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The motion of macromolecules in concentrated polymer solutions and melts is analyzed in the 
entanglement region (M>) Me,  where Mis the molecular weight of the polymer and Me is the 
molecular weight per entanglement). Fluctuations in the molecular field can lead to a substantial 
renormalization of dynamic characteristics of the system such as the maximum conformational 
relaxation time t ,  and the viscosity 7. The effect of fluctuations is determined by the parameter 
a a M ' 1 4 / ~ e  3'4. For a g 1 we have 7 cc M ( 1 + a ) .  For a % 1 the viscosity increases 
exponentially with the molecular weight 7 a exp(const .a4I3). 

1. INTRODUCTION 

The rheological and relaxational properties of concen- 
trated polymer solutioils are attracting much interest.' The 
dynamics of such systems (for polymers of high molecular 
weight) is known to be determined primarily by topological 
limitations (entanglements), because different sections of 
the polymer chains cannot intersect each other. One of the 
most systematic (from the microscopic standpoint) theories 
describing polymer dynamics with topological limitations is 
based on a reptation modeL2 This model assumes that the 
polymer chains surrounding any selected chain create an ef- 
fective "tube" for it: Sections of the selected chain can move 
a significant distance only along the axis of this tube. The 
basic motion of the macromolecule as a whole is also a 
"creep" (reptation) along the tube axis. It is not difficult to 
show that the maximum conformational relaxation time is" 

where N is the number of links in the polymer chain (in 
reptation theory, t ,  is the time over which the macromole- 
cule "creeps out" of its original tube). 

The time t,  also determines the behavior of 7, the vis- 
cosity of the system (a  concentrated polymer solution or 
melt), as a function of N. The following general scaling 
holds3: 

where Go is the shear modulus of the system in the visoelastic 
plateau region (the elastic modulus of the network of qua- 
sientanglements), which is given by4 

where" z = 3.4. The discrepancy between prediction (1.4) 
and experiment is generally regarded as one of the basic defi- 
ciencies of reptation theory. 

Several attempts have recently been made to modify the 
theory to eliminate this Such factors as fluctu- 
ations in the contour length of a tube and the presence of 
regions of "stored length" (Fig. 1) have been examined, 
among others. The agreement between theory and experi- 
ment has been improved as a result. We should stress, how- 
ever, that all of the modifications have affected the N de- 
pendence of y only in a certain intermediate region of values 
of N, so that the asymptotic relation 7 cc N 3  as N-+ t~ has 
always remained in force. 

In the present paper we show (this is one of the basic 
results of this paper) that the N dependence oft, (and thus 
of 77) as N- GO should be far stronger than N! The factor 
primarily responsible for the strengthening of this depend- 
ence is the occurrence of volume interactions, i.e., interac- 
tions between links which are greatly separated along a 
chain or which belong to different chains. 

The question of the role played by volume interactions 
(more precisely, the role of fluctuations in the molecular 
field which is associated with these interactions) requires an 
explanatory introduction. It is well known that these inter- 
actions influence the equilibrium properties of a system9: In 
the case of a dilute or semidilute polymer solution, volume 
interactions can cause substantial changes in the conforma- 
tions of macromolecules, of the osmotic pressure, and of oth- 
er properties. On the other hand, in a concentrated polymer 
solution or melt the fluctuations in the molecular field are 
very small (in other words, the volume interactions are sub- 
stantially screened, in a sense, in these systems), so that (for 
example) conformations of polymer chains are nearly un- 
perturbed (Gaussian) . 3  Since the fluctuations are small, a 

where co is the average concentration of polymer units, and 
Ne isthe average l eng th '  of a section of a macromo1ecu1e 
between successive entanglements. We thus have Go oc No; . . .),‘::- - --. - . .' / , , :-;----- i.e., the reptation theory predicts ,'4. , - - / .  . . . . A 1  . . ,# /. I I . 

s,= 0 < = <  4 

FIG. 1. Macromolecule (solid line) in a concentrated system. The dots 
Experiments reveal a stronger dependence of 7 on N at are surrounding polmer chains, which create an effective tube (shown by 

large molecular weights: the dashed lines) for the macromolecule shown by the solid line. Heres is 
the coordinate which is tied to the tube and directed along its axis. The 

qaP, arrows show regions of stored length. 
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mean-field theory can be applied to concentrated solutions 
and melts. This assertion, which is obviously correct for the 
equilibrium properties, is automatically extended to the dy- 
namics: All the dynamic theories which have been proposed 
for these systems are essentially mean-field theories (see 
Ref. 10 and the bibliography there). 

We will show below that the concept of a mean field is 
applicable in the dynamics only if the volume interaction is 
sufficiently weak: In general, fluctuations of the molecular 
field can have a very substantial effect on the motion of ma- 
cromolecules in concentrated systems. The reason for this is 
roughly speaking, that although the fluctuation amplitude is 
always small the fluctuations act on a long polymer chain 
and may persist a very long time. 

We note yet another important assertion, which imme- 
diately demonstrates the special role played by volume inter- 
actions: In the absence of such interactions, the maximum 
relaxation time t, cannot grow more rapidly than N3. More 
accurately consider a system of long, infinitely thin, linear 
macromolecules which are such that different sections of 
these molecules cannot intersect each other, while the ex- 
cluded volume of any two sections is zero. It can be shown'' 
that for such a system the classical prediction of reptation 
theory (for t, ) is an accurate upper-bound estimate: 

Consequently, if t, increases more rapidly than N (as it 
is observed to do experimentally), only volume interactions 
can be responsible. The suggestion that volume interactions 
have an important effect on the dynamics of concentrated 
systems was made by Deutsch12 on the basis of numerical 
simulations. 

