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A solution is derived for the problem of the initial, linear stage of the growth of small 
perturbations in the course of the cylindrically symmetric compression and expansion of a plasma 
liner and a Z-pinch with a sharp boundary. In these systems, Rayleigh-Taylor instabilities 
localized near the plasma boundaries are the most dangerous. Bulk convective instabilities 
develop in addition to these Rayleigh-Taylor instabilities. The various instability modes, 
including local and global Rayleigh-Taylor modes, which grow in an accelerated plasma with 
distributed profiles of hydrodynamic variables, are classified. The spectra of the instability 
growth rates are calculated for plasma liners and Z-pinches. The shape of these spectra reveals an 
explanation of the stratification and filamentation of the plasma observed experimentally in 
pinches and liners. The imposition of a longitudinal magnetic field gives rise to a "stability 
window" in the space of the flow parameters. In this window, the Rayleigh-Taylor modes are 
suppressed completely by magnetic shear, while the bulk convective modes are suppressed to a 
significant extent. The longitudinal magnetic field B, required for an effective stabilization of an 
imploding plasma liner scales as B, = ( 10-30 kG)I[MA]/R,, [cm] , where R,, is the initial 
radius of the liner, and I is the average current through the liner. 

1. INTRODUCTION 
In contrast with the well-developed theory for the 

MHD stability of equilibrium plasma configurations, which 
is presented in the familiar books on plasma physics (e.g., 
Refs. 1 and 2) ,  many questions remain unresolved in the 
theory of the stability of the motion of an accelerated plas- 
ma. The list of physical problems for which questions of the 
stability of the plasma dynamics are of governing impor- 
tance is exceedingly long: ranging from the ionospheric plas- 
ma and the interstellar plasma in a gravitational field to 
dense plasmas in the laboratory accelerated by electromag- 
netic or other mechanisms in pinches or laser-fusion devices. 
The stability of the plasma compression process determines 
the most important characteristics of the compression here: 
its uniformity and the limits on the concentration of energy. 
Research in this field is necessary (in particular) if we wish 
to use an imploding plasma liner as a light source for optical 
pumping of an active medium on the axis, while optimizing 
the pumping in terms of the uniformity and luminosity of the 
plasma, if we are interested in the uniformity and heating of 
the plasma during the compression, e t ~ . ~ . ~  

The problem of the stability of accelerated plasma mo- 
tion can be broken up somewhat arbitrarily into problems 
concerning two stages of the motion. First, there is the prob- 
lem of the stability of the fronts of the shock waves which are 
usually excited in the early stage of the plasma acceleration 
and the Rayleigh-Taylor instabilities which occur at density 
gradients or discontinuities which are being accelerated 
after being created in a plasma by shock waves. Second, 
there are the problems of importance to the subsequent 
"well-developed" stage of the motion, in which the plasma 
flow is subsonic, and its instability is manifested as a compe- 
tition between bulk-convective and Rayleigh-Taylor insta- 
bility modes. 

In the present paper we analyze the growth of instabili- 
ties in what is probably the most important stage: the well- 

developed stage of subsonic flow during the compression 
and expansion of the plasma of a Z-pinch and a plasma liner 
in a longitudinal magnetic field. The problem of the growth 
of small perturbations is solved in the linear stage of the 
instabilities in the course of an accelerated motion: the com- 
pression and expansion of the plasma liner and a Z-pinch 
with a sharp boundary, in which the plasma density vanishes 
at a finite distance from the axis. We analyzed the corre- 
sponding problem for a diffuse Z-pinch in Ref. 5. The stabil- 
ity problem is solved in the quasiclassical approximation for 
the time evolution of the characteristic perturbation growth 
rate. The Rayleigh-Taylor and bulk convective instability 
modes are classified. Explicit expressions for the growth 
rates of these modes are found in several cases. To illustrate 
the use of the theory and to carry out a qualitative study of 
the behavior of the various instability modes, we examine the 
stability of the motion of a hollow plasma liner and a Z-pinch 
whose unperturbed motion is described by self-similar solu- 
tions for a collisionless plasma.'.' To compare the results 
with the predictions of various simple models which have 
been proposed, we examine the limiting cases of an infinitely 
thin conducting liner and an incompressible fluid. 

