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An analytic study is conducted, within the framework of the exact nonlocal thermal conductivity 
problem, ofthe effect of the surface energy anisotropy and the kinetics anisotropy on the selection 
of the rate and direction of growth of a two-dimensional dendrite. At low supercooling the growth 
is basically determined by effects related to surface energy, while at high supercooling the growth 
process may become determined by kinetic effects. Ifthe growth directions determined by surface 
energy and by kinetics coincide, an increase in any anisotropy leads to an increase in the growth 
velocity. But when the growth directions determined by these effects do not coincide, the dendrite 
changes its growth direction as supercooling increases. 

1. INTRODUCTION 

The surface-energy anisotropy of an interphase bound- 
ary substantially affects the growth rate and direction of 
dendrites growing from the supercooled melt. Taking into 
account the Gibbs-Thomson effect results in a difference 
between the temperature on the crystallization front and the 
melting temperature, by a value proportional to the front 
curvature. In this case the proportionality coefficient de- 
pends on the surface energy of the boundary. It has been 
shown in a number of computer  simulation^,'-^ and analyti- 
cal ~tudies,~-" that for isotropic surface energy there are no 
solutions of the needle-shaped-dendrite type. Anisotropy, 
when taken into account, leads to the appearance of a solu- 
tion, and the growth rate and direction of a steady-state den- 
drite are uniquely determined and essentially depend on the 
surface-energy anisotropy. 

The influence of kinetic effects on the interphase 
boundary boils down to the fact that the temperature on the 
crystallization front differs from the equilibrium tempera- 
ture and depends on the growth rate. To a first low-velocity 
approximation the change in temperature is proportional to 
the normal growth rate. The coefficient of proportionality in 
this relation, or the kinetic coefficient, is anisotropic in the 
general case. It has analytically been shown in Ref. 11 that 
taking account of the anisotropy of the kinetic coefficient 
results in selecting out the growth rate, even in the absence of 
the Gibbs-Thomson effect. When both factors are allowed 
for, the growth rate is mainly determined by surface-energy- 
connected effects at low supercooling but by kinetic effects 
at high supercooling. It has been shown in Ref. 12 that the 
growth rate generally depends on both factors. 

An interesting effect was discovered in a numerical so- 
lution of the model of the boundary layer. l 3  If the directions 
corresponding to the extrema of the surface energy and of 
the kinetic coefficient do not coincide, a morphology transi- 
tion takes place at some supercooling, with a change in the 
dendrite growth direction. In this case there is an intermedi- 
ate supercooling region in which no stable solution in the 
form of a needle dendrite exists in any direction. In this re- 
gion of supercooling a structure is realized as a result of the 
splitting of the dendrite tip. The similar structure behavior 
in viscous-liquid flow was experimentally observed in a 
model system, the anisotropic Heli-Shaw cell.'" 

This article reports a systematic study of the influence 
of the surface-energy anisotropy and of the kinetic coeffi- 

cient on the selection of the velocity and growth direction of 
two-dimensional dendrites. The exact nonlocal problem of 
thermal conductivity is considered and the analytic theory 
developed in Refs. 6, 10, 14, and 15 is used. The results are in 
qualitative accordance with the results of the numerical so- 
lution of the boundary-layer model carried out in Ref. 13. 

2. THE GROWTH EQUATIONS 

We consider the two-dimensional problem of crystal 
growth from a supercooled melt. The distribution of the tem- 
perature Tin a supercooled melt and in a growing crystal is 
described by the heat conduction equation 

At the crystallization front y ( x , t )  heat is released and 
the boundary condition has the form 

c,D [nVT,-nV T,] =-Lu,, .  ( 2 )  
Here c, and D are the specific heat and the coefficient of 
temperature diffusivity, which are supposed to be the same 
in both phases, L is the latent heat of melting, u,, is the 
growth rate along the normal, n is a unit vector normal to the 
interphase boundary, the subsripts I and c refer to the melt 
and the crystal, respectively. With allowance for the Gibbs- 
Thomson effect and the kinetic effects at the interphase 
boundary, the temperature on the crystallization front has 
the form 