In the following three sections of this paper, the effect of 
fluctuations in the molecular field on the properties of the 
system is analyzed by perturbation theory: the leading fluc- 
tuation correction is calculated. In Sec. 2 we describe the 
calculation method. In Sec. 3 we find the correction to the 
mean square distance between the ends of a macromolecule. 
In Sec. 4 we then calculate the correction to t, and analyze 
the applicability of a mean-field theory in the dynamics. In 
Sec. 5 we study the behavior of 7 as a function of N in the 
fluctuation region. We end the paper with a comparison of 
these predictions with certain experimental data. 

2. PERTURBATION THEORY 

We consider a solution (everything written below also 
applies, without any changes, to melts) oflong linear macro- 
molecules each consisting of N links, where N B  N, . We de- 
note by a the size of one unit, by c,, the average concentration 
of links, and by 

the parameter of the volume interactions (p is the chemical 
potential of a unit). The molecular field acting on the links of 
the polymer chains is h ( r )  = p(c( r ) )  -p(c, ,) ,  i.e., 

h (r)  =TvF (r)  , (2.2) 

where Z(r) = c ( r )  - c,, is the inhomogeneous part of the 
concentration (we are assuming 2. < c,,) . 

The reptation motion of a macromolecule may be 
thought of as a one-dimensional diffusion along the axis of a 
tube. We introduce the coordinates along this axis, which is 
proportional to the instantaneous length of the tube (Fig. 1 ) . 
The proportionality factor is conveniently chosen in such a 
way that the mean length of the macromolecule is equal to N: 

Heres, is the coordinate of the nth link, and n = 0,1, ..., N 
(note that Fig. 1 shows a state with s, - s, > N).  The qua- 
tion describing a one-dimensional diffusion of a macromole- 
cule along a tube can be written in the form (Ref. 13, for 
example) 

8s. Di[ 8U.l dh(r(s.)) + L] -=- 
at  T as, as, 

, 

where Dl = N, T; ' is the effective coefficient of diffusion of 
one link along coordinate s (T, is the time required for the 
diffusion of a link over a distance on the order of its own 
size), Up, = Up, (so, s ,,..., s, ) is the elastic energy of the mol- 
ecule (which is associated with extensions and compressions 
of sections of the molecule with respect to the tube), 
r (s, ) = r, is the radius vector of link n, and 5, is the random 
force acting on link n. Over a sufficiently long time t 9 r ,  
( rR  - rJV2 is the Rouse relaxation time), the motion of the 
macromolecule is basically a displacement of the molecule as 
a whole along the tube axis.' Superimposed on this basic 
motion are fluctuations in the length of the tube (i.e., in the 
quantity s, - so) and larger-scale fluctuations associated 
with extensions and compressions of sections of the chain. 
Using Eq. (2.3), we can show that these fluctuations have no 
substantial effect on the characteristics studied in the pres- 
ent paper: incorporating these fluctuations leads to only 
slight renormalizations of some of the numerical  factor^.^' 
For simplicity we ignore these fluctuations, i.e., we treat the 
macromolecule as a flexible filament which can be neither 
stretched nor compressed. We can thus write 

Substituting (2.4) into (2.3), and using 

-- j au4" dd=0, j ah  (r (sn) ) dn=h (rN) -h (r,) , 
as, as,, 

we find 

where As is the displacement of a macromolecule along the 
tube axis over the short time At, and 

is the diffusion coefficient for the diffusion of a chain along 
the tube. We denote by V - t f ,  ( r /n)d 3r the probability that 
unit n of a particular macromolecule of interest is in volume 
element d 3r at time t. The diffusion equation which follows 
for the functionf, from (2.5) is3' 
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where V - % (r/n r1/n') is the probability distribution for 
links n and n' simultaneously. The boundary conditions on 
Eq. (2.7) are 

Corresponding equations can be written for "many- 
particle" distribution functions f "' =f, (r/n r1/n'), f ' 3 '  

etc. Each of these equations will have on its right-hand side a 
term which is proportional to h and which depends on a 
higher-order distribution function. We thus find a chain of 
coupled equations, which can be solved by a perturbation 
theory in h. It turns out that for h = 0 each of the equations is 
closed and can be solved in its general form. To then find, 
say, f'" in first order in h ,  it is sufficient to substitute the 
zeroth approximation for f '*' into (2.7) and to solve this 
equation. If it is necessary to find f ' I '  in a higher order, the 
number of equations considered must be increased. 

We assumed above that the molecular field h is known. 
Actually, of course, this is a random field. In order to imple- 
ment the general scheme described above, one must know 
the correlation functions of this field, ( h  (r,t) ), ( h  (rl,t ' ) ), 
etc., and also the relationship between the field h (r,t) and 
the conformations of the macromolecule at earlier times 
t l < t .  

The molecular field h is conveniently broken up into 
three components: 

Here h,,,,, (r,t) is the molecular field which would exist in 
the system if the macromolecule of interest were not there at 
all (it is assumed here that the system is in an equilibrium 
state). By definition, the field A,,,, does not depend on the 
conformation of the selected macromolecule. Obviously, we 
have 

(hTavd>=0, < h n d ( r .  t )  h , , , d ( r l ,  t ' )  )=v2T2Gt-tr ( P - P I ) ,  

where 

is the correlation function of the concentration fluctuations 
in the solution. 

