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Processes of intraband tunneling Umklapp of quasimomentum that occur on account of 
interaction of a particle in an energy band with a thermostat are investigated. These processes are 
analogous to the tunneling of a particle through an energy barrier, with the role of the coordinate 
being played by the quasimomentum. Quasimomentum tunneling has a substantial influence on 
the dynamics of Josephson junctions of small capacitance. 

1. INTRODUCTION e ( p )  =-'i26 cos np, (2)  

In this paper we shall investigate the motion of a parti- 
cle in a periodic potential in the presence of dis~ipation.'-~ 
This problem has a bearing on the dynamics of Josephson 
junctions of small ~apacitance,'-~ and also on the electronic 
properties of a crystal in which the electron-electron interac- 
tion has a nonadiabatic ~harac te r .~  Interaction with the me- 
dium makes possible not only the usual scattering processes 
with small quasimomentum transfer but also tunneling 
Umklapp of quasimomentum within the same band, this be- 
ing analogous to the tunneling of a particle through a poten- 
tial barrier. Here the role of the coordinate is played by the 
qua~imomentum.~ Such quasiclassical processes are usually 
relatively improbable, since they are accompanied by the 
involvement of a large number of degrees of freedom of the 
medium. Nevertheless, owing to the large pre-exponential 
factor these processes can turn out to be important, even if 
the friction coefficient is still rather small. These processes 
are especially important in the description of the quantum 
dynamics of Josephson junctions, when, as shown below, 
they may be the only cause of the relaxation of certain com- 
ponents of the distribution function. 

Below, we shall find the probability of intraband quasi- 
momentum Umklapp. These processes give, first of all, an 
additional contribution to the relaxation of the distribution 
function of the particles in the band. In addition, in the pres- 
ence of an infinitely large shunt resistance, i.e., in the ab- 
sence of "Gaussian" dissipation, quasimomentum tunneling 
is the only cause of damping of single-particle oscillations in 
a Josephson jun~tion.~," 

2. PROBABILITY OF TUNNELING UMKLAPP OF 
QUASIMOMENTUM 

To calculate the probability of tunneling Umklapp of 
quasimomentum we shall analyze the partition function Zof 
a system consisting of a particle interacting with a medi- 
um 1.x 

and the viscosity coefficient determines the relaxation rate 
in the classical equation of motion for the coordinate q of the 
particle: 

d2q d q  dU 
m-f q-+ -=0, 

a t2  d t  d q  

where U(q) is the initial periodic potential. 
The integration over one of the quasimomentap in the 

formula (1)  should be performed within the limits of the 
Brillouin zone lpl < 1. Performing the integration over q( r )  
in formula (1 ), we obtain for the partition function Z an 
expression that depends only on the variable p: 

%IT 

where 

Below, we shall consider the case of small values of the 
viscosity coefficient 17, when the quasimomentump is a good 
quantum number. In this case the quantum fluctuations are 
small, and in the leading approximation the partition func- 
tion is determined by the formula 

i 

The partition function (4)  coincides completely with 
the partition function of a massless particle moving in a po- 
tential ~ ( p )  and interacting strongly with a thermostat. 
The role of the coordinate in this case is played by the mo- 
mentump. As is well known, in this case tunneling penetra- 
tion of the particle through the potential barrier ~ ( p )  is pos- 
sible (see the figure ) . 

The tunneling leads to the result that the lifetime of the 
particle in one of the potential wells ~ ( p )  is finite. We shall 
be interested in the probability of transition through the po- - - 

tential barrier for a given value of the initial quasimomen- 
('1 tum. 

where p is the quasimomentum of the particle, ~ ( p )  is the To calculate this probability we shall make use of the 
energy spectrum in the single-band approximation: above-noted analogy between the system under considera- 
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FIG. 1 

tion and a massless particle attached to an elastic string. The 
Lagrangian of such a system can be written in the form 

rn 

where p is the density of the medium and s is the sound 
velocity. The particle is attached to the string at the point 
y = 0. 

First we shall find the quantum-mechanical probability 
of the tunneling of the system consisting of particle and 
string through a potential barrier. We shall then average the 
probability obtained over all the states of the string, assum- 
ing the position of the particle to be fixed. The resulting 
probability will be the probability of intraband breakdown 
with a given initial quasimomentum. 

