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We demonstate the existence of an extensive group of easy-axis antiferromagnets in which an 
inhomogeneous state similar to the mixed states of type-I1 superconductors is realized in a wide 
range of fields and angles. A phenomenological theory of the mixed state in easy-axis 
antiferromagnets is developed. 

1. It is known that two homogeneous states of essential- 
ly different type can be realized in superconductors'in the 
region of a magnetic-field-induced first-order phase transi- 
tion (FPT) to the normal state. The character of these inho- 
mogeneous states is determined by the sign of the surface 
tension ( o )  on the interface of the normal and supercon- 
ducting phases. I-' In type-I superconductors (a > 0 )  there is 
produced a thermodynamically stable domain structure 
made up of domains of the normal and superconducting 
phases-the intermediate state (IS) of the ~uperconductor.~ 
In type-I1 superconductors ( a  < 0 )  there is produced the so- 
called mixed state, which constitutes a system of supercon- 
ducting (Abrikosov) v~rtices. ' .~ 

It is shown in Refs. 5 and 6, with the spin-flop (SF) 
transition in easy-axis antiferromagnets as the example, that 
the same arguments as used in Ref. 4 to corroborate the for- 
mation of the IS of a superconductor lead to the following 
conclusion: a thermodynamically stable domain structure 
made up of domains of competing phases is produced in the 
region of spin-reorientation-induced FPT. By analogy with 
superconductors, this domain structure was named in Ref. 5 
an intermediate state of the antiferromagnet. Shortly there- 
after the IS of an antiferromagnet was observed in MnFz 
(Refs. 7 and 8).  It was proved in Refs. 9 and 10 that the 
necessary condition for formation of all thermodynamically 
stable domain structures in magnets is the presence of an 
FPT induced by an external field in the system. This situa- 
tion permits the entire manifold of thermodynamically sta- 
ble domain structures (including the IS of a superconduc- 
tor) to be treated in the framework of a single theory (see the 
review ' ) . 

Since inhomogeneous states ( a >  0 )  are not energywise 
favored, a domain structure in an IS has as a rule a regular 
character, viz., regions with a homogeneous magnetization 
distribution (domains) are separated by thin transition lay- 
ers-domain walls (DW) . A substantially different situa- 
tion is realized in type-I1 superconductors. Here the inho- 
mogeneous states have lower energy than the homogeneous 
ones (a < 0).  The structure realized in the mixed state of a 
superconductor has therefore a maximally extended in- 
homogeneity region, or a lattice of Abrikosov vortices, in 
which the decrease of the vortex sizes is limited only by the 
magnetic-flux quantization condition.' 

Can magnets have states similar to the mixed state of a 
type-I1 superductor? The only magnet known at present in 
which there was apparently observed a mixed state is the 
metamagnet FeCO, (Ref. 12). As shown there, owing to the 
competing character of the exchange interaction in the 

multisublattice metamagnet FeCO,, the energy density of 
the DW between the anitferromagnetic and paramagnetic 
phases turns out to be negative in the case of a metamagnetic 
transition. This produces in FeCO,, in a definite range of 
magnetic fields, a mixed state that constitutes according to 
Ref. 12 a triangular lattice of "magnetic vortices." It must be 
borne in mind that in the case of metamagnetic phase transi- 
tion that leads to formation of a mixed state in FeCO, the 
inequality o < 0 is due not to the magnetic symmetry of the 
crystal, but to the specific character of the exchange interac- 
tion, i.e., it is realized for definite relations between the mag- 
nitudes of the exchange interactions that form the magnetic 
structure of the crystal. 

We show in the present paper that there exists a large 
group of easy-axis antiferromagnets in which the possible 
existence of a mixed state is due to symmetry factors. We 
develop a phenomenological theory of the mixed state in 
easy-axis antiferromagnets. We determine on the field-angle 
phase diagram the boundaries of the existence of a mixed 
state, and calculate the magnetization and the magnetic sus- 
ceptibility. 

2. The nonequilibrium thermodynamic potential of a 
two-sublattice antiferromagnet can be expressed, accurate 
to terms quadratic in the components of the total-magnetiza- 
tion vector m = ( M I  + M,)/2M0 and the antiferromagne- 
tism vector I = ( M I  - M,)/2M0 ( M i  is the magnetization 
of the ith sublattice and M, = IMi I ), in the form 

where a,':' and a:,"' are the inhomogeneous-exchange-inter- 
action constants, w,, is the homogeneous part of the energy, 
and w' contains terms linear in the first spatial derivatives of 
mi and I,.  The possible existence of such invariants in the 
thermodynamic potential of a magnet was first pointed out 
in Ref. 13. The actual form of w' is determined by the crystal 
symmetry. In crystals without inversion center, the nonequi- 
librium potential contains invariants of the type 

al, d l ,  
1,--lp--. 

d x ,  d x ,  

Table I lists certain easy-axis antiferromagnets without in- 
version centers (the data were taken from Ref. 14). For ex- 
ample, in uniaxial antiferromagnets [crystallographic 
classes C,, C,,, D,, S,, D,, ( n  = 3, 4, 6 )  1 invariants of 
type ( 2 )  enter in w' in the following form: 
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TABLE I. 