The second term in (2.9), h,,, is the intrinsic field pro- 
duced directly by the links of the chain of interest: 

where r, ( t )  is the position of link s of the selected chain at 
time t. The third term, hind ,  is the induced field, which is 

related to the concentration change Zi,, caused by the intrin- 
sic field: 

where x, ( r )  is the generalized susceptibility of the system. 
The Laplace-Fourier transforms of the functions x, ( r )  and 
G, ( r )  are related by "' 

wherep is the Laplace parameter, and q is the wave vector. 
To calculate the leading fluctuation corrections, it is 

sufficient to know the function x (and the related function 
G )  in the zeroth approximation, i.e., in the mean-field ap- 
proximation. Withp = 0, the susceptibility is determined by 
the equilibrium properties of the system and is a well-known 
function (Ref. 3, for example): 

(2.16) 

where 

We would like to briefly discuss (see Ref. 13 for more 
details) the method for calculating the dynamic susceptibil- 
ity x(p,q) under the conditions 0 < p  5 7, ' N  - I ,  

Nt,'2a<q-l 5 N ' / * u  (it is this region of p and q which is 
important for the discussion below). The case in which only 
purely reptation motions of a macromolecule are possible 
(i.e., the case in which the network of quasientanglements is 
assumed to be absolutely rigid and undeformable) was stud- 
ied in Ref. 10. The result in that case was 

where 

We now consider the possibility of a deformation of the 
network of quasientanglements. Clearly, the external field 
he,, ( q )  should cause a spatially periodic deformation of this 
network (for definiteness we will assume that the wave vec- 
tor q is directed along the z axis). It is easy to show that 
under the condition q 2 N - ' / ' a  the deformation process 
(after the abrupt application of an external field) proceeds 
very rapidly, over a time scale4' r, 5 roN. During this pro- 
cess, the network of quasientanglements can thus be as- 
sumed to be the true, "infinitely long-lived" network. We 
denote by p(z)  the resultant displacement of the points of 
the network in the z direction over the time of the deforma- 
tion. The corresponding change in concentration is 
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where E--dp/dz. The volume free-energy density of the 
network is 

where w,, = M , ) E ~ / ~  is the elastic energy, Mo is the "longitu- 
dinal" elastic modulus of the network, win, = ~ u ( S c ) ~ / 2  is 
the volume-interaction energy, and w, = he,, Sc is the ener- 
gy due to the external field. Here Sc,  is the total response to 
external field he,, and is the sum of Sc,. due to deformation of 
the network, and Sc,, , due to purely reptation motions: 

By minimizing free energy (2.2 1 ) with respect to E and using 
(2.20) and (2.22) (this operation is valid because the time 
scalesp-' in which we are interested here are much longer 
than the network deformation time T, ), we find 

% 

where 

and v = M,/G, is the ratio of the longitudinal elastic modu- 
lus of the network to the shear modulus. 

We now note that Sc,, is the reptation response to the 
total field 

actingon the polymer units. Substituting (2.23) into (2.25), 
we find 

The quantity h ,,, is thus the same as in the case of an abso- 
lutely rigid network (for whichy we would have Sc, r O ) ,  
but with a renormalized volume-interaction parameter u* 
(instead of v )  . This renormalized parameter is also manifest- 
ed in the replacement of the external field he,, by an effective 
field (u*/u)h,,, . We thus have 

Substituting (2.27) into (2.23), we finally find 6c=7the,, /T, 
where 

and K,,,,, is given by (2.18). Note that (2.28) agrees with 
(2.16). 

In the following section of the paper we calculate the 
fluctuation correction for the quantity R ', which is the mean 
square distance between the ends of a selected macromole- 

cule in the equilibrium state. This problem is of course ea- 
siest to solve by purely "equilibrium" methods. The solution 
of this problem given in Sec. 3 should be thought of as pri- 
marily an illustration of the method of dynamic calculations 
by perturbation theory. 

3. CALCULATION OF R BY PERTURBATION THEORY 

We turn now to some specific calculations of R 2, which 
is the mean square distance between the ends of the polymer 
chain, by perturbation theory. By definition we have 

R' = j ddr r2pN ( r )  , (3.1) 

where d is the dimensionality of the space, and P, (r)  is the 
distribution function ofthe vector r, which connects the ends 
of the chain. Treating the molecular field h as a perturbation, 
and making use of the results of the preceding section of the 
paper, we easily find the following expression for P, ( r )  
(only the leading corrections in h are taken into account): 

pN ( r )  =g, ( r )  +uD,, jdt' di' j+r,ddr,ddr'ddf' ds ds, ds2 
-- - w  0 

The first term here, 

g N ( r )  = ( 4 n N ~ ~ ) - ~ / ~  exp (-r1/4Na2),  (3.3) 

is the unperturbed distribution function. The second is the 
correction for the intrinsic and induced fields (ho + hind ), 
and the third is the correction for the "random" field h,,,, 
[see (2.9) 1. In (3.2) we are using 

A, ( r )  =6 ( t )  6 (r) - vx t  ( r )  , (3.4) 

where the first term corresponds to hO, and the second to 
h,,,, . The function 

is the Green's function of the unperturbed equation for f "': 

with the boundary conditions 
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a a a a2 
-Il=-az7 f,, s,=O; - f1=az7 f,, s,=N. 

as,  arl as2 a r2 

A solution of this equation can be written in the form 

x K ,  (3.7) The functions F and K are calculated in the Appendix. Sub- 
stituting (A9) and (A16) into (3.8), and using relation 

[the integration overs; and s; is carried out in the region N> (A8) ,  we find 

s; 2s; )O; a corresponding integration region, N>s,>s, >0, 
is understood in (3.2) 1. The last unknown function in (3.2), PN ('11 =exp (-Nr12a') 

is the probability density for link s' to be at point r' at time t, 
for s ,  to be at point r , ,  and for s, to be at point r,-under the 
condition that link s is initially pinned at point r" and that 
during the interval from 0 to t the macromolecule moves in a 
reptation fashion in the absence of molecular fields (we are 
assuming that the distribution with respect to conformations 
of the macromolecule is Gaussian at t = 0) .  

Using Fourier-Laplace transforms and making use of 
the obvious symmetry of all of the functions with respect to a 
renumbering of the links in the opposite order (i.e., with 
respect to the substitutions- N - s ) ,  we can put (3.2) in the 
form 

I m 

We thus have 

The final expressions, (3.13) and (3.14), contain only the 
static susceptibility 7c (0,q) [see (3.10) 1. This is the result 
which we would have expected since the quantities of inter- 
est here, R , and P, (q ) ,  characterize the system in the equi- 
librium state. 

