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By analogy with the virtual turbulent diffusion coefficient (i.e., the time rate of change of 
dispersion of a cloud of Lagrangian particles), a new definition of a coefficient of effective 
turbulent viscosity, v,, is introduced. This coefficient describes the nonlinear effect of momentum 
exchange in nonstationary turbulent flows, without resorting to any closure hypotheses. Exact 
expressions have been obtained for v ,  with the Riemann and Burgers equation as examples. These. 
expressions describe, in particular, the effects of turbulent amplification of the effects of 
molecular viscosity. A comparison is made with estimates obtained earlier on the basis of the 
traditional definition of v ,  in terms of the interaction of the mean velocity field with the 
fluctuations, a definition used to close the statistical description of mean fields. 

INTRODUCTION 

It is known that the appearance of turbulence in a medi- 
um causes an extraordinary enhancement of heat, momen- 
tum, mass transfer, etc. This leads to the necessity of intro- 
ducing physical parameters of the turbulent state such as the 
effective turbulent heat transfer coefficient, the effective tur- 
bulent viscosity, and the effective turbulent diffusion coeffi- 
cient. The values of these coefficients exceed by many orders 
the values of the corresponding molecular coefficients 
(Refs. 1, 2 ) .  In particular, in the theory of turbulent diffu- 
sion such a physical characteristic of mixing processes is the 
virtual turbulent diffusion coefficient D, defined in terms of 
the rate of flowing apart of a cloud of Lagrangian particles 
relative to the center of gravity of the cloud (e.g., along the 
x ,  axis) [Refs. 1, 3, 41 : 

where n is the dimensionality of space, q(x , t )  is the distribu- 
tion function of the admixture concentration field, q,, 
= Jd "xq(x,t) is the total mass of the admixture (q,, = const 

for a conservative admixture); the angle brackets in Eq. ( 1 ) 
denote statistical averaging over the ensemble of realizations 
of the random velocity field which effects the turbulent 
transport of the admixture, and the bar denotes an average 
over space. The quantity D, characterizes the intensity of 
the turbulent mixing of the admixture independently of the 
possibility of introduction of a closed statistical description 
of the mean field (q),  e.g., in the form of an equation of the 
type of the diffusion equation (this is what the Boussinesq, 
Reynolds, Taylor, and Prandtl hypotheses consist of, Ref. 
1 ) . Such a closure is by far not always achievable, in particu- 
lar, because of the violation of locality of the representation 
of the fluctuation field in terms of the gradient of the mean 
field.' For example, the domain where this closure hypothe- 
sis is applicable is determined exactly bJ a comparison of the 
semiempirical diffusion coefficient with D, in Eq. ( 1 ) . 

In spite of the similarity between the processes of turbu- 

lent mass and momentum transport, until now the notion of 
turbulent viscosity is most often associated only with the 
possibility of introducing the most varied (see Ref. 7 )  closed 
descriptions of the average velocity field, in particular, in the 
form of an equation of the diffusion type (Refs. 1, 8-10). 
There exist, however, papers of the type of Refs. 11-13, in 
which the turbulent viscosity was already considered as an 
independent physical phenomenon characterizing the 
mode--mode interactions," or as the response of the fluid in 
turbulent motion to an external disturbance having the form 
of a random force (Refs. 12, 13 ) . However, in the papers of 
this trend a closed-form definition of the turbulent viscosity 
coefficient can be introduced only on the basis of the use of 
formal statistical closure hypotheses (of the type of the di- 
rect-interaction approximation and its modifications' I ) ,  for 
which the domain of applicability is not completely deter- 
mined, as far as the physical parameters of the system are 
concerned. Indeed, in the limit of large Reynolds numbers 
characteristic for the turbulent state, the nonlinearity of the 
equations of fluid dynamics leads to a strong interaction 
between the motions of different scales (and not only scales 
which are close in magnitude), guaranteeing an intensive - 
momentum exchange between these motions, i.e., being re- 
sponsible for turbulent viscosity proper. Accordingly, the 
information on such a de facto infinite-dimensional system 
can be distorted in a predictable way by means of the intro- 
duction of any statistical closure hypo the~ i s . '~  

