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A field-theoretic formulation of the renormalization-group method is used for an investigation of 
turbulent viscosity and of the energy spectrum ofturbulent velocity pulsations. The application of 
the field-theoretic method makes it possible to take account of the effect of frequency 
renormalization and its influence on the theoretically calculated value of the Kolmogorov 
constant. 

1. INTRODUCTION 

Renormalization group ( R G )  methods, originally de- 
veloped in quantum field theory' and later successfully used 
in the analysis of critical phenomena,' also find applications 
in the description of fully developed turbulence. According 
to Wilson3 the RG method is a method of describing multi- 
mode systems with a wide range of characteristic scales and 
strong mode-mode coupling. According to the hypothesis of 
Kuz'min and Patashinski? such systems exhibit tendencies 
towards localization of the interactions in the wave-number 
sapce (interaction between modes of approximately equal 
scales) an a cascade mechanism of the interaction between 
modes of substnatially different scales. The spatio-temporal 
properties of modes of different scales are functionally simi- 
lar, i.e., they differ in a set of numerical parameters (func- 
tional scaling, Ref. 5) .  Fully developed turbulence belongs 
to this class of systems.' 

The earliest attempts to use the R G  method for calcula- 
tion of the exponents of power-law behavior (scaling in- 
dices) of the statistical moments of turbulent pulsations of a 
velocity field were undertaken in Ref. 7 on the basis of the 
Kadanoff procedure of partial iterative averaging, and in 
Ref. 8 on the basis of the field-theory formulation of the RG 
method. The use of formulations of the R G  method appro- 
priated from the theory of critical phenomena gives one the 
possibility to determine the scaling indices only in the in- 
frared limit k-0, but does not yield the amplitude coeffi- 
cients. However, the scaling indices can be determined on 
the basis of dimensional considerations, and in this sense, as 
noted in Ref. 9, the RG method does not yield any new re- 
sults. 

However, in the field-theory formulation, the R G  
method can be considered as a method of summation of an 
infinite subsequence of terms the perturbation theory series' 
yielding the possiblity of describing an infinite cascade 
chain, which consists of separate acts of mode-mode interac- 
tions."' At the same time, there arises the possibility to find 
the amplitude coefficients too (this was first pointed out in 
Ref. 1 1 ), as well as the functional dependences in the region 
of incomplete scaling (Refs. 10, 12). 

In particular, in a series of papers by Yakhot and Orz- 
sag (e.g, Ref. 13) the RG in the Wilson formulation was 
used to calculate a set of universal constnats which charac- 
terize fully developed turbulence (the Kolmogorov, Batche- 
lor, and von Karman constants, the turbulent Reynolds 
number, and others), the values of which were in good 
agreement with the experimental data. The results for the 

turbulent viscosity and for the Kolmogorov constant are 
based on perturbation-theory calculations of the variation of 
viscosity with a change of the cutoff in wave numbers, with a 
subsequent improvement of this dependence by solving the 
R G  equations. The effect of renormalization of the ampli- 
tude of the response function (which reduces to renormal- 
ization of the frequencies) is not taken into account; the fre- 
quency was renormalized only when scaling 
transformations were carried out in the course of construc- 
tion of the RG-transformation operator. We show below 
that the results of Ref. 13, obtained on the basis of asympto- 
tic methods valid in the infrared limit, can be derived by 
means of the field-theory formulation of the R G  method. We 
determine the behavior of the efffective viscosity in the re- 
gion of incomplete scaling, including the region of wave 
numbers immediately adjacent to the dissipative interval. 
We take into account the effect of renormalization of the 
Green's function, and determine, in particular, a related cor- 
rection to the Kolmogorov constant calculated in Ref. 13. 

2. THE INITIAL EQUATIONS 

We consider a model of an incompressible fluid de- 
scribed by the system of Navier-Stokes equations in the pres- 
ence of an external force representing a Gaussian stochastic 
process of the "white noise" type. The quantities character- 
istic of the hydrodynamic field-the pressurep and the com- 
ponents v, of the velocity at the point 1 = {r,,  t , )  will be 
considered in a space of d dimensions, as components of a 
d + I-dimensional vector according to the definition (Ref. 

