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An analysis is made of semiclassical quantization of solitons (kinks, polarons, bipolarons) in the 
model of a Peierls insulator with a degenerate or a nondegenerate ground state. The electric 
current and the charge of quantum excitations are calculated and it is found that the latter differs 
from the local charge of classical excitations. 

It is known1-' that polaron states (solitons, polarons, The classical soliton solutions are associated with ex- 
bipolarons, etc.) having a localized electron level lying well tended states in quantum theory. We shall use the lowest 
inside the band gap form in one-dimensional electron- order of a semiclassical expansion to allow for quantum fluc- 
phonon systems as a result of electron self-trapping (for a tuations in the vicinity of the classical solution. We shall 
review see Ref. 5) .  In the case of topological solitons the quantize solitons using a canonical Hamiltonian procedure 
electric charge of excitations may be fractional and its value analogous to that used in Refs. 12 and 13. We shall describe 
is a continuous function of the parameters of the  stern.^-^ the deformation A (x, t )  in the form 
The charge is given by 

q = 1 d x [ p ( x ) - P O I .  
A ( x .  t ) = A ( x - X ( t ) ) +  z q , L ( t ) ~ ~ , , ( x - ~ ( t ) ) ,  

wherep(x) is the density of the electric charge andp, is the 
density far from a soliton. The charge is localized in a finite 
region of the order of the soliton size. The fractional value of 
the charge is due to the fact that introduction of an addi- 
tional particle into the system results, because of self-trap- 
ping, in a local deformation of the lattice and in an associated 
redistribution of the electron density which gives rise to par- 
tial screening of the electric field of the new particle. The 
integral charge of this particle can be assumed to be partly 
localized at an exciton and partly distributed uniformly over 
the whole length of a one-dimensional chain. The question 
arises whether the uniformly distributed part of the charge 
contributes to the electric current generated by the motion of 
a soliton under the action of an external electric field, i.e., 
whether the soliton charge defined in the usual way is the 
ratio of the electric current to the velocity of an excitation, 
q = j/u, is identical with the familiar local static charge. 
Moreover, the very concept of a local electric charge is 
meaningful only in the case of a classical description of the 
lattice deformation A(x).  If a quantum description is adopt- 
ed, all the states become delocalized and, therefore, the local 

where X( t )  is the coordinate of a soliton, A ( x )  is the classi- 
cal soliton solution, and 7, are normal modes of fluctuations 
of nonzero energy in the vicinity of the classical solution. We 
shall consider only the contribution associated with the ze- 
roth mode. In the canonical Hamiltonian formalism the 
variable X defining the soliton position transforms into a 
dynamic coordinate, which is an implicit collective coordi- 
nate associated with the translation symmetry of the system. 

The Langrangian of the system is 

A ( x ,  t )=AIJ  iA.) ( x ,  t ) ,  ( 1 )  

charge cannot be defined at all. 
where q ( x , t )  is the electron field; g is the electron-phonon 

1. CURRENT AND CHARGE OF A KINK IN THE PEIERLS coupling constant; w is the frequency of phonons with a wave 
MODEL WITH A DEGENERATE OR A NONDEGENERATE vector 2kF (k, is the Fermi wave vector); the Fermi velocity 
GROUND STATE is assumed to be unity; uF = 1; f = af /at; 

We shall carry out a semiclassical quantization of soli- 
tons and calculate their charge, defined as the ratio of the A? (P, t ) = A 2  t h [ A L ( y ) ] ,  x - X ( t )  = y .  ( 2 )  
electric current to the velocity of an excitation. We shall F~~ a given value  of^( t ) ,  variation of E ~ .  ( 1 ) in respect of 
confine ourselves to solitons in the model of a Peierls insula- ,p (x,t) may yield the schr6dinger equation for the wave 
tor with a mixed The deformation A ( x )  consists of a functions \V (x, t)  = Q ( ~ , ~ ) .  ~h~~ the ~~~~~~~~i~~ is written 
spontaneous deformation A, ( x )  caused by the Peierls effect in the form 
and a constant contribution A, due to the molecular struc- 
ture of a polymer. It is assumed that the deformations A ,  a I.) 