Therefore this paper proposes a new approach to the 
quantitative definition of the turbulent viscosity, an ap- 
proach which does not introduce any statistical hypotheses 
for t >  0. Thus, for a most complete accounting for all the 
nonlinear effects in the turbulent exchange of momentum we 
define by analogy with Eq. ( 1 ) a virtual tensor of turbulent 
viscosity Y! in the form 

where P, = Sd "xu, (x,t) is the invariant component of the 
total momentum for P,+O [for P, = O  one may consider in 
Eq. ( 2 )  an integration over that region Vof space where part 
of the total momentum 
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does not vanish identically], u(x,t)  is the random velocity 
field, satisfying the equations of fluid dynamics which con- 
serve the total momentum P. In the presence of external 
forces f(x, t)  we still have P = const if J d  "x.f(x,t) = 0. The 
quantity Y: describes the rate of change of the dispersion of 
the distribution of the j th component of the velocity fluid u 
(i.e., the broadening of the corresponding "wave packet") 
along the axis labeled by i, with no summation understood 
over repeated indices for all ij= (1,2, ..., n ) .  In the same 
manner as in Eq. ( 1 ), the angle brackets in Eq. (2 )  denote a 
statistical averaging over the ensemble of realizations of the 
turbulent velocity field u(x,t)  and the superior bar denotes 
the appropriate spatial averaging. The statistical averaging 
procedure in Eq. ( 2 )  may take on an explicit character if for 
the modeling of the turbulent regime one uses, e.g., the meth- 
od of chaotization of integrable problems. 15-" In particular, 
an exact solution for Y: can be obtained from Eq. ( 2 )  if an 
exact solution is known for a u(x,t)  realization that depends 
explicitly on a random initial field u (x , a )  with a specified 
normalized distribution density p (a )  ( J d a p ( a )  = 1 ) of the 
parameters a of this field. The statistical averaging in Eq. 
(2 )  corresponds to averaging over a with respect to the dis- 
tribution p ( a ) .  The definition (2 )  may, of course, be also 
used in the case when the realizations of the field u(x , t )  are 
defined approximately, or one uses for them a representation 
derived from a numerical or a normal experiment. We also 
note that for small Reynolds numbers, when the nonlinear 
terms in the equations of hydrodynamics can be neglected 
and only the molecular mechanism of momentum transfer is 
realized, the definition ( 2 )  coincides exactly with that of the 
molecular viscosity coefficient for the appropriate solution 
u(x,t)  of the Cauchy problem in infinite space. The same 
correspondence with the molecular kinetic coefficient ap- 
plies to the definition of D, in Eq. ( 1 ) for the case when the 
transport of q(x , t )  is realized only on account of the molecu- 
lar diffusion. 

In the present paper we restrict our attention to the 
Riemann and Burgers equations, since exact nonstationary 
solutions are well known for these equations and thus there 
is the possibility to obtain exact expressions for the turbulent 
viscosity coefficient (2 ) .  Principal attention is paid to purely 
nonlinear effects (without taking account of the initial sto- 
chastic factors) of intensification of the process of momen- 
tum exchange in turbulent motion. For this, one essentially 
considers deterministic initial conditions corresponding to 
the Riemann and Burgers equations in the absence of exter- 
nal forces. Indeed, in the transition to turbulence, it is the 
nonlinearity of the equations of hydrodynamics that is re- 
sponsible not only for the limited predictability and stochas- 
tization of the motion (Ref. 14), but also for establishment 
of new macroscopic couplings which guarantee the appear- 
ance of a more intensive macroscopic momentum transport 
mechanism replacing the purely molecular one. On the con- 
trary, by itself the stochasticity of the motion, which is char- 
acteristic also for large equilibrium systems, cannot com- 
pletely determine the nature of this purely nonequilibrium 
organized (collective) process of turbulent momentum ex- 
change (Ref. 20). 

An investigation of the Riemann and Burgers equations 

not only makes it significantly easier to understand the phys- 
ical meaning of the new definition of turbulent viscosity in- 
troduced in Eq. (2) ,  but is also of independent interest in 
connection with the use of these equations for the analysis of 
many physical processes in nonlinear acoustics, plasma 
physics, radiophysics, and fluid dynamics (Refs. 2, 9, 21- 
23). In particular, this refers also to the problem ofjustifica- 
tion of the possibility of closing the appropriate statistical 
description of the mean fields, and the problem of the role of 
molecular viscosity in the process of formation of the phe- 
nomenon of turbulent viscosity. 

1. THE EFFECTIVE VISCOSITY IN RIEMANN TURBULENCE 

1. One of the most important exact nonstationary solu- 
tions of the Euler equations of hydrodynamics is a simple 
Riemann wave described by the corresponding Riemann 
equation'' 

where u is the one-dimensional velocity field. The equation 
(3 )  and its higher-dimensional generalization 

also aesciloes the inertial motion of a fluid or a beam of 
noninteracting particles. Ih." 

