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The twinning plane in a superconductor is considered in the situation when, in the absence of 
scattering, the critical temperature of the two-dimensional superconductivity in the plane is 
higher than the critical temperature in the bulk. I t  is shown that scattering of electrons from the 
plane into the volume strongly suppresses the two-dimensional superconductivity and 
correspondingly lowers the critical temperature of the superconductivity localized in the 
twinning plane. 

1. INTRODUCTION 

Two-dimensional superconductivity on surface Tamm 
levels was considered a quarter of a century ago by Ginzburg 
and Kirzhnits.' Even then, it was noted that, in principle, 
two-dimensional Cooper pairing of electrons in Tamm levels 
in a metal can be characterized by a higher critical tempera- 
ture than for pairing in the bulk, on account of the increase of 
the density of the electron states of the surface levels or on 
account of the enhancement of the interaction of the surface 
electrons with phonons. The question of the proximity ef- 
fect, i.e., of the suppression of the superconductivity of the 
electrons localized on the surface by normal electrons from 
the bulk, was not discussed (this effect, naturally, is absent if 
we are speaking of Tamm levels on the surface of a dielec- 
tric). 

Not so long ago, the question of two-dimensional super- 
conductivity was posed by Nabutovskii and Shapiro2 in con- 
nection with the experimental discovery of superconductivi- 
ty in twinning planes in tin, niobium, and certain other 
metals at temperatures somewhat higher than the corre- 
sponding critical temperatures in the bulk.'.4 In this case, the 
existence of electrons localized on a twinning plane is entire- 
ly possible, and such electrons, generally speaking, can go 
over into the superconducting state at a higher temperature 
than do electrons in the bulk. The proximity effect here is 
just as important as for superconductivity on the surface 
levels in a metal. In both cases, hybridization of states local- 
ized on the plane with bulk states (because of electron scat- 
tering by defects of the sample surface or of the twinning 
plane, and also by impurities) leads to suppression of the 
two-dimensional superconductivity. 

To investigate the proximity effect in a system of two- 
dimensional (localized on a plane) and three-dimensional 
electrons we shall consider a model of such a system that 
takes the electron scattering into account with the use of a 
single parameter-the electron mean free time r. The case of 
large values of r (absence of scattering) was studied in the 
cited paper (Ref. 2 ) .  Of greatest interest is the situation 
when the two-dimensional superconductivity is character- 
ized by a higher critical temperature T2 than is the supercon- 
ducting state in the bulk (we denote the critical temperature 
of the latter by T, ) . Then below T2 Cooper pairing of two- 
dimensional electrons occurs, with an order parameter 
A2(x) that is nonzero in the twinning plane, i.e., in a layer 
with a thickness a of the order of the atomic scale (the sys- 
tem of coordinates is chosen in such a way that x = 0 on the 

twinning plane, the x axis being perpendicular to the twin- 
ning plane). 

Near such a layer, because of the BCS interaction, pair- 
ing of bulk electrons occurs, and the corresponding order 
parameter has the form 

a 
AirLd(x) -A,(O) ,exp(- I X I  t !& lE) ,  

5t 
(1 )  

where t = ln(T/T, ) and ( is the correlation length (see 
Ref. 2).  As the temperature is lowered the induced super- 
conductivity encompasses an ever greater volume, and near 
t-  (a/()2 a weakly localized superconducting state is estab- 
lished, with an order parameter comparable to A,(O) in a 
large region of order 6 '/a (while for t -  1 the superconduc- 
tivity has a surface character and the complete Meissner ef- 
fect is proportional to a/Z, where 1 is the spacing between 
twinning planes). 

The limiting case of a strong proximity effect (small r )  
was considered in Refs. 5 and 6. This case can be described in 
the framework of a model with a dimensionless electron- 
phonon interaction parameter that is locally enhanced near 
a twinning plane. Now, as the temperature is lowered, the 
twinning plane immediately goes over from the normal state 
to a weakly localized superconducting state with order pa- 
rameter 

where t ,  - ( d l ) '  . 
In the present paper we trace how increase of the con- 

centration of scattering centers (decrease of r )  is accompa- 
nied by the establishment of a proximity effect that leads to 
rapid suppression of the two-dimensional superconductivity 
in the twinning plane. As a result, the critical temperature T, 
of the transition of the twinning plane to the superconduct- 
ing state decreases sharply with decrease of T ,  being shifted 
from the value T2 to the value T ,  ( 1 + t ,  ) . 

2. CALCULATION OF T, ON THE BASIS OF EILENBERGER'S 
EQUATIONS 

To describe two-dimensional superconductivity in a 
twinning plane in a superconductor we choose the dimen- 
sionless electron-phonon interaction parameter in the form 

3. (2, 0) =h,,+?a).,S ( I )  6 (cos 0)  , ( 3  

where A,, is the electron-phonon interaction constant in the 
bulk, A2 is the electron-phonon interaction constant for elec- 
trons localized in the plane, and 6' is the angle between the 
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direction of the electron velocity and the x axis. The second 
term in ( 3 )  takes into account the additional attraction of 
electrons with trajectories in the twinning plane. Since this 
term depends on the direction of the electron velocity, it is 
natural to write the self-consistency equation for the isotrop- 
ic order parameter as follows.: 

where the summation is performed over the Matsubara fre- 
quencies up to the Debye frequency w,. The function f in- 
troduced satisfies Eilenberger's equations.' Near the critical 
temperature these equations acquire the form 

( 2 l o l f  l / r+vV) f (r, v) =2A+ f (r, v)/T, 

where v is the velocity of the electrons on the Fermi surface, 
n is the concentration of scattering centers, and W is the 
scattering amplitude. 