In contrast with the situation in a diffuse Z-pinch,s in 
the problems under consideration here the bulk convective 
modes may be accompanied by the most dangerous instabil- 
ity modes: Rayleigh-Taylor modes, either local or global. 
The spectra of the instability growth rates calculated for 
plasma liners and Z-pinches show that a comparatively 
weak longitudinal magnetic field at the beginning of the 
compression will give rise to a "stability window": a region 
in the space of the parameters of the plasma motion in which 
the Rayleigh-Taylor modes are completely suppressed, and 
the bulk convective modes are significantly suppressed. In 
particular, the possibility that a stability window will arise 
opens up the interesting possibility of achieving a stable 
compression of a liner or Z-pinch by shaping the current 
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pulse to match the compression dynamics. The instability 
growth-rate spectra derived here also yield a qualitative ex- 
planation of the appearance of striations, stratification, and 
filamentation of plasmas observed in experiments with plas- 
ma liners and Z-pinches. 

2. CALCULATION OF THE INSTANTANEOUS GROWTH RATE 

Let us examine the growth of small hydrodynamic per- 
turbations which arise during electrodynamic acceleration 
of a plasma, e.g., in the compression of the plasma column of 
a Z-pinch or in the compression of magnetic flux by a plasma 
liner. In any case, the unperturbed motion of the plasma in a 
pulsed system is characterized by some finite time T .  Instabi- 
lities which do not manage to grow substantially over a time 
T pose no danger. The only instabilities which need by stud- 
ied are those whose growth rates u exceed 7 - ' .  

Under the assumption ur$1  we can define an "instan- 
taneous growth rate" of an instability in a given unperturbed 
state of the plasma, by choosing as (T the largest of the growth 
rates characterizing the various perturbation modes at the 
given instant.' If the resulting value of a satistfies the origi- 
nal assumption, the meaning is that it has been calculated 
with acceptable accuracy. In the opposite case, the perturba- 
tions are not dangerous at the given instant, and the error in 
the determination of u is inconsequential. The approach 
which was taken to the calculation of g in  Ref. 5 is applicable 
in the well-developed stage of the motion, in which the shock 
waves and strong sound waves in the plasma have died out, 
and the motion of the plasma has become subsonic in the 
proper frame of reference. For the compression of shells o f .  
thickness S and radius R ,  for example, the characteristic ve- 
locity gradient which is established in the shell would then 
be on the order of u/R, not u/S, where u is a characteristic 
velocity. In such case, one can use the quasiclassical approxi- 
mation which was developed in Ref. 5 to study the perturba- 
tions which grow most rapidly. In that approximation, one 
determines a maximum growth rate o ( t ) ,  which character- 
izes the growth of plasma perturbations as a whole, at each 
time t, while the growth of the perturbations over the finite 
compression time T is found as exp [ J; u( t )dt  1. 

The quasiclassical approximation has been used in sev- 
eral studies (e.g., Refs. 7-9) of the development of instabili- 
ties. The formal condition for the applicability of this ap- 
proximation can be written 

This condition clearly holds for arbitrary u#O near the time 
at which the motion comes to a halt. The accuracy of the 
quasiclassical approximation was discussed in Ref. 5, where 
it was shown that this approximation agrees well with the 
results of numerical calculations for problems of the type 
considered. It was pointed out in Ref. 5 that the instanta- 
neous value of a ( t )  can be found as an eigenvalue of a corre- 
sponding boundary-value problem. A problem of this type 
reduces to a calculation of the growth rate of small perturba- 
tions for a plasma in an effective gravitational field corre- 
sponding to an acceleration 

g (r, 1 )  = (lu (r, 1 )  /(It. (1) 

where u(r,t) is the velocity of the unperturbed motion. For a 
cylindrically symmetric radial unperturbed motion of the 

plasma column of a Z-pinch or liner in a magnetic field, the 
corresponding "equilibrium" equation is 

where 

is minus the local acceleration of the plasma at the given 
instant, andp,p,B,, and B, are the unperturbed values of the 
density, the pressure, and the magnetic-field components, 
respectively. 

Taking account of the original cylindrical symmetry of 
the unperturbed motion, we can describe, at each instant, the 
perturbations manifested as a displacement of the plasma 
particles from their unperturbed paths by 

and we can reduce the equations for the perturbed motion to 
a single equation for the radial component 6, of the displace- 
ment: 

(3) 
where 

The ratio of specific heats y(r,t) = (6'lnp/d lnp) is found 
here, for the unperturbed motion from the actual equation of 
state. We wish to stress that the derivation of Eq. (3 )  did not 
require any assumptions regarding the ideal nature of the 
unperturbed motion in terms of the equation of state or the 
absence of dissipation mechanisms. The only assumption 
was that the perturbations were adiabatic, so their wave- 
lengths must not be too short. The boundary conditions on 
Eq. (3 )  follow from the requirement that the total pressure 
and the normal component of the magnetic field be contin- 
uous on the unperturbed plasma surface. We will write these 
conditionsfor a plasma column (or hollow liner) in vacuum, 
assuming that there are no discontinuities, current shells, 
etc., at the free plasma boundary. The density and thermal 
pressure of the plasma vanish at the the plasma boundary, 
and in the case of a hollow plasma liner there is only an axial 
magnetic field B, = B,, in the cavity. The boundary condi- 
tion at the inner boundary of the plasma [ r  = R, ( t )  ] is thus 
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If there is no inner plasma boundary, condition ( 4 )  is re- 
placed by the condition that the solution be regular on the 
axis: 