The equations ( 3 )  and (3 ')  correspond to distributed 
nondissipative systems for which one can, nevertheless, in- 
troduce a concept of turbulent viscosity based on the defini- 
tion (2 ) .  There exists a certain similarity to the problem 
posed in Ref. 24, of the determination of an effective friction 
coefficient in terms of the parameters of an exact time-rever- 
sible solution, but for a discrete Hamiltonian system of cou- 
pled oscillators. We are making use in the sequel of the nota- 
tion vd.'=v, corresponding, in particular to the 
one-dimensional representation (2 ) .  Carrying out directly 
in this definition of Y, a differentiation with respect to t mak- 
ing use of Eq. ( 3 ) ,  it is easy to obtain the following general 
exact representation for Y,, valid for arbitrary values of the 
time t: . 

where 

and use has been made of the invariance of the quantities 
m 

I , , ,  J L , ,  m=1,2,. . . 
- co 

for the velocity field u(x,t)  in Eq. (3) .  In Eq. ( 4 )  uO(x)  
denotes an arbitrary deterministic initial velocity field [that 
is why there are no angle brackets in Eq. (4)  1, correspond- 
ing to nonzero values of the total energy Eo and the total 
momentum Po. In particular, for symmetric initial condi- 
tions u0(x) = u0( - x )  the free term vanishes and Y, 

= C,,Zt, where Co is a positive constant depending on the 
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form of the function u,(x), Zr E,/A is the partial average of 
the energy of the initial velocity field u,, and /1 is a character- 
istic scale of the spatial variation of u,(x). [The positivity of - 

follows from the Holder inequality 

f o r k > l a n d l / k +  l / k l = l  (Ref25) . ]  
We note that such a time-dependence [see also Eq. ( 7 )  ] 

for the turbulent viscosity coefficient also arises with its tra- 
ditional definition v,, related to the possibility of a closed 
statistical description of the mean velocity field in the form 
of a diffusion equation obtained on the basis of averaging of 
Eq. (3) ,  Refs. 8-10. Indeed, in these papers the very intro- 
duction of the effective viscosity v ,  is considered to be possi- 
ble for Riemann turbulence only if one considers an interac- 
tion of the signal (the mean field ( u ) )  with the noise 
(fluctuations) in the limit when the amplitude and the scale 
of the signal differ significantly from the corresponding 
characteristics of the noise. In these conditions it follows 
from Eq. (3 )  that (u )  satisfies the relation 

in the case when the signal is weakly perturbed by noise, and 
the relation 

when, on the contrary, the signal perturbs the noise regime 
weakly (Ref. 8) .  In  either case v ,  = 2t2, where2 is the initial 
noise energy (Refs. 8-10). In addition, in Refs. 8 and 9 this 
expression for v,  is considered valid only for times t shorter 
than the breaking time to of a simple wave (for the noise 
component), whereas for t > to it is assumed that v ,  does not 
depend on t at all. This is the fundamental distinction 
between the conclusions of Refs. 8-10 and the expression for 
v, in Eq. (4) ,  which is valid not only for arbitrary signal-to- 
noise ratios, but also for arbitrary times t. At the same time it 
should be noted that the character and the rate u of spread- 
ing of a wave packet of the field, computed on the basis of the 
definition of v ,  in Eq. (4) ,  corresponds to the evolution re- 
gime (5') in infinite space with v ,  = v,. 

2. We now consider the expression (2 )  for the case of 
the n-dimensional generalization (3') of the Riemann equa- 
tion, when the initial velocity field uO(x)  represents N non- 
overlapping packets of finite extent and amplitudes a,, 
( k  = 1,2, ..., N) ,  localized in the appropriate intervals xc  [ c,, 
d , l , d ,  >c , :  

where 
n 

where n is the dimensionality of space, and x r  (x2,x3, ... x,, ). 
Assume, for simplicity, that a , , k  f.0, and a,,, = 0 for 
i = 2,3 ,... n, k = 1,2 ,... N. For N = 1, for example, this can 
always be achieved by means of an appropriate choice of the 
coordinate system. The Appendix contains an exact solution 
( A l )  of Eq. (3 ')  corresponding to Eq. (6 )  with this condi- 
tion. The effective viscosity tensor (2 )  corresponding to the 
solution ( A l )  has only one nonvanishing component 
v ~ ; l = v , ,  the magnitude of which, just as the solution (4 ) ,  
has the same expression also in the region of uniqueness of 
the solution (A1 ), for 