P. = J d x [ m + i  _)t(a-m+i--e*(~) 
and A, are "orthogonal" [A(x)  = A, + iA,(x)]. This situ- d x  

ation may be e n c ~ u n t e r e d ~ ~ l ~ ~ "  in polymers of the ( A B ) ,  
type. The local static charge of such solitons is calculated in 
Ref. 3. €- ( 3  
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where A discrete level is described by the function 

Equation (3)  does not contain X(t)  and depends only 
on ~ ( t ) .  The canonical momentum, which is conjugate to 
the coordinate X(t),  is equal to-as expected-the total con- 
served momentum of the system: 

where the summation is carried out over the occupied elec- 
tron states p with the wave functions Y, (x,t) and To, is a 
component of the energy-momentum tensor. 

It should be noted that the electric current and charge 
in a chain, defined as the variational derivatives of the Lan- 
grangian with respect to the vector potential, are 

M P 

(u2 is a Pauli matrix). The classical Hamiltonian is obtained 
from the Langrangian in the usual way:. 

where 

The Hamiltonian of Eq. (4)  is indepenent of X(t)  . The soli- 
ton is quantized by replacing tee coorginate X and the mo- 
mentum P with the operators X and P = - id /dX, which 
obey the familiar commutation relations. As a result, the 
solution becomes a delocalized quantum particle with a 
wave function exp (iPX) . 

We shall consider a stFte with a given momentum P 
(this can be done because P commutes with the Hamilto- 
nian). Variation of Eq. (4)  with respect to Q, and the condi- 
tion that the energy of the system should be minimal yield 
the following equations for the wave functions: 

a a 
i - B (y, t) -iv- @ (y ,  t) --8(y) @ (y. t )  =O. 

d t  3~ ( 5 )  

where v = ( P  - P,, )/M = dH/dP is the soliton velocity. 
Equation (5 )  is identical with the Schrodinger equation 

of the steady-state classical problem of a soliton moving at a 
constant velocity v. Therefore, we shall calculate the current 
using the exact solutions for the wave functions Y, (x,t). 
For the states in a continuous spectrum, we have 

$+= ( A +  i B A a  th 8 exp(-iht+ipx), 

$-= (C-iBh2 th t )  P exp (-ihtf ipx), 

A = [ A i +  (A+p) p] B ,  C=[Al+ (h-p) IPIB, (6) 
x-vt 

) 2 = P ~ + L \ 2 ,  A ~ = A ~ ~ + A I L ,  iij = 

Equations (6 )  and ( 7 )  are deduced from the corresponding 
expressions for a soliton at rest6 by the substitution 
x - (X - vt)/( 1 - u2)  ' I 2 .  The coefficients A,  B, C, and D are 
found by substitution of Eq. (6)  into the Schrodinger equa- 
tion. 

The electric current associated with the motion of elec- 
trons at a discrete level is usually found from Eq. (7) :  

where v, is the multiplicity of the occupancy of the discrete 
level. The contribution of the continuous spectrum is found 
from the system of equations ( 6 ) :  

The summation is carried out over the continuum states with 
A = - E < 0. At low values of v, expansion of Eq. (9)  yields 
(to within the first order in v )  

[Since a localized level A, splits off from the valence band, 
the term with the wave number p, should be omitted from 
the sum in Eq. ( 10) . I  The second and third sums in Eq. ( 10) 
converge rapidly and can be calculated readily employing 
the substitution 8- (L /.rr)Sdp (we allow here for the spin 
degeneracy ) : 

A 2 A2 _----. 
A," A ,  

The first sum in Eq. (10) must be calculated rigorously. 
Going over from summation to integration we have to in- 
clude corrections of the next order in L - ', which contribute 
to the current in the zeroth order in L - '. The allowed values 
of the wave number p can be found by adopting symmetric 
boundary conditions') for the wave function \V(x,t): 

Y (x+L,  t )  =Y (x, t )  . (12) 

The wave function Y (x, t )  can be represented in the form 

Y (x, t )  =C,Y, (x, 1) +C2Y-,  (x, t ) ,  (13) 

where Y *, are the wave functions of Eq. (6)  with the wave 
number f p corresponding to one value of the parameter A. 
To the left and right far from a soliton the wave function 
\I/ (x,t) is described by Eqs. (6) and ( 13), where tanh 6 is 
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replaced by 1, respectively. The functions Y(x,t) and 
Y (x + L,t) are related by a translation matrix T acting in 
the basis ( \Vp , \I, -, ) 