The boundary condition on the outer boundary of the plas- 
ma [ r = R , ( t ) ]  is 

where I,, and K,, are modified Bessel functions, and B,, and 
B,, are the values of the static axial magnetic field and of the 
azimuthal magnetic field outside the plasma as 
r- R ,  ( t )  + 0. In those special cases in which Eq. (3 )  has a 
singular point at a boundary, e.g., in the case m = O,B,, = 0,  
and r- R ,  ( t ) ,  the corresponding boundary condition is re- 
placed by the requirement that {, be regular at this bound- 
ary." 

As in Ref. 5, the maximum value of cr is found as the 
eigenvalue of boundary-value problem (3)-( 5 ) for which 
the eigenfunction {,(r) does not vanish on the interval 
between r = R, ( t )  and r = R ,  ( t )  [or between r = 0 and 
r = R ,  ( t ) .  ] The boundary conditions (4)  and (5 )  above 
correspond to a smooth joining of the solutions of Eq. (3 )  in 
the plasma and in the vacuum region outside the plasma, 
wherep = 0 andp  = 0. The displacement 6 for the vacuum 
region is found from the condition that the expression for the 
perturbed magnetic field B'" in terms of { in vacuum remain 
of the same form as inside the plasma": B'" = curl[{ x B ] .  
Solutions of Eq. (3 )  which are regular at r = 0 and 
r-  m are" 

lir 

" = i ki-Bz+rnBv K,,,' ( k r )  , r2Re  ( t )  , 

where B, = B,,  = const and B, = B,, (R,/r). In  the prob- 
lem of determining the maximum growth rate, a plasma col- 
umn of finite radius and a plasmaliner can thus be thought of 
as the limiting cases of a diffuse plasma column between 
r = 0 and r = a in which p and p tend toward zero for 
O<r<R, and R, < r<a .  The boundary conditions correspond 
to the vanishing of rc, at r = 0 and r = a as a - w . We can 
thus conclude that the results of Ref. 13 remain in force here. 
According to those results, the spectrum pf positive eigen- 
values a' of a given boundary-value problem which corre- 
spond to the growth rates of the various radial instability 
modes for given m and k is discrete and is bounded from 
above (it may have a condensation point 2 = 0 ) .  Conse- 
quently, the maximum eigenvalue CT' which we are seeking 
does indeed correspond to an eigenfunction which has the 
behavior specified above.I3 This is an isolated eigenvalue, so 
the problem of calculating it is simplified; for example, one 
could use the standard regula falsi method. In the degenerate 
case f ' - 0 ,  in which the magnetic field is not perturbed, we 

cannot work directly from the study of the properties of the 
spectrum of a' which was carried out in Ref. 13. It is clear, 
however, that these properties remain the same in this case, 
since they prevail for any small f' > 0. 

For a detailed study of the important limiting cases of 
short-wavelength perturbations and a thin cylindrical shell 
we can ignore effects of the cylindrical geometry. For such 
limiting cases we have the problem of calculating the insta- 
bility growth rates for a plasma slap which is oriented paral- 
lel to the xy plane and which lies between z = -a and 
z = + a in an effective gravitational field, which is directed 
along the z axis. The magnetic fields B = B- at z < - a and 
B = B + at z > a are assumed to be parallel to the plane of the 
slab. We assume that thex and y dependence of the perturba- 
tion is of the form exp(ik,x + ik,y). Working directly [or 
from (3 ) ,  taking the limit I/r-0 and making the substitu- 
tions p -x, Z- y, r-Z, k - ky , and m/r- k ,  , we can easily 
derive "equilibrium" equations analogous to ( 2 )  and (3) :  

We also find an equation for {=: 

where 

In the general case, the boundary conditions are 

where k > 0. In those special cases in which Eq. (3a) has a 
singular point at z = - a or z = a ,  the corresponding 
boundary condition is replaced by the requirement that {= be 
regular at the corresponding boundary. If the plasma fills the 
upper half-space (z  > - a )  or the lower one (z  < a ) ,  we are 
left with only one of the boundary conditions in (4b)-that 
which corresponds to the minus sign or the plus sign, respec- 
tively. 