t < t o  = min lla,, k P h -  (X) ( d l , k  - e l , k ) ,  

( k ,  3 

and for t>to after the breaking of the wave. This agreement 
holds because the use of the invariance of the total momen- 
tum P i n  the calculation of v ,  in the region of nonuniqueness 
of the solution (A1 ) for t > to leads to the need of modifying 
the definition of v, for t  > tO to the form (A2) .  The Appendix 
also contains an expression for v , ,  (A3) ,  for the case where 
all the quantities a, , , ,  d,, c, in Eq. ( 6 )  are different for 
different values of the index k. In particular, for a,,, =a ,  d,,, 
- c,, =d, - c, forall k = 1,2 ,..., N, i  = 1,2 ,..., n in  (A3)  one 

obtains exactly the same expression as in the case N = 1: 

where 

where E is the spatial average of the energy for t = 0. The 
expression ( 7 )  follows from the general definition E - Eo/ V,, 
where Eo and Vo have the following form for the initial veloc- 
ity field (6 ) :  

In form the solution ( 7 )  coincides with Eq. (4 )  (for 
uO(x) = uo( - x ) ,  but now the quantity CO turns out to de- 
pend essentially on the dimensionality n of space and on the 
exponent p of smoothness of the initial velocity field ( 6 ) .  In 
a.ddition, it follows from (A3)  that for N >  1 and different 
A ,,, and d, - c,  (for various k )  we have v, + const as t + 0, 
in the same manner as in Eq. ( 4 )  and ( A 3  ) [or Eq. (7 )  1,  
although the method of obtaining (4 )  is not related to the 
necessity of using an explicit representation of the solution 
for u, including the region of nonuniqueness. 

3. Making use of an exact solution of the Riemann equa- 
tion (3') represented in the form ( A l )  one can determine 
the character of the evolution of enstrophy (the mean- 
square gradient of the velocity field) as it approaches the 
singularity at t = to, which determines the instant of appear- 
ance of a bifurcation of the solutions of the equations of hy- 
drodynamics of an ideal fluid. 

Thus, in the one-dimensional case n = 1 we have 
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P, ( 2 )  = 1 in Eqs. (6) and ( A l )  and the magnitude of the 
enstrophy 

which determines the rate of dissipation of the total energy 
in the presence of molecular viscosity [see Eq. ( 13 ) below], 
has the form (for a, = a  and d ,  - c, = b, at all 
k = 1,2, ..., N): 

for t<to = l/ab. Thus, Eq. (8)  implies that over a finite time 
to = l/ab there occurs an explosive unbounded growth of 
the enstrophy 

Nbaa2 
Q ( t )  w - In 1 

2 1 I-t/tol 
as t-to, a growth due to the nonlinear breaking of a simple 
Riemann wave ( A l )  and to the loss of uniqueness of this 
exact nonstationary solution of the hydrodynamic Euler 
equations. It should be stressed that the explosive growth of 
fl in Eq. (8 )  takes place logarithmically rather than as a 
power law, as happens, for instance in the collapse (coales- 
cence) of point vortex dipoles (i.e., infinitesimal vortex 
rings) in the hydrodynamics of an ideal incompressible fluid 
(Refs. 19, 26). 

At the same time for n > 1 the solutions (A 1 ) no longer 
lead to an explosive growth of the enstrophy. This is due in 
final analysis to the quasi-two-dimensional character of the 
solution (A1 ) for n>2. Indeed, for u(x,t) in Eq. (A1 ) only 
one component of the velocity field, u,, is different from 
zero, so that the effect of stretching of the vortex lines is 
manifestly absent, an effect which leads in the three-dimen- 
sional case to an explosive enstrophy intensification (Refs. 
1, 19,26) limited only by the influence of dissipative factors 
(Refs. 27, 26). 

4. We note that in the construction of the turbulent re- 
gime on the basis of the method of chaotization of exactly 
integrable problems (Ref. 15-1 9) one can obtain for the Rie- 
mann equation (3)  or (3') only expressions for (v,), statis- 
tically averaged with a prescribed probability measure for 
the initial velocity field and corresponding to the representa- 
tions of v, in Eqs. (4 ) ,  (A3), and (7) .  However, the qualita- 
tive behavior of (v,) as a function of time agrees exactly with 
the non-averaged v, [although this representation of v, in 
Eqs. (4), (A3) and (7)  corresponds to a procedure of spa- 
tial averaging, contained in the definition (2)  ] .  We note also 
that the applicability of these expressions for (v,) does not 
depend in fact on the level and the scale of fluctuations of the 
random field u(x,t) corresponding to the initial condition 
u(x,t = 0 )  determined by the random parameters a. How- 
ever, the measurep(a) is chosen in such a way that the total 
momentum P should not vanish for any values of a (of 
course, if M 0 ) .  