Y (x+ L )  =TY (x, t )  , (14) 

where T is a 2 x 2 matrix the elements of which are readily 
obtained by the substitution of Eq. ( 13) into Eq. ( 14) : 

The eigenvalues A of the matrix T are found from the 
equation 

11'-2AQSdet T=O, 
where 

The symmetric boundary conditions (12) correspond 
to the value A = 1, the substitution of which in Eq. ( 16) 
yields the equation for the determination of the values of the 
wave number p: 

A 2 
cos ( p L )  - -sill ( p L )  = - + 

P 

If v = 0, Eq. ( 17) gives the allowed values ofp for the case of 
a soliton at rest. Expanding Eq. ( 17) in powers of the veloc- 
ity v,  we find that terms of the first order in v vanish and, 
ignoring the terms of the second order in v,  we find that the 
conditions for quantization of the wave number are the same 
as for a soliton at rest: 

pL+arctg ( A 2 / p )  =*arctg ( A Z / p )  +2nn. 

Therefore, the first term in the expression for the current 
given by Eq. (10) vanishes to within v2 . The summation is 
carried out using the expression 

Therefore, the current in a system with a moving soliton 
is 

The corresponding charge is 

[In the case of an antikink with a deformation 
A(x,t) = A ,  - iA,tanh 6 we have to modify Eqs. (18) and 

(19) by the substitution A, + - A,.] 
We can see that the charge ( 19) differs considerably 

from the local charge go of a classical soliton at rest: 

In the limiting cases we have 

Note that current and charge of a quantum soliton consid- 
ered in the lowest order of the semiclassical approximation 
are identical with the current and charge of a classical soli- 
ton moving at a constant velocity. We can see that the contri- 
bution to the current comes not only from the local soliton 
charge [representing the second term in Eq. ( 10) 1 ,  but also 
from the charged background [third term in Eq. ( 10) 1. It 
follows from Eq. (20) that in the case of a pure Peierls insu- 
lator (A, = 0 )  introduction of an additional electron into 
the system (VO = 1 ) does not result in full compensation of 
the electric charge of the particle, in contrast to the classical 
limit, but the charge of the excitation (particle) becomes 
half-integral: q = e/2. 

2. POLARON AND BIPOLARON CURRENT AND CHARGE IN 
THE PEIERLS MODEL 

The results obtained above are readily generalized to 
excitations of the polaron and bipolaron type. By analogy 
with a kink, we shall show that the lowest semiclassical ap- 
proximation is that of classical polarons and bipolarons 
moving at a constant velocity. The general solution for the 
deformation describing a pair of coupled domain walls (in- 
cluding the polaron and bipolaron states) is given by an 
expression which generalizes the results of Ref. (6) : 

For simplicity, we shall consider the case of a pure Peierls 
insulator (A, = 0).  The parameter a is found from the self- 
consistency conditions, which are of the same form as for 
u = 0 (Ref. 6 ) .  The wave functions are found from the 
Schrodinger equations of the type given by Eq. ( 5 ) . 

In the case of states in a continuous spectrum, we obtain 

V= [A+iBA th 6 - a / 2 )  +F& th (g+a/2)]  exp(ipz- iht) ,  
(22) 

U= [C+iDA thE+ a/2)  +Gd th ( c -a /2 ) ]  exp (ipx-iht) , 

where 

130 Sov. Phys. JETP 69 ( I ) ,  July 1989 S. A. Brazovskiland S. I. Matveenko 130 



The states in the discrete spectrum are then described 
by 

+ v ) B oxp (-ihol+ipox), 
I+ ( I - V ~ ) ' ~  ch (g+a/2) 

where 

d 6 l+(l-uZ)'" 
ho = =t po=vho, (BIZ=--  

(I-v2)'" cha ' 8 (1-v2)" ' 

system. In the case of classical solitons the density of the 
uniform vacuum current is of the order of 1/L, whereas in 
the quantum case (when the state as a whole is delocalized) 
the densities of all types are of the order of 1/L. Of physical 
meaning is the integrated current 