Substituting (2.16) into (3. lo ) ,  we find 

A ( 0 ,  q) = (1+2c,v/q'a') -', q2a'>l/N. (3.15) 

Finally substituting (3.15) into (3.14) and evaluating the 
integrals, we find 

E =  O 

ics ?Cd<4,  
9 -4 

- 3s 1 .-x -,- 5 Zj Gi J dsl dsz'( / sl  s2 ) where Kd is the ratio of the surface area of a unit sphere to 
(2n-Id : 

- ~ l - / x - ~ l / !  
il-- l r  (a12) .  

( 3.8 ) In particular, for d = 3 we have the expression 

where P, (q )  is the Fourier transform of the function P, ( r ), R'=6Na2 [ I +  (2"lGn) (vlc,)  (3.17) 

g(q. N )  =exp (-Nq'a') (3.9) which agrees with the well-known result found by Ed- 
wards. l 4  

is the Fourier transform of the function g, ( r ) ,  Let us discuss expression (3.17) briefly. Its derivation 
used the assumption that (in the absence of volume interac- 

:\(P, q) =i--v.r: (P, q) ; (3.10) tions) the conformations of the polymer chain in the equilib- 
rium state obey Gaussian statistics. For real polymers this 

(D assumption is valid only at length scales much greater than 
R ( p  1 " ' I ) =  j d t  r-f l  j h r ,  d"2 exp(-iq,r,-iq'r,) a. It is easy to see that the basic component ofthe fluctuation 

sl SL correction (the second term in square brackets) corre- 

X Kt ( O  O l r i  r 2 )  

sponds to wave vectors q - (c,,v/a2) 'I2, i.e., to length scales 

0 N s: s, ' 
(3.11) /Z = l/q on the order of the static correlation length 

6 = a(2c0u) - ' I2.  Consequently, expression (3.17) can be 
and valid only under the condition ()a or 
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Another restriction stems from the circumstance that 
only the leading fluctuation correction, i.e., only the first 
term in the expansion in the parameter z = (v/c,,)"'a-' 
was calculated. In general, expression (3.17) should be re- 
written as" 

where 

In the analysis below we will be interested in length 
scales much greater than the correlation length g. At such 
scales the effect of fluctuations on equilibrium conforma- 
tions of the macromolecule obviously reduces to simply a 
renormalization of the characteristic size of a unit, a :  
a-a* = a [ x ( z )  ] I t ' .  It is assumed below that this renormal- 
ization has already been carried out, and the asterisk will be 
omitted from a. 

We conclude this section of the paper with one more 
comment, which concerns the role played by the individual 
components h,,, h ,,,, ,. , and h,,, of the molecular field [see 
(2.9) ] in forming the fluctuation correction. If we take only 
the intrinsic field h,, into account, i.e., if we discard the third 
term in (3.2) and the second term in (3.4), we find the fol- 
lowing expression in place of (3.17) : 

This is the same as the well-known result for the swelling of 
an isolated polymer chain with volume interactions (in first- 
order perturbation theory). If, on the other hand, we take 
only the random molecular field h,,,, into account, i.e., if we 
discard the second term in (3.2), we find that again the re- 
sult is changed substantially: 

The random field h,,,, thus gives rise to an effective attrac- 
tion between the units of the macromolecule. The physical 
meaning of result (3.2 1 ) can be explained in the following 
way. We know that the dimensions of an ideal chain in a 
static random field h,,,,, (r)  are smaller than the Gaussian 
dimensions." At an accuracy to within the first correction, 
the mean square distance between the ends of the chain is 

where 

A (q) =T-' 1 d3re-'qr<hro,,,f (0) brand (r) > (3.23) 

[we are assuming (h,,,,, ( r ) )  = 01 and q-N-"'a-'  is a 
characteristic wave vector. 

We now consider an ideal macromolecule in a variable 
random field h,,,,, (r , t ) .  We assume that the macromolecule 
initially (at t = 0 )  has a Gaussian conformation. After this 
time, the conformation of the molecule changes by virtue of 
the reptation motion. We consider the time t, at which g 

units have "crept out" of the original tube (N, <g < N ) .  
Here we evidently have 

Clearly, if the characteristic time T ,  ( q ) ,  of the relaxation of 
fluctuations of the random field with a wave vector 
q (g )  - g - " ' a ' ,  exceeds t, then the deviation of the spatial 
size of the region which has crept out from the ideal size can 
be estimated from (3.22); i.e., 

Substituting (2.10) into (3.23), we find 

Using (2.15) and (2.28), and recognizing that T. $ t% T,, 
and q & N, - ' / ' a ' ,  we can put expression (3.26) in the form 

A (P) =u"v*/v) 2 ~ , , p f  (0, q1 u*) =u*. (3.27) 

From (2.15) and (2.28) we again find the characteristic 
time of the rotation relaxation.'" 

t'l (c,v'N), 4Ga-l (Nlc,~')  -"'--q', 

( q / q ' )  't'/c,u'N, q>q'. (3.28) 

The condition T S , ~  ) - t gives the maximum size of a region 
which has crept out ( the size of a blob), for which expression 
(3.25) again is valid. Using (3.24) and (3.28) we find 

At times tst,,, the fluctuations of the field h,,,, which 
dominate the changes in the dimensions of the sections of the 
macromolecule have already undergone relaxation. Conse- 
quently, the conformations of various g,,, blobs must be 
essentially independent; (i.e., over scales g sg,,, the macro- 
molecule must constitute a Gaussian chain of g,,, blobs. 
The overall size of the macromolecule should thus be 

Substituting (3.25), (3.27), and (3.29) into (3.30), we fin- 
ally find 

in complete agreement with expression (3.2 1 ) . 
Comparing (3.17), (3.20), and (3.21 ), we conclude 

that the effect of the field h,,,, is, on the one hand, far 
weaker (in the sense of the dependence on N) than the effect 
of the intrinsic repusion between units ( the field h,) but, on 
the other, far stronger than the resultant effect of all three 
fields h, + hind + brand taken together. 