5. Concluding this section, it should be noted that the 
method used in the present paper (in essence related to the 
method of moments2') can be used not only for the analysis 
of the turbulent transport of momentum (i.e., viscosity), but 
also for the investigation of other macroscopic kinetic char- 
acteristics of the turbulent flow. For instance, for the de- 
scription of the process of redistribution of the density of 
turbulent energy (related in particular with the phenome- 

non of intermittency in turbulence1) one must carry out in 
the definition (2)  an averaging over space, taking into ac- 
count the density distribution of the turbulent energy 
u2 (x,t), in place of the distribution of u(x,t). In distinction 
from u, the distribution of u2 is already positive definite, 
which is not of principal interest and reflects only the corre- 
spondence of u2(x,t) to a nonnegative probability distribu- 
tion for the coordinates of the Lagrangian particles.' For 
nondissipative systems ofthe type (3)  and (3'), as well as for 
the case when the external forces compensate exactly the 
energy dissipation, the distribution u2(x,t) defines an invar- 
iant measure corresponding to conservation of the total en- 
ergy. In particular, for the Riemann equation (3  ) the corre- 
sponding effective energy diffusion (or the intermittency ) 

has for arbitrary values o f t  the form 

derived in the same manner as Eq. (4), by differentiating Eq. 
(9 ) making use of Eq. ( 3 ) and of the invariance of the quan- 
tities 

for Eq. (3).  InEq. (10) we have 

which follows from the Holder in equal it^.^^ The expression 
( 10) does not differ qualitatively from (4)  and signifies that 
the nonlinear turbulent processes of transformation of ener- 
gy and momentum density have much in common in the 
Riemann turbulence case under consideration. We also re- 
mark that the quantity lI, is the analog of the rate of vari- 
ation of the effective width of a light beam (in a moving 
coordinate frame) in thermal self-action in a weakly absor- 
bent moving medium." Indeed, the calculation of the effec- 
tive broadening in Ref. 29 also makes use of the method of 
moments, where in place of u2(x,t) the spatial averaging is 
done in terms of the energy density I(x,y,z = ct) of the light 
beam. In the process of evalution with respect toz = ct for I, 
as well as for the solution u(x,t) of the Riemann equation 
(3),  one observes (Refs. 29,30) effects of the appearance of 
nonuniqueness (in the distribution of the level lines of I(x, 
y,z = ct) in the (x,y) plane) suggestive of the phenomenon 
of breaking of a simple wave in the nonlinear self-action of u. 
Moreover, for small t (or z) the rate of variation of the effec- 
tive width of the light beam increases linearly in time (see 
Ref. 29), similar to the linear growth in Eq. ( 10). It is there- 
fore possible that in itself the process of thermal self-action 
ofa light beam can be modeled by Eq. (3) or (3'), e.g., in the 
nondissipative approximation of geometric optics (in Ref. 
30 as 6-0) describing a beam of noninteracting "particles." 
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2. BURGERS TURBULENCE 

In the theory of turbulent diffusion an essential role 
may be played by interaction effects between molecular and 
turbulent diffusion (Refs. 1, 3, 4). Similar enhancement ef- 
fects of the molecular viscosity can be investigated for the 
case of the Burgers model of turbulence, in which a realiza- 
tion of the velocity field satisfies the Burgers equation 

where v is the molecular viscosity coefficient. As before, Eq. 
(1 1 ) corresponds to the total-momentum conservation law 

m 

P= j dxu  ( x ,  t )  =Po=conat. 

Utilizing the one-dimensional representation of the defini- 
tion (2) and differentiating in it directly with respect to 
time, taking account of ( 11 ), we obtain for the virtual turbu- 
lent viscosity coefficient the expression 

where 

and E is the total energy which for v#O is no longer an 
invariant of the motion, since 

The angle brackets in Eq. ( 12) may be omitted only when 
the initial velocity field u (x,t = 0)  is deterministic and the 
effective viscosity v, is determined only by the joint effect of 
the nonlinearity of Eq. ( 1 ) and the molecular viscosity. 