In the formalism of "field doubling" (Refs. 15, 16) the 
system under !consideration is defined by :n action 
S[$,111 = S,,[$,$l +~,$ ' , [$ ,$l .  ThepartS,[$,$I which is 
quadratic in the fields $,$describes the linear processes and 
S ,  [$,4] corresponds to the nonlinear interaction between 
the modes: 

The linear part of the Navier-Stokes operator, La,, ( 12), the 
correlation function D,,,, ( 12) of the external forces, and the 
coefficient Vno,. are defined by the relations 
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where v, is the molecular-viscosity coefficient, A, is a formal 
expansion parameter, which in the final result has to be put 
equal to one. The object of oyr discussion will be the Green's 
function Go ( 12) = i ($ i  ( 1 ) $, ( 2 ) ) ,  describing the averaged 
linear response of the velocity field to an external distur- 
bance, and the pair correlation function C, (12) 
= (*, (1)$,(2)). 

3. THE RENORMALIZATION PROCEDURE 

Perturbation theory corresponds to a representation of 
the characteristic functional of the system 

as an expansion in powers of;/,$,. However, the decomposi- 
tion of the action into an unperturbed and a perturbation is 
not unique, since some of the terms can be shifted from S, 
into S, ,  which is equivalent to a finite renormalization of the 
field amplitudes and of the physical parameters, with the 
addition to S, of compensating counterterms (see Ref. 1 ). 
The independence of the result of the choice of the renormal- 
ization constants is reflected in a requirement that the per- 
turbation-theory series be invariant to renormalizations, a 
property of the complete series which does not hold for a 
sum of a finite number of its terms. 

In the system ( 1 ) under discysion we effect a renor- 
malization of the field amplitude $ and the viscosity coeffi- 
cient (on account of a Ward identity which follows from 
Galilean invariance, the field amplitude $ does not get re- 
normalized). This renormalization reduces to the substitu- 
tions 

A , .  A 

$+$"=", ? . , - h = ~ ~ - ~ i ; ~ ,  D-+DR=z~'L), v,j+,, ( 3  

and to an addition to S, of counterterms of the form 

The renormalization parameters z and v/v,  are arbitrary 
quantities. 

In what follows it will be convenient to carry out a 
Fourier transform in the space and time variables, making 
use of the stationarity and spatial homogeneity of the system 
under consideration. We choose the renormalization param- 
eters in such a manner that in the renormalized field theory 
the total Green's function 

G,," (li, o )  =P, (kl[ -  io+\k2--En (k2, o) I-', 

should coincide with the Green's function at the renormal- 
ization point w = 0, k ' = p'; in other words, we impose the 
following two conditions: 

rR (p2, 0) =O, - - V R  (p2, 0) I ,=o=O. 
d w (5 )  

The requirement of invariance with respect to renorma- 
lizations reduces to independence of the resultant physical 
quantities of the choice of the normalization point p. 

4. RENORMALIZATION-GROUP ANALYSIS 

We choose the function D ( k )  defined in Eq. (2 )  in the 
form 

D(k) =JjO(k2) - d / Z + Z - e  

For E = 2 the dimension of the parameter D, coincides with 
the dimension of the rate of energy dissipation, which in the 
Kolmogorov theoryh is the only essential dimensional pa- 
rameter determining the turbulent pulsations of the velocity 
in the inertial range. In this sense the value E = 2 corre- 
sponds to the "real theory" (Ref. 16). The value E = 0 leads 
to a theory with a logarithmic divergence of the self-energy 
operator. According to Wilson3 such a "logarithmic theory" 
is characterized by the absence of a distinguished scale and 
by the ensuing locality of the interaction in the space of wave 
numbers, thus making the R G  approach effective. Near a 
logarithmic theory the de facto expansion parameter of per- 
turbation theory turns out to be proportional to E. The meth- 
od ofa-expansion in the theory of turbulence consists in ana- 
lytically continuing, with respect to a, from a logarithmic 
theory ( E  = 0 )  to the real theory (a = 2). In doing this, the 
perturbatively calculated numerical coefficients are taken at 
E = 0 (Refs. 13, 17). 

We introduce the effective viscosity C by means of the 
relation 

The effective viscosity describes momentum transport both 
by the molecular and by the turbulent vortex motion. 

On account of renormalization invariance, the renor- 
malized Green's functions corresponding to two different 
normalization points p and p , are related as follows, 

z-1 ( p 2 ) p ( k ,  a ;  p') = ~ - ~ ( ~ t ~ ~ ) G ~ ( k ?  0; pL2), 

a relation which can be represented in the form 
z(v ,  a, D; p.9 [-io+\i (k2, 0, v, A, D ;  p2)kZI 

=z(vi, hl, Dl;  plZ) I-io+?(k2, o ,  TI ,  A,. Dl;  p ~ ~ ) k ~ l .  (7 )  
In the sequel we shall only consider the static effective vis- 
cosity 

which in Edwards' theory (Ref. 18) describes the time de- 
pendence of the response function and of the velocity corre- 
lations. 