T [I, Y (x, f )  I =Tm+ (Tmy~ (0)  IL) x (x, t )  - ( ~ ( O ) V , ,  (3  ) 

where T,, is the melting temperature, x is the front curva- 
ture 

x (x, t )  =d2y (x)/dx2 [1+ (dyldx) - ' I 2 ,  

Y E ( € ) )  =y(0)+d2y(0)/d02. 

y(0)is the surface energy, 0 is the angle between the normal 
to the front and the y-axis, andB(8) is the anisotropic kinet- 
ic coefficient 0) .  Far from the front, the melt is su- 
percooled and has a temperature T,, < T, . 

According to the boundary condition (2 ) ,  the latent 
heat of the phase transition is released at the crystallization 
front y ( x , t ) ,  i.e., the front is a line along which the sources of 
heat release are concentrated. Given the movement of the 
front, the thermal field can be found by using the Green's 
function of the equation of heat conduction ( 1 ). The tem- 
perature distribution on the crystallization front, i.e., the 
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left-hand side of Eq. (3 ), will thus be determined only by the 
function y(x,t) itself. As a result we obtain from Eqs. ( 1 )- 
(3)  a single integro-differential equation which describes 
the dynamics of the crystallization front": 

We used the following dimensionless parameters to 
consider in what follows the steady-state growth of a near- 
parabolic dendrite with the parabola parameter p and the 
velocity u, and also to analyze the stability of the steady-state 
growth in Eq. (4). All lengths are measured in units ofp, the 
time in units of p/u, p = up/2D is the Peclet number, and 
A = (T,, - T,)c,L - '  is the dimensionless supercooling. 
The capillary length is 

Neglecting the surface energy and kinetic effects 
( d  = 0, B = 0), Ivantsov" obtained a solution of Eq. (4) in 
the form of a parabola which moves with constant velocity 

y=t-x2/2, 

while the PCclet number is determined by the equation 
rn 

A ( P )  =2pCh exp ( p )  5 erp ( -2 ' )  dx .  
'b 

( 5 )  

Taking account of a finite surface energy and kinetic 
effects considerably changes the problem since it leads to the 
appearance of a term with a higher derivative in Eq. (4) .  In 
this case, apart from regular corrections to the shape of the 
crystallization front, singular corrections arise and in the 
general case their amplitude increases as we move away from 
the dendrite tip. The velocity and direction of the dendrite 
growth are determined from the condition that these correc- 
tions be finite. 

In the presence of a fourfold symmetry axis, we assume 
for the functions d ( 0 )  andB(0) the simplest model expres- 
sions: 

d ( 0 ) = d 0  ( I - &  COS 4 (8-8d) ) =d0Ad(0 ) ,  

p ( e ) = p o ( i - a e  cos 4 ( o - e s )  = p o A g ( 0 ) ,  

t g  0=dy /dx .  (6) 

Here a, and a, are the anisotropy parameters (a,, 
a, < 1 ), and the angles 8, and 0, characterize the deviation 
of the growth direction from the directions where the func- 
tions d(0 )  and P ( 0 )  are minimal. With allowance for the 
finite values of d and 8 ,  the stationary shape of the crystalli- 
zation front differs from parabolic 

y=t-x2/2+c ( 2 ) .  

When deriving the equation for f, the smallness of the ani- 
sotropy parameters a plays a double role. First, it deter- 
mines the smallness ofthe correction {itself, which allows us 
to linearize the integral term in Eq. (4).  Secondly, the size of 
the singular region, as will be seen below, is also small at 
small a. In this case, the derivatives of the correction in the 
singular region are not small, and because of this the left- 

hand side of Eq. (4) stays nonlinear even after all the simpli- 
f i ca t ion~ .~  Thus, linearizing the integral term in Eg. (4), in 
the limit of small Ptclet numbers, we obtain the following 
equation for f ( x  ) : 

A d ( 0 ) a d [ b " - I ]  [1+(~'-~)~]-~~-~~(0)0~[1+(1;~-~)~]-' 