As above, the maximum eigenvalue a' corresponds to 
an eigenfunction which does not vanish in the interval 
between z = - a and z = a (or in the half-space occu~ied 
by the plasma). Everything which we said above regarding 
the spectral properties of boundary-value problem (3)-(5) 
also remains in force. 

3. RAYLEIGH-TAYLOR INSTABILITY MODES 

3.1. Spectrum of growth rates of an instability caused by a 
discontinuity in hydrodynamic variables 

In the literature, the "Rayleigh-Taylor instability" is 
usually understood as the well-known instability of the sur- 
face of a "heavy liquid," usually assumed to be incompress- 
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ible, which is supported by a "light liquid" in an effective 
gravitational field. Playing the role of this light liquid might 
be, for example, a magnetic field which accelerates or con- 
fines a conducting plasma. The classical expression for the 
growth rate of the Rayleigh-Taylor instability, which is the 
limiting case of a convective or "interchange" instability in 
the latter case,x is 

we are assuming k > 0 everywhere. We will now show how 
this result can be derived from general equation (3a).  

In Eq. (3a) we take the limit of an incompressible fluid, 
y- CC. Introducing the new variable 5 be means of the rela- 
tion 

we can put (3a) in the form 

We assume that the hydrodynamic variables vary in a slab 
whose thickness S is small in comparison with the perturba- 
tion wavelength; i.e., we assume kS< 1. The variation in g 
within the slab is small. We can then set 

wherep, andp* are the values of the density on the opposite 
sides of the slab. Under the assumption that the hydrody- 
namic variables vary slowly over a length scale l /k  outside 
the slab, we choose quasiclassical solutions of (9 )  outside 
the slab which vanish with distance from the slab: 

where the plus and minus signs correspond to the solutions 
on the opposite sides of the slab. We can integrate (9)  over a 
thin slab and find an expression for the discontinuity in 
dfz/d< by means of ( 11 ). We find an expression for the 
result of the integration of the second term in ( 9 )  by means 
of ( lo) .  We then find that the condition a' > 0 can be satis- 
fied only under the condition g(p, - p ,  ) < 0 and that in this 
case we have 

where the vectors B,  and B, correspond to the magnetic field 
on the opposite sides of the slab. Expression (12) is well 
known. ' In the casep , = 0, k.B , = k-B2 = 0, it becomes (7 ) .  

A corresponding expression for the spectrum of growth 
rates of a "density-step" instability can be found from (3a) 
in the case of a compressible medium also. For this purpose 
we should assume that the slab thickness S is small in com- 
parison with the length scale of the variation in the quanti- 
ties outside the slab, L=cj /g ,  where cj 
= [ ( y p / p )  + (B '/4np) ] I "  is the velocity of a fast magne- 

tosonic wave accross the magnetic field. In the case 
k.B, = k.B, = 0, and for perturbation wavelengths A satis- 
fying the condition 

we can take the limit k - cc in Eq. (3a).  An expression like 
( 10) remains in force for the density discontinuity. We can 

then put (3a) in the form 

By virtue of inequality ( 13), the last term in square brackets 
is small in comparison with the first, and we can put ( 14) in 
the form of (9 )  with f ' = 0. As above, we then find the Ray- 
leigh-Taylor spectrum: 

3.2. Global rnodesof the Rayleigh-Taylor instability 

In a more general case, we would be dealing with dis- 
tributed profiles of the density, pressure, and current in the 
plasma, so it is worthwhile to explicitly analyze situations in 
which the spectrum of the most rapidly growing instability 
modes of the system is of the form in (7 ) .  We refer to instabi- 
lities with a spectrum of this sort as "Rayleigh-Taylor insta- 
bilities in the general sense." 

We will show that instabilities of this type occur in the 
following cases. First, they occur if the unperturbed motion 
satisfies certain special conditions. Rayleigh-Taylor insta- 
bility ( 7 )  then occurs globally, over the entire range of wave 
numbers k and m (or of k, and k,.) The perturbation pro- 
files are independent of the profiles of the hydrodynamic 
variables of the unperturbed motion at any instant. Second, 
for large wave numbers, Rayleigh-Taylor spectrum (7 )  may 
be realized asymptotically. The corresponding modes would 
be localized near the surface at which the instability occurs, 
and the profiles of the perturbations would again be asymp- 
totically independent of the unperturbed profiles near the 
boundary. 