4. FLUCTUATION CORRECTION TO THE SELF-DIFFUSION 
COEFFICIENT 

We turn now to the central part of this study: the calcu- 
lation of the self-diffusion coefficient of a macromolecule, 
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D,. We assume that each unit of some selected polymer 
chain is acted upon by a weak external field with a potential 

where p-0 is a parameter. An external force causes the 
center of mass of the selected macromolecule to move along 
the z axis. By virtue of the Einstein relation, the average 
velocity u, of this displacement must be proportional to the 
self-diffusion coefficient D, : 

On the other hand, because of the reptation nature of the 
motion of the macromolecule [see (2.5) 1, this velocity can 
be written 

where r, and r, are the positions of the beginning and end of 
the polymer chain at the same instant, and 

htol (r) =h(r) +hex[ (r) (4.4) 

is the resultant field acting on the units of the macromole- 
cule. Substituting (4.4) and (4.1 ) into (4.3), and comparing 
the result with (4.2), we find 

where 

is the classical result of reptation theory (Ref. 3, for exam- 
ple), and 

is a correction for the fluctuations in molecular field h. 
Making use of the obvious symmetry of the problem, we 

can simplify expression (4.7 ) : 

A = lim {(aZIT)-I(  (zN-zo) h ( rO)  )). (4.8) 
B - 4  

Below we calculate A in the lowest-order perturbation theo- 
ry. 

Using the method described in Sec. 2, we can take the 
average on the right side of expression (4.8). In the leading 
order in h, the result is [cf. (3.2) ] 

x J dt' J dt" J ddr ddrl ddr2 ddrf hr" J ds, ds2zf z ,  

The first term here corresponds to the fields h, and hind,, and 
the second to h,,,,, . 

After some manipulations [in which we use (A8)- 
A10) 1, expression (4.9) becomes 

i m + O  

where 

D 
W ( p ,  q )  = 2 1 ddR' ddR, ddR2 exp (-iqR,) 1 dsJ ds, ds, 

a 0 

Analysis of expressions (4.10) and (4.11) shows that the 
quantity A is dominated by the region 

which corresponds to times much shorter than the reptation 
time t * and to length scales much smaller than the size R, of a 
macromolecule. Under the conditionpt * % 1 the second term 
in (A  15) is exponentially small. Substituting (A1 5 )  without 
this second term into (4.1 I ) ,  and evaluating the integrals 
over the spatial variables, we find 

W ( P ,  q)==~,, J d l  dsl ds exp (-sfq202) p (p ;  I, s,, st) 

where 

( ~ ( 1 ,  SI ,  s' ,  s ) = ?  c . ~ ~ ) ( - Q ' u " s - . ? ~ / )  

X [.Y--1-2q:'n-(a --s,)B] , (4.14) 

and 

Substituting (A1 1)  into (4.13), usinga = (pt *) 'I2% 1, 
and also using u = q2a2N /2 % 1, we find 
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W (p, q) ='/# ( ~ S U )  -?. (4.15) 

From (2.28) to (3.4) we find, under the conditions u s  1 and 
u% 1, 

io-2u -' 
.I(-,; q) =(:) [ ~ + ~ . c , u .  2io (u-io) I 1 

Finally substituting (4.15) and (4.16) into (4.10), making 
the substitutions 

and deforming the contour of the integration over p in the 
appropriate way, we find 

where 
.z - 

In particular, for d = 3 we find 

Fluctuation effects thus lead to a decrease in the self- 
diffusion coefficient D, ; this decrease can be quite substan- 
tial. 

It follows from (4.17) that the characteristic values of 
the variablesp and q which dominate the value of A in (4.10) 
are 

Consequently, strong inequalities (4.12) are indeed satisfied 
under the condition cou*N) 1, i.e., for polymer chains which 
are sufficiently long [this condition is actually equivalent to 
the condition NSN,; see (2.24) 1. The quantities j and 4r 
correspond to a characteristic time i= 1/ j  - t  */c,v*Nand a 
characteristic length 2 - I/@- R (cov*N) - 'I4 (the relation- 
ship between ; and 2 is extremely simple in meaning: 2 is the 
distance an end of the macromolecule moves over a time on 
the order of i) . 

Fluctuations in the molecular field with characteristic 
times t >i do not have any significant effect on the reptation 
motion of macromolecules. Consequently, the creeping of a 
macromolecule along a tube is of a diffusive nature at tBi. 
The effect of fluctuations reduces to one of simply renorma- 
lizing the diffusion coefficient for diffusion along the tube: 

All the classical predictions of reptation theory for 
characteristic times t s i  and characteristic distances R $2 
thus remain in force when we make the single substitution 
D - D  7 .  In particular, we have 

(4.21) 

[cf. (4.21) with (2.18), (1.2), and (4.6)].  Comparing the 
last of expressions (4.2 1 ) with (4.5), and using (4.20), we 
find 

The expression on the right side of (4.22) is invariant under 
link-enlargement transformations (transformations in 
which g original links are combined into a single renormal- 
ized link), for which we have 

What is the physical meaning of (4.22)? Let us consider 
the motion of some selected macromolecule (in a concen- 
trated system in the equilibrium state). We call the tube 
which contains the macromolecule at the initial time, t = 0, 
the "seed" tube. The concentration of the links of the sur- 
rounding polymer chains near the axis of this tube must ob- 
viously be slightly lower than the average concentration, 
since the total concentration of all of the links, including the 
links of the selected chain, must be approximately constant 
in the equilibrium state. Consequently, the surrounding 
chains create a potential well (or cavity) for our selected 
macromolecule; the shape of this well corresponds to that of 
the seed tube. 