1  dx' ( x + x ' )  [l; (x) -g ( x ' )  1 
- z, ! ( x - X I )  [ I +  ( x + x f  ) ' , 4 ]  =o,  (7)  

where 

For small parameters ud and go, the regular correction 
{a u is found from the solution of Eq. (7)  neglecting the 
derivatives which have these small parameters as coeffi- 
cients. However, the terms with the derivatives represent a 
singular perturbation, and a solution of Eq. (7) exists only 
for a definite relation between the parameters a, and 0,. I t  
is this relation that determines the growth rate. In view of the 
absence of an exact solution of Eq. (7), we use an approxi- 
mate approach known from the theory of the quantum-me- 
chanical above-barrier reflection. The approach consists in 
analyzing the equation near singular points in the complex x 
plane. Indeed, it is seen from Eq. (7) that for small u and a 
the effect of the derivatives becomes substantial only in a 
small region around the singular points x = + i. In this re- 
gion Eq. (7) transforms into an  inhomogeneous second-or- 
der differential equation. This differential equation and the 
integral equation obtained neglecting the derivatives have a 
common range of applicability, and the condition that their 
solutions match in this range determines the growth rate. 

The procedure for deriving the differential equation 
near the singular point x = i from Eq. (7) is described in 
detail in Refs. 6, 10, and 14. We obtain finally 

where 

In Refs. 6,7, 10, and 14 the problem was considered without 
taking into account kinetic effects ( p  = 0), with full lineari- 
zation of Eq. (7)  with respect to f ( x )  in Ref. 7. In our pre- 
ceding  article^"'.'^ we also used a linearized version for ob- 
taining an equation of type (9), which in fact comes down to 
the substitution T = Z. This approximation is valid only for 
the asymptote / z l & l .  In Ref. 6, the nonlinear equation ( 9 )  
was obtained at p = 0. The structure of this nonlinear equa- 
tion, which is exact at small anisotropy a, is such that the 
scaling relation ui = ila2'4, the same as in the linearized ver- 
sion, is valid for it. Only the numerical value of A changes. 
For this reason, the results of the linear analysis are qualita- 
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tively true apart from a numerical factor in the scaling rela- d"cp c~ 7'1231~% 
tion. Besides, the numerical factor depends on the choice of 

A, (.t) - 2  - - - [ ' z [ k l  dz 2' A d ( ~ )  ]lZz' 
the model for the anisotropy function. 

At  large values of the argument ~ ( l z l $ m a x ( l , v l / ~ > )  
2":h.tK dq 

but still near the singularity (lzl ga; we have a partic- - -[ - + 2op] = 0, 
A,l (z)  dz 

(13) 
ular solution of Eq. (9 ) 

Fa (1+21*.z)z-", where w = flai'2, and the function g, is the integral of g, 

which is obtained by neglecting the derivatives. This solu- 
tion matches the solution of the original integral equation 
(7 ) .  However, this particular solution is realized only for a 
definite connection between the parameters A, p ,  and v in 
Eq. (9 ) .  Indeed, at large / z /  the general solution of the linear- 
ized homogeneous equation ( 9 )  

FlPz a exp ( + 4 / 7  .21/431'1>z711) (11) 

shows the fastest growth along the rays arg (z) = 0, + 4n-/7. 
The particular solution, which decreases as we recede away 
from the singularity, can be obtained only under the condi- 
tion that this exponential growth will be suppressed. For its 
suppression on the three rays, we have only two integration 
constants at our disposal. Therefore, the third condition 
connects the parameters, i.e., A appears a perfectly defined 
function of p and v. This function can be found by 
numerical integration of Eq. ( 9 )  under the condition that 
the solution be bounded at large values of ( z /  along the rays 
arg(z) = 0, f 4n-/7. Besides, various asymptotes of the 
function A (p,v) can be discerned analytically. 