1. In particular, for the initial condition 

u ( x ,  0) =A6 ( x )  (14) 

the exact solution of Eq. ( 1 1 ) has the formz2 

'h 

( x .  t )  = (+) (exp Re-I )  enp ( - x z / C t )  / [n'" 

+ (erp Re- 1)  J d u  exp  ( - u 2 ) ]  
x / ( c v t )  'h 

(15) 

where Re =A /2v is the Reynolds number. Substitution of 
( 15) directly into the one-dimensional form of the definition 
(2)  leads to the expression 

where the bar denotes spatial averaging with the weight 
function 

p ( x )  =e-*(eRe-1) / [nlb+ ( ~ R Q - 4 )  J due-"],  
x 

In the limit IRel, 1 we obtain from (16) 

i.e., v,+(IA 1/18)sign t for IRel- co. For A>O the limit 
Re- co corresponds to the transition to the Riemann equa- 
tion, when the solution ( 15) has the form 

where O(x) is the Heaviside step functionz2 and forA < 0 and 
Re-+ - co it follows from (15) that 

For Re- co , the viscosity Y, in Eq. ( 16a) does not depend at 
all either on Y nor on t. The difference of this result from (4)  
is explained by the fact that in order to obtain (4)  a sufficient 
degree of smoothness of the initial field had to be assumed. 
Indeed, for the condition (14) one cannot even correctly 
define the initial energy 

which enters into Eq. (4),  since the integrand would contain 
a product of delta functions. In the preceding section it was 
already remarked that in Ref. 9 for v = 0 a constant turbu- 
lent viscosity coefficient had been obtained for times t ex- 
ceeding the wave breaking time t,,. 

In the opposite limit lRel< 1 we obtain from Eq. ( 16) 

v,=v ( I + O  ( R e )  ) . (16b) 

Thus, it follows from Eqs. (16a) and (16b) that for 
large values of Re the magnitude of v ,  may significantly ex- 
ceed the value of the molecular kinetic coefficient Y, and for 
Re-0 it coincides with v. 

Another exact solution of the Burgers equation ( 11 ) in 
infinite space is the N-wave2': 

( 1 a 1 I t )  'v*e-x~/4\,l 

u ( x , t )  =- 
t I+ ( 1 a 1 I t )  'he-""4" ' 

This antisymmetrized representation of ( 17) describes also 
an exact solution of (1 1) in a half-space under the same 
initial conditions: 

and the boundary conditions u(x = 0,t) = 0 and u(x,t) -0 
forx- w . Since for the solution ( 17) the total momentum is 

m cc 

we shall consider v, in Eq. (2)  for the half space x>O with 
the appropriate normalization to the magnitude of P,. We 
then obtain for v, the expression (A4) given in the Appen- 
dix. It follows, in particular, from (A4) that, as t-0 

and for t- co we get v, = (4  - 7r)v/2. The difference of v, 
from v in the limit t- w is due, in this case, to considering 
the effective viscosity only in the half-space x>O rather than 
the whole space. Indeed, for the diffusion equation 
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au a2u 
-= v- 
dt dx2 

[i.e., Eq. ( 1 1 ) without the nonlinear term] with the bound- 
ary conditions 

u (0, t )  =0, u ( x ,  t )  +0 

for x- cc and the initial condition 
86 ( x )  

u ( x ,  O)=uo- 
d x  

the solution has the form 
u,x exp (-x2/4vt)  

u ( x ,  t )  = 
4vt ( n v  t )  I h  

For such a solution the expression v, = (4 - n-)v/2 ob- 
tained above follows from the definition (2)  or ( 1 ). Thus the 
presence of boundaries leads to a modification of the effec- 
tive transport coefficients (1)  and (2)  compared to un- 
bounded space. 

The unbounded growth of v, in Eq. ( 18 ), as t - 0 corre- 
sponds to an intensification of the action of the effective vis- 
cosity on account of the nonlinear effects and is tied to a 
singularity in the enstrophy 

m 

52- dx(dlr/dr)'  
- m 

for u(x,t) from Eq. ( 17), since for t-0 

At the same time, for t- cc the relation v, - v  is related to 
the process of smoothing of the gradients of the field u, 
which has the effect that R Z  la((2n-v) 'l2/t " 2  for t- C C .  We 
also note that in the construction of the turbulent Burgers 
regime, the realizations of which are described by the exact 
solutions ( 15) or ( 17), the introduction of the appropriate 
statistical averaging for ( 16a) or ( 18 ) does not lead to a 
qualitative difference between (v,) and v, [for example, in 
Eq. ( 16a) IA I is simply replaced by (A 2, 'I2] as was already 
pointed out in the previous section for Riemann turbulence. 
In addition, the above analysis of the nonlinear momentum 
transport in the Burgers N-wave may have some applica- 
tions, related in particular to effects of transformation of a 
wide class of noise pulses into an N-wave at large distances 
from the entry into the nonlinear m e d i ~ m . ~ '  

2. For sufficiently smooth initial fields, in distinction 
from the examples considered in the preceding subsection, it 
is convenient to make use of a representation of v, in the 
form ( 12). In this case, in addition to the equality ( 13 ) it is 
convenient to use the relations 