The state of our selected chain after a time t is shown in 
Fig. 2a. The chain has moved a distance n = s; - s; along 
the tube: 

The chain has moved out of end regions AC and A 'C' of the 
seed tube, having created some new end regions, BC and 
B 'C' .  We will show that an effective restoring force acts on 
the molecule in this position. 

The situations near points C and C' are different, since 
near point C there is a region of the seed tube (AC)  which 
has been left empty (in a qualitative analysis, we can ignore 
the shorter region A 'C '). Region AC is of course soon filled 
by links of surrounding chains by virtue of the rapid defor- 
mation of the network of entanglements (Sec. 2). It is not 
difficult to show, however, that the links of the surrounding 
chains fill cavity AC only partially: A part of size v*/v re- 
mains effectively empty [see (2.23 ) ]. Consequently, the 
average concentration of units in spherical region R, which 
includes regions AC and BC, nevertheless does not reach an 
equilibrium value. It remains smaller by an amount 

Ac- (u'lu) n/Rn3- (u ' lu)  n - ' " ~ - ~ ,  

where R,, - ~ t ' ~ a  -n1I2a is a characteristic dimension of re- 
gion R (Fig. 2a). Consequently, molecular field h, which is 
exerted on point B by the surrounding chains, must be, on 
the average, weaker than the field h ' which acts on point B '. 
The difference, f = h ' - h is, in order of magnitude, 

In this situation, the macromolecule is thus acted upon 
by an effective force f which tends to move the molecule in 
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the opposite direction along the tube. Obviously, the effect of 
force f must be to effectively reduce the diffusion coefficient 
D . It is easy to show that the relative change in this coeffi- 
cient, AD /D =A, must be proportional to the height of the 
potential barrier associated with forcef: 

where 

and the integral is evaluated from 0 to fi, where ii is the 
characteristic distance (expressed as a number of links) a 
macromolecule can move along the tube over the lifetime 
(?) of cavity AC. 

Substituting (4.24) into (4.26), we find 

where ii - (D,~-;) ' I 2  [see (4.23)]. 
The time t, over which the force f persists, is obviously 

equal in order of magnitude to T, , the relaxation time of 
concentration fluctuations with a wavelength on the order of 
the size of region R, i.e., with a wave vector g- i i -1 '2a-1 .  
Using (3.28) and the relation ii - (D  ,, i) ' I 2 ,  we find the fol- 
lowing from the condition t-T. ( g ) :  

Substituting (4.28) into (4.27) and (4.25), we find 

in complete agreement with exact expression (4.20). 

5. CONCLUDING REMARKS 

Expressions (4.20) and (4.22), the basic results of the 
preceding section of this paper, represent the fluctuation ef- 
fects in the first order of a perturbation-theory expansion. 
They are valid under the condition I A 1 9 1. In general, we 
should replace (4.22) by 

D, ,*=D,<  ( a ) ,  cr=0.078(a/a3) (Nlc,~')  '", (5.1) 

where 

t ( a )  =I--aSO(az) ,  a<i. (5.2) 

The qualitative considerations expressed at the end of 
the preceding section make it possible to predict the behav- 
ior of the function [(a) at a $1 also. In this case, expression 
(4.27) for the height of the potential barrier, U, obviously 
remains in force, since the only assumption which was made 
in the derivation of (4.27) was that the conformations of the 
sections of the macromolecule (sections AC and BC; Fig. 
2a) obey Gaussian statistics. In particular, the sizes of these 
sections are a n ' I 2  in order of magnitude, and this is true 
regardless of the value of the parameter a (Sec. 1 ). The value 
of ii at a )  1 can be estimated in the following way. 

We recall that ii is that maximum displacement of the 

FIG. 2. a: Typical position of a macromolecule (solid line BCC'B') with 
respect to the seed tube (dashed lines ACC'A ') at time t. The length of 
sectionACiss,, thatofsectionBCiss,, that ofA 'C'is s;. and that ofB 'C'is 
s;. Heres, + s; = s, + s; = I, and fi is the spherical region of minimum 
radius which contains sections AC and BC. b,c: Possible positions of the 
macromolecule at the time at which it finally escapes from the seed tube. 

macromolecule (along the tube) over which the cavity cor- 
responding to the liberated section of the seed tube (section 
AC) does not yet manage to relax. Let us consider a spherical 
region which contains section AC entirely, at the time of 
maximum displacement 5 .  The size of this region is an"' in 
order of magnitude, and its volume is 

It is completely obvious that if region R does not contain a 
single end link (other than, of course, end B of our selected 
macromolecule) then the relaxation cannot occur in princi- 
ple, since the action of the molecular field created by the 
cavity on the interior links (i.e., links other than the end 
links) of the polymer chains has no effect on their motion 
[see (2.5) 1.  On the other hand, if region R contains the end 
of at least one of the surrounding chains, then the relaxation 
will occur essentially instantaneously. The explanation is 
that region R corresponds to an effective potential well 
created by cavity AC, so this chain "is drawn into" region R 
quite rapidly6' and thereby raises the effective potential of 
the molecular field in this region to the average value. Conse- 
quently, the maximum displacement ii must correspond to a 
region R which may or may not contain ends of chains, with 
a probability on the order of 1/2. This condition can obvi- 
ously be written 

where 2c,/N is the concentration of the ends of polymer 
chains. Substituting (5.3) into (5.4), we find 

Note that with a- 1 function (5.5) joins with (4.28), as it 
should. 