In final analysis, knowledge of the function A(p,v) de- 
termines the dependence of the growth rate on the super- 
cooling and other parameters of the problem. It is worth 
noting that the parameterp in Eq. ( 10) does not depend on 
the growth rate, and at given parameters of the system it 
depends only on the supercooling through the functionp( A )  
of Eq. ( 5 ) .  On the other hand, the parameter 

is the growth rate u, accurate to the fixed parameters of the 
system. Therefore, by determining the dependence of p2/A 
o n p  we obtain in fact the dependence of the growth rate v on 
p (A) ,  where A  is the supercooling. 

Let us note an important detail mentioned in Ref. 10. 
Although the integral term in Eq. (7 )  is obtained in the limit 
of small Peclet numbers, p< 1, Eq. ( 9 )  for the singular part 
of perturbation has a wider range of applicability in p. The 
point is that the size of the singular region is small to within 
the small parameter a = max{a, , a/,), and the range of ap- 
plicability of Eq. ( 9 )  is determined by the condition 

1, which at a < 1 allows us to extend the results into 
the region of large PCclet numbers. "' 

Besides obtaining the stationary solutions, it is neces- 
sary to investigate their stability. In this case we seek the 
correction to the stationary shape in the form 

5 1  ( x , t )  ~ 5 1  (x)exp(Qt), 

and Re c R <  0 corresponds to stable solutions. An analytical 
theory of the stability of needle-dendrite solutions is devel- 
oped in Ref. 15. Taking account of the nonlinearity of Eqs. 
(7)  and ( 9 ) ,  we obtain near the singular point an equation 

Parameters p and A ( p ) ,  as well as the fucntions F(z)  and 
~ ( z ) ,  are determined from the stationary solution. At large 
values of / z /  , the functions g, ,,, behave in the same way as Eq. 
( l l ) ,  and 

p, a exp ( -2~1)~) .  

From the condition ( 1 1 ) for the suppression of expo- 
nential growth along the rays arg (z) = 0, + 4 ~ / 7  we can 
find two integration constants and the spectrum of w (in 
view of linearity and homogeneity of the equation, the third 
constant is left arbitrary.'" 

3. SELECTION OF THE VELOCITY AND DIRECTION OF 
GROWTH 

We proceed now to report the results of the calculation 
of the rate and direction of the dendrite growth, and of its 
stability. 

At arbitrary angles 0, and 8, the coefficients A, and 
A,, from Eq. (9 )  are complex and this equation has no solu- 
tions for real A and p (Ref. 10). Therefore, the possible val- 
ues of the angles are e , ,  Oo = 0, n-/4. This means that the 
crystal can grow in the direction of either the minimum d ( 0 )  
or the minimum P(O),  and the directions of these minima 
should either coincide or make an angle n-/4. The latter con- 
dition is fulfilled in our case by virtue of the symmetry C,,, 
(and not merely C, ) .  

1. If we neglect the kinetic effects (&, = 0, p = 0 ) ,  Eq. 
(9 )  has a solution at 8, = 0 and A ( p  = 0) = A,,. Then from 
Eqs. (10) and (12) we find 

The value of the parameter A , , ~ 0 . 4 2  was obtained numeri- 
cally. Other possible discrete values of A, at which Eq. (9)  
has solutions, correspond to instability of the dendrite tip- 
splitting type tip. This unstability results from the presence 
of eigenvalues w > 0 in Eq. ( 13) (see Ref. 15). Note that in 
the presence of kinetic effects the asymptote ( 14) takes place 
for small values of the parameterp (i.e., in the limit of small 
supercooling). The asymptote ( 14) is realized for v 5  1 at 
p < 1 and for ~ $ 1  a t p  << l/v. The growth regime ( 14) corre- 
sponds to conditions when the effects connected with the 
surface energy play the main role in the selection of the 
growth rate and direction. 