Symmetry 
T > .  Ii 

net 

*Nee1 temperatures 

**From data of Ref. 29 

Cl l r :  wr=a'w,; D,: I L ~ ' = ~ ' ~ L ~ ~ ;  Dzd: w ' = a ' z ~ ~ ~ ' ;  

I I ,  C,: ~ ' = a ~ ' w ~ + a , ~ w ~ ;  S,: w =al  w ,  +a,'w,', 
( 3  

where 

dl, dl, dl,  dl, 
wl=l,--l,---+l,--l,-, 

dx  dx  dy  8~ 

d 1, dl, dl, dl, w2=lz - -L~- - l z -+l~- ,  
d  Y d y  d x  dx  

d 1% dl, dl, dl, 
(4) 

wl'=lz-- l*-- lz-+l~- ,  
dx  d z  dy  d Y 

(the symmetry axis is parallel to the z axis). Note that 
classes D, and C, admit of the existence of the invariants 

~ ~ ' n = l f , , ~ [ ~ / ~ t i  sinZ 20- (hL cos 2$- 1)cos 28-hz sin "\I. sin 281 . 
h=H/H,,  K=H,lllt+p/h, 

( 7 )  

HT = ( 2 k B l )  'J,lif". (8)  

First-order phase transitions take place on the H,-Hz dia- 
gram in a narrow vicinity of the point Hz = H,,., H, = 0. 
The unique features of the ground state in this region have 
been investigated in detail in Refs. 15-19. For K > 0, in par- 
ticular, a first-order phase transition takes place at the point 
Hz = H,., H,  = 0 from the antiferromagnetic ( AF) phase 
( 8  = 0 )  to the spin-flop (SF) phase (SF transition). 

Let us clarify the role played by invariants of type (2)  in 
the formation of inhomogeneous states of an antiferromag- 
net in an SF  transition. To this end we calculate the energy of 
a plane domain wall (DW) between the A F  and SF  phases 
(90-degree DW).  Since we have m < 1 in the field H, (8),  the 
DW energy is connected mainly with the rotation of 1. We 
assume, to be specific, that 1 rotates in the xz plane. For the 
energy w' in ( 1 ) we write 

which can lead to formation of a helicoidal structure in anti- , -. de 
d t  

(9)  
ferromagnets with llz. 

We express the homogeneous part of the nonequilibri- where 6 is the coordinate in the direction perpendicular to 
um potential for the investigated antiferromagnets in the fol- the DW plane. By virtue of the condition we assume 
lowing standard f~r rn"~" :  next that 1' = 1. To calculate the energy of a solitary DW in 

2Hm an SF transition we must solve a variational problem for the 
w. = [2hm2 - - - 

Mo 
1 - 2  I ] f ( 5 )  functional 

where2 is the intersublattice exchange-interaction constant, 
B, andflare the second-order anisotropy constants, B, is the 
fourth-order anisotropy constant, and H is the magnetic 
field. Usually 1, (0, B , )  & B,. In addition, all the calcula- 
tions in this paper are for low temperatures, when we can put 
m2 + 1' = 1 and m*l = 0 (Ref. 15). 

If B, + B, > 0, the z axis is the easy-magnetization axis. 
We present now the results, needed later on, of a calculation 
of the equilibrium states of an antiferromagnet having an 
energy (5) ,  in a magnetic field inclined to the easy-magneti- 
zation axis. '.'s-'y After minimizing with respect to m, we 
have in the leading approximation in B,/A 

I f  m = ----- sin (&\I.) 
2hM, 

(zC, is the angle between H and the z axis and 8 is the angle 
between 1 and z ) ;  the nonequilibrium potential (5)  takes the 
form 

(10) 

with boundary conditions 8( w ) = 0 , 8 (  - w ) = a/2, dB / 
d l (  f w ) = 0. The Euler equation for this problem does 
not contain a term with a'. This enables us to calculate the 
8({) dependence by a standard pr~cedure.~"  For the DW 
considered there are two directions of rotation of 1 in the xz 
plane. Reversal of the rotation direction changes the sign of 
the integral of the last term in ( l o ) ,  without changing the 
remaining ones. This is most important: for any sign of a' 
there is in the DW a rotation direction for 1 such that the last 
term of (10) makes a negative contribution to the energy. 
Integration yields the following expression for the DW ener- 
gy density per unit surface: 