Substituting (5.5) into (4.27), we find the height of the 
potential barrier to be 
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As it moves along the tube, our macromolecule is thus 
obliged to overcome some very high potential barriers ( U / 
T) 1 ). This circumstance can of course lead to an exponen- 
tial growth of the diffusion time and, correspondingly, an 
exponential decrease in the effective diffusion coefficient 
D r. Within a coefficient of the exponential function, we can 
write 

Dl,'-Dl, exp (-U/T) . (5.7) 

Substituting (5.6) into (5.7), and comparing the result with 
(5.2), we finally find 

5 ( a )  aexp(-consta"" ), aBI. (5.8) 

The analysis above ignored random fluctuations in the 
molecular field, in particular, fluctuations in the effective 
depth of the potential well in region a. It can be shown, 
however, that incorporating these fluctuations with d = 3 
does not affect the final result (5.8); the only consequence is 
some change in the value of the const. 

We can now formulate the final result regarding the 
dependence of the viscosity on the length of the macromole- 
cules, N. Using (2.4), (2.19), (4.21), (5.1), (5.2), and 
(5.8), we find 

where 

In deriving the second expression in (5.10) we noted that for 
real polymer systems the relation c,vN,/v) 1 holds. 

The classical reptation law ?1 a N is thus valid only for 
sufficiently low molecular weights of the polymer, under the 
condition a ( 1. At large values of N (at a )  1 ) the viscosity 
increases exponentially, 

qaesp  (const .  N'") . (5.12) 

An estimate of the parameter a for real polymer systems 
shows that even for the highest-molecular-weight synthetic 
polymers we have a 5 1. It is thus not surprising that an 
exponential dependence of the type in (5.12) has not been 
observed experimentally. 

Let us compare the theoretical behavior of the viscosity 
with experimental data for melts ofpolystyrene (PS) .4 From 
(5.9) and (5.11a) we find 

where Mis the molecular weight of the polymer. The deriva- 
tion of the coefficient of M 'I4 in (5.13) made use of the rela- 
tions 

wherep = 0.97 g/cm3 is the density of the PS melt, ML = 35 
.&-I is the molecular weight of a unit length of a PS chain, 
b = 14 + 3 .& is a Kuhn segment of PS, and 
Me = (17 + 1) .  lo3. In addition, we have used the value" 
Y = 6.5. Figure 3 shows curves of I I I ( ~ / M ~ )  versus M 'I4: a 
theoretical curve calculated from (5.13) (curve 1) and an 
experimental curve (curve 2; Ref. 4).  Each of the curves has 
been shifted an arbitrary distance along the ordinate, so one 
should compare the slopes of these curves, rather than abso- 
lute values. We see that at lower molecular weights the slope 
of the experimental curve is considerably higher than that of 
the theoretical curve. This result is completely understanda- 
ble since in this region the ratio M/M, is still not very large, 
so such intermediate effects as fluctuations in the contour 
length of the tube (which lead to a strengthening of the M 
dependence of 7; see the Introduction) can play a significant 
role here. At larger values of M, on the other hand, the slope 
of the experimental curve approaches that of the theoretical 
curve. 

For a more comprehensive test of the predictions of this 
study we would need data for even higher molecular weights. 
Such data could apparently be obtained from numerical sim- 
ulations, particularly for two-dimensional polymer systems. 

APPENDIX 

We will first calculate the function F. We consider a 
macromolecule which is moving in a reptation fashion. It is 
not being acted upon by any external (including molecular) 
fields: h = 0. We assume that at the initial time ( t  = 0 )  units 
of the macromolecule is at point r, while the distribution of 
the other units is an equilibrium (Gaussian) distribution. 
We denote the corresponding distribution with respect to 
conformations by Or,,{J?), where r runs over all possible 
conformations of the polymer chain. The functional Or,, {r) 
is normalized by the condition 

The distribution with respect to conformations of this 
macromolecule at time t, P, {r), can obviously be written as 
a superposition of distributions of the type Or.,, {TI: 

P , { P ) =  J ddr' ds' @,(rl-r. s ' ,  S ) O . ~ , . ( ~ ) ,  (A2) 

FIG. 3. Plot ofln(r]/M3), where r]  is the viscosity ofthe system and M the 
molecular weight of the polymer, versus M 'I4. 1-Theoretical, calculated 
from expression (5.13); 2--experimental (for a polystyrene melt4). Each 
curve has been displaced an arbitrary distance along the ordinate. 
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where the function 8, (r,s,sl) satisfies an equation which fol- 
lows from (2.5), 

with the boundary conditions 

and the initial condition 

System of equations (A3)-(A5) can be solved by the 
standard methods.'." Here is the explicit expression for the 
Fourier-Laplace transform of the function 8, (r,sr,s), 

0 (p .  q, s t .  s )  = dt  d%e-ple-iqrO, (r .  s', s ) ,  (A6)  

in a form which has been made symmetric with respect to the 
substitution s-N-+ - s (it is this combination which ap- 
pears in all of the final expressions) : 

If3 ( p ,  q, s', s )  +0 ( p ,  q, s f ,  N-s) I /2= ( t ' lN)  o-' ch ( o y )  
X [ ( a  ch o f  u sh o ) c h ( o y l ) l ( u  ch o+a sh o )  -sh(oy')] , 

where 

o= (pt') '",  u=Nq2aZ/2, y=min [ l2s/N-l 1 ,  1 2sf/N-1 ( 1  , 
y'=max[12s/N-11, 12s'/N-1\]. 