2. In the limit of negligible surface energy (d,+O), the 
parameters p and A are large. In this case it is necessary to 
keep in Eq. (9 )  only the terms which contain these large 
parameters. The first-order equation thus obtained can be 
reduced by the substitutions z- v'l2z and F- Fv to an equa- 
tion containing only the single parameter 

- 
for the eigenvalue spectrum ~ = h v " ~ / p .  (15) 
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Equation (9 )  has then a solution when 8, = 0, and the nu- 
merical parameter y runs through a discrete spectrum of 
values. Only the minimal value yo corresponds to the stable 
solution. From Eqs. ( 10) and ( 12) we find for the growth 
rate 

This limit was considered within the framework of the 
linear version in Ref. 1 1. The growth regime ( 16) is realized 
at large values ofp when the kinetic effects play a major role 
in selecting the growth rate and direction. The criterion of 
applicability of Eq. ( 16) depends on the anisotropy ratio v. 
At v) 1 the asymptote (16) holds if p ) ~ - " ~ ,  but at v <  1 
Eq. ( 16) is true if p ) v-"I. 

3. Let us consider the limit of isotropic kinetics, when 
the parameter v-0.  The dendrite grows in the direction of 
minimum d ( 8 ) ,  i.e., 8, = 0. A plot of p2/11 versus p ob- 
tained by numerical solution of Eq. (9 )  at v = 0 is shown in 
Fig. 1. A t p  < 1 the parameter 11 =A,,, and in accordance with 
Sec. 3.1 the asymptote ( 14) is realized. However a t p  Z 1 this 
law is violated and at p)  1 another asymptote is realized, in 
which case the small values lzl< 1 in Eq. ( 9 )  become impor- 
tant. In this limit, by the substitutions Z - . Z ~ - ' / ~  and 
F + F ~ -  , we will obtain for A 

A x pi "6. (17) 

From Eqs. ( l o ) ,  (12),  and (17) we find 

u a (2DPOIdo) -5/"P"6ad5/6/fi,. (18) 

A feature of this asymptote is that the growth rate depends 
on the kinetic coefficientfl,, but not on its anisotropy, i.e., on 
the parameter a,. At small but finite values of v g  1, the 
asymptote (18) is intermediate and valid at 

and a t p  ) vP3l2 the growth rate, in accordance with Sec. 3.2, 
is described by Eq. ( 16). 

4. Let us consider now another limit, when the surface 
energy anisotropy is smaller than the anisotropy of the kinet- 
ic coefficient, Y )  1. Then, in conformity with Secs. 3.1 and 
3.2, the asymptote ( 14) is realized a t p  g v - '  and the asymp- 
tote ( 16) at p CL vY 'I2 .  In the intermediate region 

FIG. 1. Dependences of the reduced growth rate p'/A on the reduced 
supercoolingp at O,, = Or? = 0. Curve 1 corresponds to a ,  = an, curve 2 
to a, = 0. 

another type of asymptote exists. The dendrite grows along 
the direction of the minimum fl(8),  i.e., OD = 0, in which 
case the values Izl -pv) 1 are important in Eq. (9) .  Using 
the substitution z-zpv, F-Fp2v2 we find for 11 

where y ,  is a numerical factor. From Eqs. ( lo) ,  ( 12), and 
(21 ) we have for the growth rate 

The expression (22) for the growth rate does not depend on 
the surface-energy anisotropy a,. For isotropic surface en- 
ergy, the region of existence of the asymptote ( 14) vanishes, 
and the transition from Eq. (22) to Eq. ( 16) occurs at 

It is important to point out that for isotropic surface energy 
the solution (22) exists at any small supercooling. It was 
pointed out in Ref. 12 that in this case the authors failed to 
find a solution analytically at small supercooling and such a 
solution was found only numerically at finite values of super- 
cooling. 

A plot ofp2/11 as a function o f p  obtained by numerical 
solution of Eq. (9)  in case of isotropic surface energy is pre- 
sented in Fig. 2, with a, replacing a, in expressions ( 10) 
and (12) fo rp  andp2/A. 

When a, and a, are of the same order, i.e., at v- 1, the 
regions of existence of the intermediate asymptotes ( 18) and 
(22) vanish. There are only two limiting expressions ( 14) 
and ( 16) in this case, and the transition from (14) to ( 16) 
occurs a t p  - 1. The dependence ofp2/A o n p  at 6, = 8, = 0 
and v = 1 is represented in Figs. 1 and 2 by curve 1. It is seen 
from the comparison of this curve with curves 2 correspond- 
ing to isotropic kinetics (Fig. 1)  and to isotropic surface 
energy (Fig. 2 )  that when the directions of the minima of 
d(B) andfl(8) coincide, an increase in either anisotropy ( a  
or aD ) leads to an increase in the growth rate. 