In the Fourier representation the linearized self-consis- 
tency equation takes the form 

2ah, dp' 
A P = ~ S . , S P * A ~ .  

The functions introduced here are easily determined in the 
case when in the Eilenberger equations ( 5 )  we can neglect 
the anisotropy of the scattering amplitude and of the Fermi 
velocity : 

In the integration over the momentum in ( 6 )  the cutoff 
should be made at a valuep, - l/a, inasmuch as the S-func- 
tion in ( 3 )  replaces the actual dependence of A, on x (the 
parameter A, is nonzero in a layer of thickness -a deter- 
mined by the wave function of the surface electrons, which is 
localized in the direction of the x axis). 

The approach within the framework of the quasiclassi- 
cal Eilenberger equations, generally speaking, does not per- 
mit a quantitative analysis of electrons localized on an atom- 
ic scale. However, for 1/r  = 0 the Gor'kov equations for 
surface electrons give the same results for T, (Ref. 2 )  as does 
Eq. ( 6 )  with a cutoff at momentum p,  = r / a .  This cutoff 
will be used below. For small values of l / r  Eqs. ( 6 )  and (7 )  
reproduce the exact results of Refs. 5 and 6 for T,. There- 
fore, there is every reason to suppose that the Eilenberger 
equations give qualitatively correct results in the region of 
intermediate values of 1/r  as well. Here, for so long as u r >  a,  
the parametersp, and Az can be assumed to be independent 
of the quantity r ,  in accordance with the theory of dirty al- 
loys of Abrikosov and Gor'kov.' 

Now, from the integral equation (6) ,  we obtain the rela- 
tion determining the critical temperature of the transition of 
the twinning plane to the superconducting state ( t  5 1 ) : 

In the most interesting situation when A2 > AO, for suffi- 
ciently weak scattering ( r  > T, ), two-dimensional supercon- 
ductivity is realized in the twinning plane, and the critical 
temperature is determined from the equation [see (8 )  1 

where IC, is the logarithmic derivative of the r-function, 
T2 = (2y/ r )wnexp(  - l/A,), and Iny = C is the Euler 
constant. The critical value r,, is determined from Eq. (9)  as 
that value of r at which T,. = T,, . In the limiting case 
Tz - T, < T, the critical temperature T, = T2 - ~ 1 8 7 ,  
and the critical value r, - r / 8  ( Tz - T,<, ) . If, however, T,, 
< T?, we obtain 7, = y / r (  T2 - 2yT,,, ) . For r < 7, the prox- 
imity effect suppresses the two-dimensional superconduc- 
tivity, and near the twinning plane we obtain a weakly local- 
ized superconducting state. The critical temperature in this 
case is close to T,, [see ( 8)  1 : 

and for rTd, < 1 we obtain 

The neighborhood of the critical value r, in which the 
change from the relation ( 9 )  to the relation ( 10) occurs is 
equal in order of magnitude to r, (a/A i()2'3. Thus, the tran- 
sition between the two regimes ( 9 )  and ( 10) turns out to be 
rather sharp. It is this which makes it possible to consider 
only two superconducting states-a surface state and a 
weakly localized state (see the figure). 

To  avoid misunderstandings, we draw attention to the 
fact that in the limit T,,, = 0 we arrive at the case of a twin- 
ning plane in a normal metal. Therefore, for r 2 1/T, the 
proximity effect suppresses the two-dimensional supercon- 
ductivity. Inasmuch as for electrons in the bulk we assumed 
the condition ur%a,  the results obtained do not describe a 

FIG. 1 .  Schematic dependence o f  T ,  on 1/r. T h e  linear increase o f  T ,  at 
large values of l / r  is related to  the decrease o f  in this limiting case. 
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twinning plane in a dielectric. In the latter case we must go 
over to the two-dimensional Eilenberger equations, and this 
will lead immediately to Anderson's theorem, i.e., to the T- 

independence of T, = T'. 

3. CONCLUSION 

In this paper we have considered a twinning plane in a 
superconductor, with the assumption that in this plane lo- 
calization of electrons occurs and that below a critical tem- 
perature T2 the localized electrons undergo Cooper pairing. 
We have investigated the most interesting situation, when 
the value of T2 is higher than the critical temperature T,, in 
the bulk. For large values of the electron mean free time T ,  

below T, surface superconductivity is established in a layer 
of thickness a  and induced bulk superconductivity is estab- 
lished in a region of the order of the correlation length (, and 
T2 can be considerably higher than T,. In the "dirty" limit 
(small T ) ,  below a critical temperature T, very close to T,, 
( t ,  -- T, /T ,  - 1 - ( a / ( ) ' ) ,  a weakly localized supercon- 
ducting state appears in a region -g ' /a .  I t  is clear that with 
decrease of T the point T, is shifted from TI to T, ( 1 + t, ) 
because of the proximity effect. In this case, the suppression 
of the two-dimensional superconductivity is analogous to 
the suppression of singlet Cooper pairing by magnetic im- 

purities, and in the neighborhood of the critical value T ,  the 
transition from the surface solution to the weakly localized 
solution occurs very sharply. Therefore, in principle, two- 
dimensional superconductivity in a metal can be realized 
only in systems with highly perfect surfaces or twinning 
planes. 

The authors are grateful to I. M. Suslov for discussions 
of the problem of two-dimensional superconductivity in a 
twinning plane, which have stimulated the present work. 
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