In the case of classical solitons the uniform vacuum cur- 
rent cannot be found from the continuity equation 

dp/dt+div j=O, 

which gives only the local currents and charges. 
Obviously, the results are in conflict with the usual 

ideas about the gradient invariance. We can show that in the 
presence of an electromagnetic field the wave functions are 
transformed in a guage-invariant manner and, in particular, 
the wave functions in a constant vector potential A acquire a 
factor exp [i(e/c)Ax] , which ensures a correct periodicity in 
A.  In an attempt to interpret the results in terms of the one- Substituting the resultant quantities of Eqs. (22) and 

(23) into the expression for the current4 we find, to within particle Hamiltonian for a soliton, where obviously we 

O(u), that should havej = equ, we obtain a gradient-noninvariant theo- 
ry for a fractional value of q. This may mean that a one- 

p 1 26 v 26 
j=v,v+ E[$+ particle long-wavelength approximation is invalid for a 

A h pL+A2 L p2+A2 L quantum soliton, i.e., the electron continuum must always 

where the summation is carried out over the occupied states 
of the continuous spectrum. We note that since a localized 
level splits off from the valence band, the term with the wave 
numberp, should be dropped from Eq. (24). 

The final expression for the current is 

j=v [yo-2/ch a-2th a/(l+th a) ] .  (25) 

We shall now consider the limiting cases. The case a+ co 
corresponds to a pair of kinks which are not coupled and the 
current in the system is then j = (Y, - 1)v, in agreement 
with the results obtained in Sec. 1 for a kink and antikink, 
each of which carries a current j ,  = (v, - l)v, 
j2 = (v2 - J)u, SO that j = j ,  + j, = (v, - l)v, where 
v, = Y, + v2 is the number of electrons at localized levels. 

In the other limit when a - 0 we have j = (v, - 2)  v. In 
this case introduction of one electron at a local level into the 
system splits off two electrons from the valence band so that 
v, = 3 and the current is, as expected, given by j = v. 

In the case of a polaron formed on introduction of one 
electron into the system (vo = 3 for the same reason as 
above; cosh a = a) gives a result different from the familiar 
local charge of a classical polaron (q,, = e): 

We have thus considered in a consistent manner the 
main type of excitations in the Peierls model. The results 
demonstrate that the motion of classical or quantum solitons 
gives rise to two types of vacuum current: 1 ) a current asso- 
ciated directly with a moving local vacuum charge; 2) a cur- 
rent distributed uniformly over the whole length of the chain 
and governed by the parameters of a given state. It is remark- 
able that the vacuum currents of both types exist both in the 
case of topological excitations (kinks) and in the case of 
polarons and bipolarons. Therefore, the observed effects 
cannot be attributed to the one-dimensional nature of the 

be allowed for. 

APPENDIX 

We can find the allowed values of the quasimomentum 
p by substituting in Eq. ( 12) the periodic boundary condi- 
tions for the functions $ + and I,- . We shall adopt here the 
periodic boundary conditions for the total wave function VI, 
which in the case of a half-filled energy band is 

Y (n, t )  =*+ (n, t )  ( i )  "f +(n, t) (-i) ", (-41) 

The periodic conditions for A (x) in the case of a chain with 
one soliton A(x + L,t) = A (x,t) require that the number of 
sites in the chain should be odd: N = 2n + 1. The periodicity 
conditions of of the wave functions of Eq. ( A l )  are 
VI(n,t) = V(n = N,t), and they lead to the relationship 

The matrix T had been calculated earlier [Eq. ( 15) 1. In the 
case of Eq. (A2) we obtain the following equations for deter- 
mination of quasimomentum p: 

or to within O(v),  

e2-FA,--AZ2 e -Aj  
cos ( p h : )  + sin ( p N )  = -. 

PA: A, 

Since Eq. (A3) does not contain terms linear in u, calcula- 
tion of the current does not give rise to any additional terms 
different from those discussed earlier. Therefore, the results 
obtained for the soliton current and charge are retained. 

"A different set of boundary conditions corresponding to a closed chain 
with an odd number of atoms is discussed in the Appendix. 
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