Invariants of type (2 )  describe an exchange-relativistic in- 
teraction, so that in order of magnitude we have 
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la'l - (AB,) '"a, (a,, is the lattice constant) and a -La:. 
Substituting these relations in ( 11 ) we see that 

i.e., the energy of a DW in an SF transition is negative. Thus, 
the presence of invariants of type (2 )  in the thermodynamic 
potential leads perforce to formation of inhomogeneous 
states in the vicinity of the SF transition. By analogy with 
type-I1 superconductors, we call this state a mixedstate of a 
ferromagnet. 

Before dealing with the structure of the mixed state, let 
us determine the limits of its existence. To this end we con- 
sider a plane DW between states with opposite directions of 1 
( 180-degree DW).  Outside a narrow vicinity of the SF  tran- 
sition a::' and a:r' the first term of (7 )  can be neglected; 
minimization of ( 7 )  leads then to the known Ntel formula"' 

Substituting ( 12) in ( 1 ) we get 

where 

R'=R, [ ( I -h' cos 24-)'+ (h' sin ?,$)'I 

plays the role of the effective anisotropy. The variational 
problem 6 W = 0 with boundary conditions B( - cc ) = B,,, 
8( co ) = 8,) + T, dB / d l (  f cc ) = 0 leads to the first inte- 
gral of the Eugler equation; this integral coincides function- 
ally with the first integral of the corresponding problem for 
an easy-axis ferromagnet (see Ref. 2 1 ) : 

C = 1 for the above boundary conditions. The absence 
of a term with a' from (14) leads to an important conclu- 
sion: interactions described by the invariant (9 )  do not influ- 
ence the B(6) distribution in the DW. 

Integration in ( 13) with respect to ( 14) leads to 

Just as in ( 1 1 ), we have chosen here for 1 a rotation direction 
for which the DW energy is lower, When the SF-transition 
field is approached, the first term tends to zero and the sec- 
ond remains constant. It follows from ( 14) that the inequali- 
ty o < O  defines on the H,-h, phase diagram a mixed-state 
region bounded by the closed curve (Fig. 1 ) 

(1-11' cos ?I))'- (h'  sin 21$)~=v'. 

where h ,  and h, are the limits of the region with u<O in a 
field parallel to the z axis: 

The maximum angle for which the condition u<O is satisfied 

FIG. 1. Phase diagram of easy-axis antiferromagnet with mixed state. The 
region in which mixed state exists is hatched. 

I),,,,,='/.. arc sin v. (18) 

Since a'- ( A B , ) ' ~ ~ ~ , ,  we have v- 1. This means that the 
field interval in which u<O is comparable with the SF-transi- 
tion field H,. Thus, in the antiferromagnets considered 
there exists on the h,-h, phase diagram an extensive region 
where a mixed state is energywise favored. This region is 
hatched in Fig. 1 [the boundary (16) was calculated for 
v=0.5;  in this case h , = 2 - ' I 2  , h, = (3/2) 'I2, 
Ah = h , - h ,  =0.517, $,,, = 15'1. 

The domain walls in the antiferromagnets considered 
are due to competition of two opposing tendencies. On the 
one hand, D W  formation increases the system energy, since 
states with energies higher than the equilibrium value are 
realized in the DW. On the other hand, interactions describ- 
able in the thermodynamic potential by invariants of type 
(2 )  tend to produce in the system inhomogeneous distribu- 
tions of 1 and m, therefore their contribution lowers the D W  
energy. To describe these counteracting factors in the forma- 
tion of an antiferromagnet DW, we can introduce param- 
eters with the dimension of length. We make the change of 
variable 6 = L ,T, where 

We obtain then for W from ( 13) 

We have introduced here the parameter 

with the dimension of length. The parameter L ,  [Eq. ( 19) ] 
has the meaning of the DW thickness. The interaction de- 
scribable by invariants (2 )  and ( 3 )  lowers the DW energy 
without changing its structure. The parameter L, [Eq. 
(21) ] describes the relative contribution of the interaction 
described by the invariant ( 9 ) .  It follows from (15) that the 
inequality u < 0 is reached at 

The inequality (22) is similar to the known criterion for the 
production of a mixed state in a superconductor 
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where 6 is the coherence length and A is the depth of penetra- 
tion of the magnetic field. 