5. Let us consider now the most interesting case, when 
the directions of the minima d ( 8 )  and fl(8) do not coincide 
and the angle between them is equal to ~ / 4 .  The dependence 
ofp2/11 o n p  for this caseat v = 1 is presented in Fig. 3.Curve 
1 corresponds to growth along the direction of the minimum 
d(8) ,  i.e., 8, = 0, 8, = n-/4, and curve 2 corresponds to 
growth along the direction of the minimum 8 ( 8 ) ,  i.e., 
8, = T/4, 8, = 0. 

FIG. 2. The same as in Fig. 1 but curve 2 corresponds to a ,  = 0. 
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FIG. 3. Dependences of the reduced velocity p'/L on the reduced super- 
coo l ing~  at a, = a,. Curve 1 corresponds to 8, = 0, 8,, = =/4; curve 2 
to 8, = d 4 ,  8, = 0 ( a  solution exists only a t p  >p,).  

At small valuesp & 1, curve 1 is described by the asymp- 
tote ( 14). As p rises (by increasing the supercooling), the 
stationary solution corresponding to the dendrite growing 
along the direction of the minimum d(B), i.e., along the di- 
rection predetermined by surface energy, has another as- 
ymptote 

where the numerical parameter y runs through a discrete 
spectrum of values. This result can be obtained analytically, 
but the calculations are too cumbersome. From Eqs. ( lo) ,  
( 12), and (24), we find the growth rate in the form 

Only the solution corresponding to the maximum rate or the 
minimum value of y is stable. Other solutions corresponding 
to larger values of y are unstable and parametrically located 
near the principal stable solution. This can cause the solu- 
tion that is stable to small fluctuations to be destroyed by 
fluctuations of finite amplitude. As is seen from Fig. 3, the 
asymptotes (24) and (25) set in early enough, i.e., already at 
,u - 1. On the other hand, stationary solutions corresponding 
to growth along the direction of the minimum P(8) exist 
only in the region p >pCD (curve 2 in Fig. 3),  and at ,LL% 1 
they are described by the asymptote ( 16). Thus, at small 
supercooling a needle-shaped dendrite grows along the di- 
rection of the minimum d (B), but at large supercooling the 
dendrite grows along the direction of the minimum P(8) .  
The critical ,uCD depends on the parameter Y, withp, - 1 at 
Y- 1. At Y <  1 the region of the transition from a dendrite 
growing along the minimum d(8)  to a dendrite growing 
along the minimum P(8) shifts to larger p, so that 

p, - Y - ~ ' ~ ,  but at Y% 1 the critical value is small,pcD -Y- I .  

These results on the changes in the direction of the den- 
drite growth as the supercooling increases are in qualitative 
agreement with those in Ref. 13. In that article the morpho- 
logic transitions from a dendrite growing along the mini- 
mum d (8 )  to a dense branched structure and then to a den- 
drite growing along the minimum P(8) were revealed both 
experimentally in anisotropic Heli-Shaw cell and theoreti- 
cally by numerical analysis of a model of the boundary layer. 
The observedI3 supersaturation region where the dense 
branched structure develops can be connected with the fact 
that, when a dendrite growing along the direction of the min- 
imum d(B), is destroyed by fluctuations before a dendrite 
can grow in the kinetic direction, i.e., along the minimum 
P(8 ) .  Besides the above experiments on the model sytem 
(anisotropic Heli-Shaw cell), we note that in experiments on 
three-dimensional growth from supersaturated so lu t i~ns '~  
and, from  melt^,'^,^^' and in experiments on electrochemical 
deposition," changes in the direction of the dendrite growth 
and in the slope of the growth-rate plot vs supersaturation 
were observed as the supersaturation increased. 
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