The function t9(p,q,sf,s) satisfies the following impor- 
tant relation, which follows directly from Eqs. (A3) and 
(A5):  

The expression for the function F which follows from rela- 
tion (A21 as a particular case of the latter is 

9 91 q 2  
= j ds'0 ( p ,  q+ql+qz, s f 7  so)  91 ( J ' )  , (A9 

S S I  S z  

where 

Here @ (r/s r ,/sf r,/s,)O/s') is the equilibrium probability 
distribution that unit s of an ideal Gaussian chain will be at 
point r, units ,  at point r , ,  and units, at point r2, under the 
condition that unit s' is at the origin of coordinates. We turn 
now to the calculation of the function K. For this purpose we 

first examine some general properties of the reptation mo- 
tion (for h = 0) .  We assume that the macromolecule is ini- 
tially in a seed tube whose conformation we denote by To: 
r,, = {r,, O<s<N). Over a time t, the macromolecule can 
partially creep out of this tube (Fig. 2) .  The state of the 
macromolecule at time t is conveniently characterized by the 
following parameters: s , ,  which is the "length" of the initial 
section of the seed tube which the macromolecule has left; s,, 
which is the "length" of the new section of the tube which 
has appeared in place of sections,; and I = s, + s; = s, + s; , 
which is the total "length" of the sections of the macromole- 
cule from which the seed tube has escaped (Fig. 2a). 

The probability that the parameters I, s , ,  and s, assume 
certain given values at time t is obviously independent of the 
initial conformation ro; i.e., the probability distribution of 
the quantities I, s , ,  and s, is some universal function 
pt (l,s,,s,). This function can be calculated without diffi- 
culty by working from specifically the universal nature of 
this function (the calculation method is shown for a particu- 
lar case in Ref. 18 ). The result is 

I > m a s  (s,. s,) , (A1 1) 

where y = I /N, x ,  = s,/N, and x2 = s2/N. I t  is not difficult 
to verify that at t > 0 we have 

Jp, ( I ,  s,, s,) dl dsI d s 2 t  1. (A121 

The reason for the disruption of the normalization is that the 
set of parameters (l,s,,s,) does not describe all possible 
states of the meacromolecule: Over the time t, the polymer 
chain can completely creep out of its seed tube. By the time 
at which it finally escapes from this tube the polymer chain 
may be in state Or,, (Fig. 2b) or Or,, (Fig. 2c), where r is 
any point of the seed tube It is easy to show that the rates at 
which states O r ,  and Or,, are generated are, respectively, 

Using (A2),  we find P:{r), i.e., the distribution with re- 
spect to conformations of those macromolecules which have 
completely escaped from the seed tube by time t: 

I 

P; (I') =Dl  df' b r l  ds dsf  [ O f *  (I)-(.., st ,  0) pi-t. (N, 6.0) 
0 

Using ( A l ) ,  we can verify that the following relation holds 
(as it should) : 
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The function K can be expressed directly in terms of the 
function p: 

I< ( 0  I 1: ::) = I d s f  p ( p ;  N + s l - s z ,  s t ,  s l ) g  ( q ~ ,  s t )  

The first term here corresponds to those macromolecules 
which are partially in the seed tube, while the second term 
corresponds to those macromolecules which have complete- 
ly crept out of this tube [cf. the second term in (A15) and 
expression (A14) 1. In the important particular case p -. 0, 
q, = - q, the function K is given by 

"We wish to stress that the value z = 3.4 is a nominal value: The experi- 
mental data (for various systems) correspond to values z = 3.1-3.7 
(Ref. 5). 

"For exam~le. these fluctuations reduce the varameter v [see (2.24) 1 by - - 
about 20$' ( '~ef .  13). 

"Equations (2.7) and (2.8) were derived in the case h = 0 in Ref. 2 (see 
also Ref. 10). 

4'For an unstretchable filament, there is no intermediate Rouse stage of 
the relaxation. " 

'Expression (3.19) is valid in the limit of very long polymer chains and 
under condition (3.18); see the review by Oono." 

""Quite rapidly" because at a 9  1 the effective potential energy of a sec- 
tion of a chain consisting of ii units in this well is large in absolute value: 
/ U 9 T (more on this below). 

'W. W. Graessley, Adv. Polym. Sci. 47, 67 (1982). 
'D. Doi and S. F. Edwards, J. Chem. Soc. Faraday Trans., I1 74, 1789, 
1802, 1818 (1978). 

'P.-G. De Gennes, Scaling Concepts in Polymer Physics, Cornell Univ. 
Press, Ithaca, 1979 (Russ. Transl. Mir, Moscow, 1982). 

4W. W. Graessley, Adv. Polym. Sci. 16, 1 (1974). 
'R. H. Colby, L. J. Fetters, and W. W. Graessley, Macromolecules 20, 
2226 (1987). 

'J. Des Cloizeaux, J. Phys. Lett. (Paris) 45, L-17 (1984). 
'Y.-H. Lin Macromolecules, 17,2846 (1984); 18,2779 ( 1985). 
'M. Rubinstein, Phys. Rev. Lett. 59, 1946 (1987). 
'I. M. Lifshitz, A. Yu. Grosberg, and A. R. Khokhlov, Usp. Fiz. Nauk 
127, 353 (1979) [Sov. Phys. Usp. 22, 123 (1979)). 

"'I. Ya. Erukhimovich and A. N. Semenov, Zh. Eksp. Teor. Fiz. 90, 259 
(1986) [Sov. Phys. JETP 63, 149 (1986)l. 

"A. N. Semenov, Europhys. Lett., in press (1989). 
I2J. M. Deutsch, Phys. Rev. Lett. 54, 56 (1985); J. Phys. (Paris) 48, 141 

(1987). 
"A. N. Semenov, J. Phys. (Paris), in press ( 1989). 
I4S. F. Edwards, J.  Phys. A 8, 1670 (1975). 
"Y. Oono, Adv. Chem. Phys. 61,301 (1985). 
"A. Baumgartner, J. Chem. Phys. 87, 3082 (1987). 
I'M. Adam and M. Delsanti, Macromolecules 18, 1760 ( 1985). 
''A. N. Semenov, J.  Chem. Soc. Faraday Trans., I1 82, 317 ( 1986). 

Translated by Dave Parsons 

118 Sov. Phys. JETP 69 (I), July 1989 A. N. Semenov 11 8 