It is of special interest to investigate the case when the 
quasimomentum is close to the boundary of the Brillouin 
zone. Then the potential energy E(R (0, t )  ) can be replaced 
by a quadratic dependence: 

In this approximation the quantum-mechanical tunneling 
problem can be solved exactly by diagonalizing the Lagran- 
gian (7)  with allowance for the formula (8).  

For this we go over to the normal coordinates R, of the 
string: 

In the coordinates R, the Lagrangian (7)  takes the form 

where L is the length of the string. The two quadratic forms 
in formula ( 10) can be brought simultaneously to diagonal 
form. Introducing the new variables 

w 

and a = 7~/4ps, we obtain for the Lagrangian the expression 

In this language, the tunneling of the system consisting of a 
particle and a string corresponds to sub-barrier motion 
along the coordinatex,. As is well known," the transmission 
coefficient is determined by the formula 

The expression ( 14) must be averaged over the states of the 
string for a fixed value R (0) .  We shall assume that the string 
is at temperature T. Then the expression ( 14) for the trans- 
mission coefficient must be averaged with weight 

= 

With exponential accuracy, the quantity ( D  ) is determined 
by an extremal trajectory R (y) that is even in y and is found 
from the condition for the minimum of the sum A of the 
exponents from formulas ( 14) and ( 15) : 

Varying the quantity A with respect to the function R (y), we 
obtain for the latter the equation 

m 

where 6 = n-asy/s and To = aS/2. 
The solution of Eq. ( 17) with a specified value R (0)  is 

the function 

where the function ~ ( p )  is determined by formula (2 ) .  
Substituting the expression ( 18) for the function R (y) 

into formula ( 16), we obtain 

The quantity W(E, T) determines, with exponential accura- 
cy, the probability r (p, T) of tunneling Umklapp of quasi- 
momentum: 

I? ( p ,  T) =B PIP[-w (E ( p ) .  T ) ]  . (20) 

It is simplest to find the pre-exponential factor B at a tem- 
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perature T close to To for quasimomentum values close to 
the boundary of the Brillouin zone. 

In the state of thermal equilibrium the total probability 
y (  T )  of intraband tunneling Umklapp can be found by aver- 
aging the quantity r ( p ,  T) over the equilibrium distribution 
function: 

On the other hand, at a temperature Tclose to To the quanti- 
ty y ( T )  can be found by the well known technique of Refs. 
1-3 using trajectories in imaginary time: 

6  aE/T 

y ( T )  = (8n6T)  ( - ,) ( 2) 271 To 

In deriving the formula (22) we have used for the partition 
function the expression (4) ,  corresponding to a large viscos- 
ity. The coefficient 7 is connected with the parameter a by 
the relation 

The frequency cutoff w,  is equal in order of magnitude to the 
spacing between the bands. 

Assuming that the pre-exponential factor B depends 
only weakly on the temperature, comparing the formulas 
(21) and (22) we obtain 

Thus, the formulas (19),  (201, and (24) determine the 
probability of intraband quasimomentum tunneling near the 
boundary of the Brillouin zone. 

We note that, with quasiclassical accuracy, owing to the 
symmetry of the ~ ( p )  spectrum, energy is conserved in the 
intraband tunneling, and the quasimomentump in the given 
band is replaced by - p, as shown in the figure. 

3. DYNAMICS OF A PARTICLE IN A SLOPING PERIODIC 
POTENTIAL 

As is well known,' the dynamics of a Josephson junc- 
tion of small capacitance is analogous to the dynamics of a 
quantum particle moving in a sloping periodic potential and 
interacting with a medium. The potential in this case is the 
quantity 

( q )  =-b', cos 2cp--Fy, (25) 

where E, = I, /2e, F = I /e ,  I, is the critical current for the 
junction, and I is the current flowing across the junction. 
The role of the mass is played by the quantity m = C/e2, 
where C i s  the capacitance of the junction. 