OnthebasisofEqs. (20), (13), and (12) onecancon- 
sider the problem of the influence of an arbitrarily small 
molecular viscosity on the properties of turbulent viscosity 
in comparison with the conclusions obtained in Sec. 1 for v, 
within the framework of Riemann turbulence. We restrict 
our attention to corrections containing only the first power 
of v. In the approximation one may use for the field u (x,t) in 

the right-hand sides of Eqs. ( 13) and (20) any nondissipa- 
tive solution of the Riemann equation. In particular, for ar- 
bitrarily smooth initial velocity fields we have obtained the 
explicit expressions (A6) and (A7) for the functions U, E, 
and R which determine the quantity v, in ( 12) in the form of 
a power series in t, with all the coefficients given as function- 
als of the initial field u,(x)  and its derivatives. Thus, for the 
initial field uO(x) = a, exp(ax2) for t < t,, = e''2/a,,(2a) ' I 2  

(to is the wave breaking time) the first terms in this power 
series in t are 

where a ,  = a:( 8 - 3fi)/24fi,  a, = aa,?(32 
- 9fi/24fi).  For an extrapolation analysis of the repre- 
sentation (21 one may use the Shanks nonlinear transfor- 
mation (Refs. 16,22), which in many respects resembles the 
rational Pad6 approximants (Ref. 33). Extrapolation re- 
duces Eq. (21 ) to the form 

va,+t ( ~ ~ a , + a , ~ )  
v = 

ai+vazt (22) 
Analytic continuation of Eq. (22) into the region t > t, in the 
limit t -. cc leads to 

where dz0.01 and Re = a,/va1I2 is the corresponding 
Reynolds number. We note that in the limit t+ C C ,  taking 
into account the following terms of the expansion of v, in 
powers oft, the result of applying the Shanks transformation 
does not in fact change the structure of the expression (23), 
since only the numerical value of the constant d changes ( d  
has a tendency to increase as more and more terms of the 
power series in t are taken into account). We also note that 
the dependence of v, on the Reynolds number in a certain 
interval of Re qualitatively resembles the dependence of the 
resistance coefficients Con Re in the results of observing the 
flow around bodies of different shapes.* Of course, Eq. (23) 
cannot in principle describe that region of sufficiently large 
values of Re where the geometry of the body may manifest 
itself in an essential way, and one observes a sharp reduction 
of C in a certain interval of Reynolds numbers (the resis- 
tance crisis, Ref. 2).  In this connection it is interesting to use 
the definition (2)  of the effective viscosity for the realiza- 
tions of the velocity field u(x,t), corresponding to just such 
streamlining problems, with the purpose of discovering simi- 
lar critical changes in v, as Re increases. 

Substituting into the right-hand sides of Eqs. (20) and 
(23) the explicit form of the representation (A1 ) of the solu- 
tion, we obtain for Y,  the expression (agreeing with the case 
N =  1) 

3 5 + -(4-abt 40 f T ; j 3 )  a b t  ln (1 +abt) 

wherea,,, = a,d, - C, = b forall k = 1,2 ,..., N.Thequanti- 
ty v, in Eq. (24) has no singularity at the time of the break- 
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ing ofthe wave to = l/ab. Fort% to the equation (24) has the 
same form as Eq. (7) ,  with C, = 9/35 and Z = a2b 4/60. 
However, the derivative dv, /dt in (24) already has a loga- 
rithmic singularity [similar to the explosive growth of the 
enstrophy R in Eq. (8)  1 as t- to = l/ab. In principle such 
an effect is absent for v = 0, when Eq. (24) takes the form 
(7).  

We note that the energy damping coefficient 
y = lE - 'dE /dt 1 ,  whichin thiscaseis proportional to (dv, / 
dt)/ab also has a logarithmic singularity as t - to. The ener- 
gy can therefore flow into localized singularities, which is 
generally characteristic for shock waves (Refs. 2, 21), and 
some vortex systems (Refs. 19,26). Indeed, even in the limit 
v-0 the rate of dissipation of the total energy ~ , = d E / d t  
may remain finite on account of the explosive intensification 
of the enstrophy R for t-to (see Eq. (8 )  and Refs. 19,26). 
At the same time, for nonzero E() dimensional and scaling 
considerations' allow one to determine in the inertial range 
the energy spectrum of Burgers turbulence, z ( k )  - $"k - ', 
corresponding to a cascade process of energy transfer 
through the spectrum of wave numbers k. For point vortices 
in the plane the self-energy spectrum is also proportional to 
k - ' (Ref. 34), and for acoustic turbulence a steeper decay 
regime of decrease with the growth of k was noted in Ref. 35. 