3. We consider now the structure of the mixed state of 
an antiferromagnet. In contrast to the IS, where the inhomo- 
geneous states are as a rule concentrated in narrow regions 
occupying an insignificant part of the magnet volume, in the 
mixed state the distribution of the magnetization is essential- 
ly inhomogeneous in the entire sample. It is clear even from 
the symmetry of the problem that a magnetization distribu- 
tion having axial symmetry (single vortex, vortex lattice) 
can be realized in the mixed state of an antiferromagnet if 
there is no strong anisotropy in the basal plane. The easy- 
axis antiferromagnets having invariants of type (2)  and sat- 
isfying this condition are those with symmetry higher than 
rhombic, and also rhombic ones with anomalously low ani- 
sotropy in the basal plane. It was shown in Ref. 22 that in 
easy-axis ferromagnets without inversion center, with sym- 
metry higher than rhombic, a system of non-interacting vor- 
tices has in a definite field interval a lower energy compared 
with the homogeneous state and a spiral structure. We em- 
phasize that, in contrast to the vortical states of a magnet 
(topological solitons), which are intensively investigated in 
the theory (see, e.g., Refs. 23-25), Ref. 22 deals with stable 
magnetic vortices. In the region where the mixed state exists, 
it is natural to expect formulation of one-dimensional inho- 
mogeneous structures in rhombic antiferromagnets with 
sufficiently strong anisotropy in the basal plane. 

In particular, for a one-dimensional structure in a field 
parallel to the easy-magnetization axis, the distributions of 
m and 1 are determined by solving the variational problem 
for the potential W(8) [Eqs. ( 10) and ( 13) 1 ,  which coin- 
cides functionally with that obtained in Ref. 13 in a calcula- 
tion of a spiral in an easy-plane antiferromagnet. The 8({) 
distribution is obtained by integrating ( 14) and, as is well 
known,13 O(6) is expressed in terms of elliptic functions. 
Without dwelling on an analysis of the field dependences of 
O(6) (this distribution is investigated in detail in Ref. 13, as 
well as in Izyumov's monograph2'), we present expressions 
for the magnetization of an antiferromagnet in a mixed state 
with a one-dimensional structure: 

.W,=M,=O. 

[l+rk2E-I ( h )  ] [ I - - + 
LVI, = - 

1 E ( k )  
[ I - r k 2 ~ - l ( k ) ]  "[- - 7 1  l<h<hL. 

hL Ic2h(k)  ' 

[ l+vkZE- ' (k)  ] I h ,  h l < h < l .  
h ={ 

[I-vk2E-' ( k )  ]I" ,  I t h t h 2 .  
(24) 

Equations (23) and (24) specify the function M, (h )  with k 
(the elliptic-integral modulus) as a parameter, while K(k )  
and E ( k )  are complete elliptic integrals of the first and sec- 
ond kind, respectively. 

Figure 2 shows a plot of M, (h )  according to Eqs. (23) 
and (24) for v = 0.5 [M(h) is measured in units of the mag- 
netization jump H,/2/1 in an SF transition]. The dashed 
line shows the magnetization curves for an antiferromagnet 
in which no mixed state is produced. In the SF-transition 
region the field dependence (23) of M, is linear: 

FIG. 2. Magnetization curve of an easy-axis antiferrornagnet with mixed 
state in a magnetic field parallel to the easy-magnetization axis. The 
dashed line shows the magnetization curve for an antiferrornagnet in 
which no mixed state is produced. 

and the static susceptibility is 

In the vicinity of the limiting values ( 17) of the fields h, and 
h, the variation of M, (h ) is abrupt and X, (h ) increases 
without limit as h + h , (h, ) . 

In the calculations above, h has the meaning of the in- 
ternal magnetic field and differs, by the values of the demag- 
netizing fields, from the external magnetic field h'" that can 
be monitored and measured. Figure 3 shows the internal 
magnetic susceptibility x::' as a function of the internal field 
h (a)  and also the field dependence of the magnetic suscep- 
tibility in an external field 

( e )  - 
xzz - [ (x.(.i) ) -'+4nNl-', 

where N is the magnetizing factor along the z axis. 
In the region of the limiting fields we have x::' - co and 

Xlf) approaches 1/4 N, while h I" and h are equal to 

The width of the region in which the mixed state exists, in 
terms of the external-field components, is 

By virtue of the above estimates we have 
(h, - h ,  ) z 1 % 2rN/A, i.e., in contrast to IS magnets, a 

FIG. 3. Magnetic susceptibility of an antiferromagnet in the region of 
existence of a mixed state (hllz) vs the internal field ( a )  and in an external 
field ( b  ) . 
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mixed state exists in a much wider range of fields and angles, 
and its width depends little on the sample shape. 

The authors thank V. G. Bar'yakhtar for a discussion. 
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