We introduce a new function which describes the 
change of normalization when going from one normaliza- 
tion point to another: 

Z(V, A, D; \ L ~ ( \ . < ,  XI, DL; piZ) 

It follows from the normalization condition (S) ,  the defini- 
tion (8) , and dimensional considerations that Z is a function 
only of the dimensionless parameter h = A  'Dvp3(p2) 
and of the ratio p:/p2. It satisfies the normalization condi- 
tion Z(p: / ~ ~ , h ) ~ ' :  = I r 2  = 1 and the following group compo- 

sition law: 
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According to Eq. ( 7 )  the static effective viscosities at 
different normalizations are related by 

We introduce a new dimensionless function 
kZD%-' (kL/p2, h) 

(11) 

By means of (9 ) ,  ( l o ) ,  and the relations 

one can show that h ( k  2/p2,h) is an invariant under the re- 
normalization transformation p -+p ,, h -+ h ,, i.e., 

K(k2/p2, h) =K(kL/plZ, h l ) .  (12) 

The function &, which is in fact the expansion param- 
eter of perturbation theory, represents an analog of the in- 
variant charge in quantum field theory, and satisfies the 
functional equation of the renormalization group (Ref. 1 ) : 

as well as the differential (Callan-Symanzik) equation fol- 
lowing from it: 

d 
{-x, + p (h) 

5. THE RENORMALIZATION-GROUP METHOD 

According to Ref. 1 the R G  is a method for improving 
perturbation theory by taking into account the invariance of 
the complete perturbation theory series with respect to re- 
normalizations. It consists in computing the R G  function 
P ( h )  by means of perturbation theory followed by finding a 
solution of the differential equation (14). Applied to our 
case, the problem reduces to a determination of the self-ener- 
gy operator in the lowest order of renormalized perturbation 
theory 

The second and third terms of the right-hand side of Eq. 
( 15) take into account the contribution of the counterterms 
(4) ,  and the first term is determined by the expression 

2, )  (k, o) =hZVimn (k) 

where 

V,,,(k)=i(6,,,kn+6,,,km), G,,(k. o) =P,,(k) [ -io)+\kzl-', 

C',,(k, o)=P, , (k)D(k)  [02+v2kL]-I. 

The isotropy condition implies that the expression for 
2 ,  must have the form 

v -,,(k, 0)) =Z(k2, o))fi,,+1'(k2, o)k ,k , ,  

however, one may leave out terms proportional to Z1(k  2,w)  
since Bij is always contracted with a Green's function or a 

pair correlation function, each containig the transverse pro- 
jection operator P,. As a result of this, one can use for the 
calculation of 2 the relation 

The connection between the renormalization constant 
and the self-energy operator follows from the condition (5 )  
and has the form 

Calculating Z to lowest order of perturbation theory, 
and making use of Eqs. ( 16) and ( 17), we find near the point 
E = 0: 

where 

s, = 2 d I 2  / T ( d  /2) is the area of the d-dimensional unit 
sphere, and $(x)  = d In T(x) /dx (Ref. 19). 

From Eqs. ( 11 ) and ( 18) we determine the R G  beta 
function 

and by means of the well known methods (Ref. 1 ) we write 
out an implicit solution of Eq. ( 14) 

The constant Ccan be determined from the supplemen- 
tary requirement that for large k the effective viscosity .C. 
should go over into the molecular viscosity v,,. As a result of 
this we obtain: 

where for E = 2 the quantity k : = ( D O ~ O - 3 )  'IEis the analog 
of the internal scale of the turbulence. 

It is clear from Eqs. (20) and (21 ) that & is a function 
only of k 2/k and is an invariant under R G  trnasfrmations, 
i.e., is independent of the choice of normalization point p. 

If onepoes not consider the renormalization of the field 
amplitide $, i.e., if one sets B, = 0, the equation (20) for 
h = A iD0+-3(k2)  -' is easily solved and the effective vis- 
cosity takes the form 

For E = 2 Eq. (22) yields the result which was already 
known (Refs. 12, 14). 

