, but 
consider simply one very important point, namely the deter- 
mination of the free energy and of other thermodynamic 
quantities in the Keldysh technique. We shall do this by con- 
sidering a specific example. Let us assume that H ,  (m,r )  is 
obtained from Eq. (5)  and the interaction is described by 

where the S matrix is found using Eqs. ( 10) and (37). We 
shall now calculate the magnetization M ( h )  for the com- 
plete Hamiitonian. It is quite obvious that 

and that it is independent o f a  and t. On the other hand, if the 
complete range of integration in terms o f t  is given by Eq. 
(27),  it is obvious that 

In Eq. (39) the left- and right-hand sides are expressions 
proportional to 

whereas M(h)  is finite. I t  follows from Eq. (39) that 

a 

M (h) =dcp(h)lo'i1. 

Equation (40) gives the free energy p ( h )  as a coefficient in 
front of an expression which vanishes. Similarly, in the re- 
plica method'92 the free energy p ( h )  is defined as the coeffi- 
cient in front of n (n is the number of replicas and we assume 
that n +O). It  should be noted that p ( h )  is the difference 
between the total free energy and that free energy which 
would be obtained in the absence of the interaction, but in 
the derivation of the recurrence relationships this is not im- 
portant because the latter energy is independent of h. 

Using the definition of the free energy given by Eq. 
(40), we can now deduce the usual recurrence relationships. 
In the intermediate stages we have to allow for the property 

by analogy with the procedure used to derive the recurrence 
relationships in Refs. 1 and 13, where it is assumed that 
n -0. In general, Eq. (41 ) plays exactly the same role in 
quantum dynamics as the property n -0 in the conventional 
theory. This is why we can avoid the use of replicas. How- 
ever, it should be pointed out that the property described by 
Eq. (41) is inherently a feature of the Keldysh technique 
applied to any system, whereas the replica methods can be 
used only in the case of disordered systems. 

Fairly cumbersome calculations, fully analogous to 
those described in Refs. 1 and 13, allows us to calculate-for 
example-the moment M ( h ) .  It is expressed in terms of the 
limiting value of the function M(z,h) ( M ( h )  = M(m,h)  
that satisfies the following simple differential equation: 
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d- I t  (z ,  h )  
--= 

1 a" ( z ,  h )  

a z ~ I O { ~  'Ir ( z )  ah2 

We can show that M ( h )  in Eq. ( 4 2 )  is identical with the 
corresponding expression in Ref. 4. 

We can also express the complete S  matrix in Eq. ( 3 5 )  
in terms of the complete probability functional F( h  a ) : 

Dh. = II d h .  

The complete probability functional F(h ,  ) is a function of 
all the fields considered at macroscopic times h, and has the 
following form'.": 

where h  is an external magnetic field and P(z,h,zl,h ') is the 
transient probability of some Markov process and satisfies 
the Kolmogorov equations in terms of the first and second 
variables',": 

P ( z .  h ,  z ,  h ' )  =cS(h--h'). (45 

The system of equations (42) - (45)  solves in principle 
the problem of steady-state dynamics in the quantum case. It 

has to be supplemented also by an equation for D $1 ( t ) ,  
which will be given below. 

Equation ( 4 3 )  can be used to calculate any correlation 
function. We recall that F(h ,  ) and P(z,h,zl,h ') are normal- 
ized to unity and also that ( S o ,  ( h ,  ) ) = 1. We can therefore 
write down, for example, a correlation function 

where F,(z,, ,h,,h,) is defined in terms of an integral of 
F(h ,  ) with respect to all values of h,, except h,, and h ,  . 
Exactly similarly we have 

D::' ( h .  t-t,) =-i(Tma ( t )  m, ( t , )  So ( h )  >. 

The system (47) closes our system of equations. Exactly the 
same procedure can be used to obtain any correlation func- 
tion, for example, a four-particle function in which the times 
t ,  and t ,  lie within the same macroscopic interval [ t ,  - T /  
2,t, + 7/21,  whereas t ,  and t ,  lie in a different macroscopic 
interval [ t ,  - 7 /2 ,  t ,  + 7/21,  Obviously, this correlation 
function depends on t ,  - t,, t, - t,, and z,, . 