In the absence of a current I the motion has a band 
character. We shall take into account the lowest Brillouin 
zone, with spectrum determined by formula (2) .  Short cir- 
cuits of normal metal, shunting the Josephson junction, lead 
to a dissipation mechanism of the Gaussian type, corre- 
sponding to formulas ( 1 ) and (4) .  The state of the particle 
can be described using the distribution function n (p, t )  . In 
the quasiclassical approximation, in a limited interval of 

time t% y; ', in which y2-aS2/Tat high temperatures T)S 
(Ref. 7 ) ,  the distribution function satisfies the Fokker- 
Planck equation9,'0 

from which it follows that the characteristic relaxation time 
is of the order of ( 7 T )  - '. 

The intraband-tunneling processes considered above 
are not taken into account by the quasiclassical equation 
(26).  Although the probability of such processes, as follows 
from formula (20),  is exponentially small, to the large pre- 
exponential factor can make these processes important. 
They can be taken into account by adding to the right-hand 
side of formula (26) the term 

where the quantity T(p, T) is determined by the formulas 
(19), (20),  and (24). 

In the limit of small viscosity ( 7  & I ) ,  the quasiclassical 
intraband-tunneling processes give a small contribution to 
the relaxation rate in (26).  However, in real Josephson junc- 
tions the parameter 7 ,  as a rule, is not very small, and intra- 
band-tunneling processes make a substantial contribution to 
the relaxation rate. 

Intraband tunneling leads to a qualitatively new phe- 
nomenon in Josephson junctions, in which dissipation arises 
because of tunneling of normal electrons between impregna- 
tions of normal phase in the edges of the tunnel junction. 
Dissipation of this type leads to replacement of the quantity 
[q(7) - q ( ~ , ) ] ~ i n f o r m u l a  ( 1 )  by 4sin2 { [ q ( r )  - q ( . r , ) ] /  
2). With this dissipation mechanism an exact calculation of 
the intraband-tunneling probability r is difficult. The im- 
portant point, however, is that such a process exists. 

At high temperatures TSS,  for times t &  y; ' (Ref. 7 ) ,  
the equation for the distribution function has the 

With neglect of the intraband tunneling the symmetrized 
part of the distribution function, i.e., 

W ( P ,  t )  =n(p) +n (p-sgn p),  (29) 

satisfies Eq. (28) without the right-hand side. The solution 
of this equation has the form 

for an arbitrary periodic function W, 

We remark that when intraband tunneling and dissipa- 
tion of the Gaussian type are disregarded the solution (30) 
for the symmetrized part (29) of the distribution function is 
valid for arbitrary times. The restriction on the applicability 
of Eq. (28) by the inequality t& y; ' pertains in this case to 
the antisymmetric part n(p)  - n (p  - sgnp) of the distribu- 
tion function. 

It follows from formula ( 3  1) that the quasimomentum 
depends linearly on the time, and at the moment when ~ ( p )  
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approaches its maximum value the Umklapp process occurs. 
As a result the function W relaxes rapidly to a constant val- 
ue. Single-particle voltage oscillations with frequencies 
equal to multiples of 27rF (Refs. 10, 7, 12) are thereby 
damped even in the presence of an infinitely large shunt re- 
sistance, i.e., in the absence of dissipation of the Gaussian 
type. 

4. CONCLUSION 

Above, we have found the probability of intraband tun- 
neling Umklapp of quasimomentum. The probability of this 
quasiclassical process is exponentially small in the inverse 
coupling constant describing the interaction with the ther- 
mostat [formula ( 19) 1 .  However, the large pre-exponential 
factor compensates for this exponential smallness to a con- 
siderable degree. As has been shown, such processes exert a 
substantial influence on the dynamics of Josephson junc- 
tions. 

Tunneling Umklapp of quasimomentum also exists in 
real crystals. In crystals the analog of the dissipation mecha- 
nism considered above is the nonadiabatic part of the elec- 
tron-electron interaction5 This interaction is analogous in 
many respects to the dissipative mechanism that operates in 
Josephson junctions in the tunneling of normal electrons. In 
narrow-band crystals the nonadiabatic part of the electron- 

electron interaction can lead to a substantial rearrangement 
of the electron spectrum, leading to a still greater narrowing 
of the band of allowed energies. 
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