3. In conclusion we note that the consideration in the 
present paper of nonlinear effects in the formation of the 
turbulent viscosity can be meaningfully extended [even on 
the basis of Eq. ( 1 ) ] to an estimate of the influence of nonlin- 
ear kinetics on the character of transport of admixtures (see, 
e.g., Ref. 36). In addition, one must stress that a general 
property of the effective coefficients ( 1 ) and (2)  of turbu- 
lent exchange is their antisymmetry with respect to time re- 
versal,i.e.,fort- - twehaveinEq.  (1)  DO- -Doandin 
Eq. (2)  v, - - v, . Zel'dovich" was the first to call attention 
to the importance of such an antisymmetry of the macro- 
scopic characteristics of strongly nonequilibrium turbu- 
lence, since this effectively enhances the corresponding anti- 
symmetry property of the molecular kinetic coefficients 
(Refs. 3,4,37) [for instance, the mean-square displacement 
of a Brownian particle through molecular diffusion, 
(x2) -Dt cannot be negative for any value of t]. We note 
that the turbulent viscosity coefficients v, introduced in 
Refs. 2 and 20 [in Ref. 2 v,-v/Re/Re,, I-see the analo- 
gous expression ( 16a) ] exhibit the indicated antisymmetry, 
since for them is characteristic the proportionality to the 
coefficient v of molecular viscosity. Moreover, in Ref. 20 the 
definition of v, depends directly on the level of fluctuations 
in the system and the appropriate calculations, in the same 
manner as in Refs. 11-13, inevitably leads to the necessity of 
using some closure hypotheses, even for the simplest systems 
of the type of Eqs. (3)  or ( 1 1 ) . This is apparently related to 
the inadequacy of the mathematical description of nonlinear 
systems on the basis of the representation of the velocity field 
as a linear superposition of a mean field and fluctuations. In 
this respect the definitions ( 1 ) and (2)  can more fully reflect 
the nonlinear properties of the turbulent exchange, as these 
definitions consider the field as a whole. 

I express my gratitude to A. M. Yaglom for attention to 
this work, as well as to S. S. Moiseev, V. I. Tatarskii, and I. 
G. Yakushkin, for useful discussions. 

APPENDIX 

1. For theinitial condition (6 )  theequation (3') has the 
following exact solution (for a,,, $0, a , ,  = 0 and 
i = 2,3, ..., n ) :  

where B = 1 for t<t, and B = + 1 for t > to, 

1 
to= min %= (r2,. . . , x,) , 

( k , ~ ,  a 1 . k  ( d ~ . t , - G , k )  pk(; )  ' 

2. For t > to in Eq. (At ) one can define v, in the form 

where 

for arbitrary t > to. For t(t, 

coincides with the value of P for t  > to in the same manner as 
for v,. In Eq. (A2)  x, is the value of x ,  for which the radi- 
cand in (A 1 ) vanishes, and the superscripts plus or minus on 
u ,  in Eq. (A2) correspond to the sign of the square root in 
(A1 ) . Thus the modification of the expression for the invar- 
iant total momentum P fort > to ofnecessity leads to a corre- 
sponding change in the definition of v,. 

Taking into account (A1 ) we obtain from Eqs. (2)  and 
(A2) for arbitrary values o f t  
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- ~ ~ , ~ ) ' ~ ~ + l  . . , ....................... 

where 

3. From Eqs. (2) and (7) we obtain for ye 

,=T {-2+ [ 4  + 2 ( a l t )  '" 
( I +  ( a l t )  '") l n ( l +  ( a l t )  '") 1 

x 
I n  ( I +  (a l t ) ' " )  

where 
Similarly, we obtain the expression 

n2 1 1 1 B=- +-1n"alt)'"--+- 
6 2 ( a l t )  "2 2'alt 

+.. 

+ I n  + . . . . a>t, 
n2 ( a l t )  "I2 

where, 

a l t  ( )  - - + + - +  ( 1  . . . , a<t. 
22 lzP n! 

C/ = 
k!  (n -k )  ! ' 

4. In order to determine the functions U, E, and R in Eq. 
( 12) to accuracy O ( v )  we substitute into the right-hand side 
of Eq. (13) and (20) the general solution of the Riemann 
equation (3)  [or Eq. ( 11 ) with v = 0 which in the unique- 
ness region t < t ,  = - l/mindu,(x)/dx has the form 

( x )  

The expressions for U, E, and R are obtained by elementary 
integrations of the right-hand sides of Eqs. (A6) and (A7) 
with respect to t .  
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