5. NONEQUlLlBRlUM DISTRIBUTION FUNCTION OF 
MOLECULAR FIELDS 

We can at long last tackle the main task, which is calcu- 
lation of an arbitrary nonlinear susceptibility. We shall con- 
sider only the susceptibility at macroscopic times, which 
corresponds to slow (long-term) relaxation in the experi- 
ments. We shall consider only one example of a generalized 
nonlinear susceptibility, but its derivation will demonstrate 
the general method for calculation of such quantities. 

In principle we could write down equations of type ( 2  1 ) 
under transient conditions, when the correlation functions 
D,  (t,t ') no longer depend on the difference between the 
times, and we could solve these equations in the nonergodic 
range. This is a very difficult task and we have been unable to 
solve it in its general form. We have achieved something less, 
namely, we have assumed that q ( z )  and A ( z )  are determined 
by a steady-state process and have calculated all possible 
nonequilibrium susceptibilities. Since the system exhibits 
slow relaxation and q ( z )  and A(z) are modified in a time T,, 

defined in Eq. ( 2 5 )  even if z<O, it is obvious that such an 
approach is valid in the case of short macroscopic times, as 
long as 

i.e., if the expression obtained above for the susceptibility 
corresponds to the zeroth approximation in terms of the pa- 
rameter ( 4 8 ) .  

Let us assume that we are dealing with a steady-state 
process and that some macroscopic moment in time t ,  a 
magnetic field of arbitrary magnitude h  is applied. We shall 
be interested in various quantities, at a different macroscopic 
time t,, for example, the magnetic moment or the correla- 
tion function at t ,  and t, within the interval [ t ,  - 7 /2 ,  
t ,  + 7/21. In attempts to calculate directly these quantities, 
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for example the value of the usual linear susceptibility, we 
meet the same difficulty as in the classical theory of Refs. 1 
and 13. We have to calculate averages of the (ma,  , ms,S ) 
type and identify the dependence of such an average on a and 
8. However, it is clear from Eq. ( 46 )  that-as in Refs. 1 and 
13, these averages are independent of a and f l  in the replica 
method. The dependence on a and f l  appears in the next 
order in respect of a large parameter used in the steepest- 
descent method. A direct calculation of the corrections to 
this method is very difficult. Therefore, the problem was 
bypassed in Refs. 1 and 13 and we shall do this here. We shall 
multiply Eq. (35)  by mp, and differentiate the resultant 
expression with respect to h I:!,,,, , , where I is a level in the 
hierarchy corresponding to z ( t ,  - t ,  ) = z,. If we multiply 
the whole expression by an external field h, we obtain a cor- 
rection to (mpbS ), necessitated by application of a magnetic 
field h at a moment to ,  i.e., we obtain the susceptibility multi- 
plied by h. This susceptibility is 

where the sum over c extends to all values of c such that 

Following Refs. 1 and 13, we find that this correction is 

It then readily follows from Refs. 1 and 13 that 

where M,,(h) is defined by Eq. ( 42 ) .  It is clear from Eq. ( 42 )  
that M,,(h) = (m,,S,,, ( h ) )  and, therefore, Eqs. ( 50 )  and 
( 5  1 ) yield a correction of the first order in h to the distribu- 
tion function of the molecular fields AF, ( h ,  ), which appears 
because an external magnetic field is applied at a moment to :  

Naturally this correction depends only on z  = z, 
= z ( t ,  - t , ) .  

We can easily calculate these corrections also in higher 
orders in h. We readily find that they are obtained if Eq. ( 35 )  
is multiplied by mob and differentiated several times with 
respect to h :c:)',, , . If we use a simple expression'.'3 

gle-particle distribution function when a magnetic field var- 
ies several times, and so on. This can be done quite simply, 
but the procedures are fairly cumbersome so that we shall 
not do that here. 

We must mention one very important circumstance. It 
is clear from Eq. ( 54 )  that if the inequality of Eq. (48)  is 
satisfied, a nonequilibrium distribution2 function can be cal- 
culated explicitly if we know the steady-state solution of the 
problem. This is also true of other quantities. 