6. CALCULATION OF THE KOLMOGOROV CONSTANT 

In order to find the form of the energy spectrum E ( k )  of 
turbulent pulsations of the velocity we make use of the defin- 
ition 

and the representation for the pair correlation function 
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CU(k, 0) =G,n (k, O) 
Pi, (k) Do (k2) -d/2+2-e 

XDn, (k) G,, (-k, -o) = 
oZ+v2 (k) k4 

(24) 

Substitution of (24) into (23) and integration yields 
d-1 Sd 

kt-2" 
E (k) = Do - 

4 (2n)\(L) '  

In the infrared limit k '/k 2 -0 which, according to Ref. 10 
corresponds to the inertial interval, the substitution (221, 
account being taken of Eq. ( 18), yields 

In order to calculate the Kolmogorov constant CE it is 
necessary to establish a connection between the rate of dissi- 
pation E and the parameter Do. According to Ref. 13 this can 
be achieved by making use of the constant x = C, / C  2, intro- 
duced in Ref. 20, where C, and CE are defined by the rela- 
tions 

(k) =C,c'"k-'f~, E(k) =CEe5k-"3. 

As a result of comparing Eqs. (22) and (26) for E = 2 we 
find 

sd 3e 3 ' i r  

Do = 
(2n)" (d-I) (d+2) Y ' '"= [ 4(d+2) x2 1 ' (27)  

The quantity x can be calculated in the framework of 
some theoretical model by imposing the condition of a local 
balance of the turbulent energy in the inertial range of the 
spectrum. For d = 3 the calculation carried out by Kraich- 
nan" yields x = 0.1904, leading to a value of the Kolmo- 
gorov constant C, = 1.605 (Ref. 13). 

If the effects of a finite renormalization of the field am- 
plitude $ are taken into account ( B ,  +O), the procedure for 
determining the spectrum according to Eq. (25) turns out to 
be more complicated, since it is impossible to obtain an ex- 
plicit analytic form the expression for G(k). Nevertheless, 
one can find a solution in the infrared limit k - 0 correspond- 
ing to the inertial range. 

In order to calculate G(k) it is necesary, according to 
Eq. ( 1 1 ) , to know Z(x ,h  ) , i.e., to solve the functional equa- 
tion (9) .  An apllication of the methods described in Ref. l 
shows that a solution compatible with perturbation theory 
has the form 

Z(z, h)  = ( I+  B & ) /  [ l+Bdz(~,  h )  I .  (28) 

As a result of this, taking it into account that 
A = z- 'Ao = z -  ' and D = z-'D0, we obtain, after passing to 
renormalized values of the function h 

~+Bd%.(k'/k,') D o ] ' i  (kz) 
s (k) = [ 6(k'ikdz) 

In the inertial rangeofthe spectrum k '/k 2 -0 Eq. (20) 
implies h ( k  '/k 2 -E/~A,, which leads to the relations 

d-I 3 d-I eBd -'" '1. 

E (k) = - [  - 1 + ) ]  [s D o ]  kl-'"'. 
4 86 d+2 

Similar to the derivation of the result (27) one can obtain 

from Eq. (30) a relation between the quantities Doand T, and 
an expression for the Kolmogorov constant: 

Ford  = 3 one obtains for the Kolmogorov constant the 
value CE = 2.447, i.e., a value approximately one and one 
half times larger than that of the authors of Ref. 13. This 
value of CE is in worse agreement with the existing experi- 
mental data although it is not outside the confidence inter- 
val. 

7. CONCLUSION 

We have investigated the influence of a renormalization 
of the frequency on the Kolmogorov constant calculated by 
means of the RG. Since this effect is essential (it is related to 
the nonvanishing of the quantity [ a  Z(p2,w)/dw] 1, = o  ) it 
must be taken into account in carrying out the renormaliza- 
tion procedure (see also Ref. 23). It follows from our results 
that the good agreement with the experimental data found 
by the authors of Ref. 13 without taking it into account 
should, apparently, be considered coincidental, and their 
model requires refinement. 

We also note that the Wilson formulation of the R G  
method used by the authors of Ref. 13, based on a reduction 
of the number of modes by means of the Kadanoff proce- 
dure, does not allow one to take into account the influence of 
renormalization of external random forces, since the elimi- 
nation of a band of small-scale modes leads toe the appear- 
ance of new terms in the Navier-Stokes equation, terms 
which differ in structure from the original ones. In this sense 
the field-theoretic formulation of the R G  method used here, 
where the role of the group parameter is played not by the 
ultraviolet cutoff constant in wave number space, but rather 
by the position of the normalization point (the Bogolyubov- 
Shirkov formulation' ) , seems preferable. 
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