6. SLOW RELAXATION OF A SPECTRAL PROFILE AND OF A 
TRIPLE CORRELATION FUNCTION 

In this concluding section we shall give two examples of 
slow relaxation of spectral functions, which describe in par- 
ticular also the spectral profile. One such task was discussed 
in an earlier paper.4 We shall assume that we are dealing with 
a structural order-disorder glass. As shown in Ref. 4, the 
optical spectrum of this glass includes frequencies of the or- 
der of characteristic molecular fields This spectrum 
begins to relax on application of an external magnetic field. 
The results of the preceding section show quite clearly how 
to describe this relaxation. The retarded correlation func- 
tion is the same as in Ref. 4: 

q=q (;=0) = j F :""1' (1, h l ) l , , E ( h , j  dh,, 
( 55 )  

where F Yq(z ,h ,  ) is defined by Eq. ( 54 )  and the averaging 
over y represents averaging over equilibrium molecular 
fields obtained in the static approximation of Ref. 4. At low 
values of A a good approximation is provided by 

we find that the complete nonequilibrium expression 
FYq(z ,h , )  is 

Equation (54)  is the explicit expression for the complete 
nonequilibrium single-particle distribution function in our 
simple case of an arbitrary constant magnetic field. The deri- 
vation of this expression demonstrates quite clearly how we 
can calculate many-particle distribution functions or a sin- 

where d T z 4 .  In Eq. ( 55 )  the function R,(h,w) is that part 
of R (h ,w)  which is governed by low frequencies w 5 A and is 
normalized to unity. In particular, in R,,(h,w) we havea part 
corresponding to complete freezing at microscopic frequen- 
cies. This part cancels out the corresponding term 
-2.rrqs(w) in Eq. ( 55 ) .  The correlation function is related 
to DH by the fluctuation-dissipation theorem. Equation 
(55)  is derived using the Hamiltonian ( 2 )  of a structural 
order-disorder glass. 

We shall conclude by considering one other very inter- 
esting example relating to quantum properties of a Heisen- 
berg spin glass. It is well known that in the purely static case 
the odd correlation functions of spins vanish for a paramag- 
net. However, in the dynamic case such correlation func- 
tions are finite because the equation of motion for spin in- 
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cludes a triple dynamic vertex. However, the existence of 
odd dynamic correlation functions gives rise to a number of 
very interesting phenomena, for example, those exhibited by 
the scattering of polarized neutrons in a paramagnet subject- 
ed to a magnetic field (see, for example, Refs. 20 and 21). 
One can expect a Heisenberg spin glass also to have a non- 
zero three-particle correlation function. We shall consider 
this question separately and give here only the explicit form 
of the retarded three-particle Green function. For simpli- 
city, we shall consider only the static case. Relaxation phe- 
nomena will be discussed separately. As in the derivation of 
Eq. (55), we shall employ the static approximation. Using 
the Hamiltonian of Eq. ( 3 ) ,  we find after fairly lengthy cal- 
culations 

1 dhF, ( h )  (z (y+h)  K ~ ~ ( O , ,  a2, a $ ) = -  - EWVL 
6 

- R-+,(y+h,  oz, a , ,  a3)  +R-+, (ySh,  0 3 9  o i - a 2 )  

R-+, (h ,  a ! ,  azra3) =2ns ( a i f  o z S o 3 )  

Here, 

and R, ( a )  has the same meaning as in Eq. (55), and is 
governed by the thermostat frequencies ygh .  Averaging 
over y is defined by Eq. (56) and in our case for large values 
of S we have 

However, even if S = 1/2, the deviations from Eq. (58) are 
small. According to Ref. 5, we have 

The expression (57) is the key equation. A great variety of 
effects can be calculated using Eq. (57). For example, the 
problem of slow relaxation is also related to Eq. (57), as are 
the preceding expressions in the present section based on Eq. 
(53) of Ref. 4, which is analogous to Eq. (57), in the case of 
a structural order-disorder glass under static conditions. 
Generalization to the nonequilibrium case is a relatively 
simple matter. 
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