A global Rayleigh-Taylor mode is realized under the 
condition k.B = 0, under which the perturbations do not 
bend the magnetic field lines. In this case the boundary con- 
ditions reduce to the requirement that the thermal pressure 
be continuous at the perturbed plasma surface. The bound- 
ary conditions are satisfied automatically if we have Vf = 0 
throughout the volume and at the surface of the plasma, i.e., 
if the pressure is completely unperturbed in each part of the 
plasma. In the latter case one can showI4 that we also have 
[Vc] = 0, i.e., that the displacement can be written in the 
form = V@, where @ is a harmonic function: V2@ = 0. In 
this case, the profiles o f f  are obviously independent of the 
profiles of the hydrodynamic variables of the unperturbed 
motion. 

Let us consider a very simple example in plane geome- 
try. Since the terms containing f ' vanish under the condition 
k-B = 0 in Eq. (3a),  we can show that perturbations of the 
type f z  = exp( + kz)  satisfy Eq. (3a) identically for 
c2 = + gk, regardless of the profiles of the unperturbed hy- 
drodynamic variables, provided that the condition 
g(z)  = const holds. To demonstrate this point, it is sufficient 
to substitute df,/dz = + k<, into (3a) and to make use of 
the following expression, which holds in this case: 

If g < 0, and if the plasma fills the upper half-space, z > 0, a 
perturbation mode which is bounded everywhere at z> 0 is 
6, = exp( - kz), which corresponds to growth rate (7 ) .  
The perturbation decays exponentially with distance from 
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the unstable surface (z = 0 ) .  Since an exponential eigen- 
function satisfies the boundary conditions, and since it van- 
ishes nowhere, the corresponding eigenvalue is, in accor- 
dance with the discussion in Sec. 2, the growth rate of the 
most rapidly growing instability. This point was demon- 
strated especially for the Rayleigh-Taylor instability in Ref. 
15. 

If the plasma fills the lower half-space, z < 0, there is no 
instability. A global perturbation mode 6, = exp(kz), 
which corresponds to the dispersion relation o' = - J g J k  
with purely imaginary eigenvalues u = + iw, is a surface 
(Rayleigh) wave. For a plasma slab which is supported or 
accelerated in a magnetic field whose direction does not 
change inside or near the slab, so that we have k-B = 0 every- 
where, we will see the development of a global Rayleigh- 
Taylor instability and a simultaneous propagation of surface 
waves. The global nature of these modes, whose spectrum 
does not depend on the profiles of the unperturbed variables, 
was established for the case of an incompressible fluid in Ref. 
16 and for an arbitrary equation of state of the unperturbed 
medium in Ref. 17. 

In the case of spherical geometryI4 or cylindrical geom- 
etry," an global Rayleigh-Taylor mode exists in the case of a 
linear acceleration profile in the plasma volume: 

Profiles of this type are typical of, for example, uniform com- 
pression of a plasma, including self-similar compression (see 
Refs. 5, 6, and 14 and Secs. 5 and 6 below). In spherical 
geometry these modes exist for arbitrary values of the wave 
numbers I and m; we should set k = ( I  + 1)/R in (7 ) .  For 
cylindrical geometry it can be shown that global Rayleigh- 
Taylor modes exist only for B, = 0, k = 0, m #0, since the 
dispersion relation analogous to (7 )  in this case is 

In other words, this relation can be satisfied throughout the 
plasma volume under condition ( 17) only if we set k = 0. 
[We are not considering here the special case of a profile of g 
for which relation (18) can be satisfied identically even in 
the case k f 0.1 Solutions for perturbation profiles &, which 
satisfy Eq. (3 )  identically under these conditions are of a 
power-law form: 6, = r ' + I n .  Furthermore, the eigenfunc- 
tions do not vanish at  r > 0; i.e., the corresponding eigenval- 
ues for which we have 2 > 0 correspond to the growth rates 
of the most rapidly growing modes. 

These instability modes are probably the ones of great- 
est importance during the compression of a magnetic field B, 
by a cylindrical liner, either a plasma liner or a metal liner, 
which is converging on an axis. We recall that the behavior 
of the global modes which we are discussing here does not 
depend on the equation of state of the unperturbed medium. 

3.3. Local modes of the Rayleigh-Taylor instability 

Another possible manisfestation of the Rayleigh-Tay- 
lor instability stems from the development of local perturba- 
tions near a plasma surface at large wave numbers. In the 
short-wavelength limit, we can restrict the analysis to plane 
geometry. We assume here that at the surface at which the 
plasma density p vanishes a perturbation does not bend the 
magnetic field lines; i.e., we have k-B = 0 and f' = 0. We 

assume that the shear characterizing the unperturbed mag- 
netic field is inconsequential on the other surface, i.e., that f 2  

falls off more rapidly thanp toward the boundary. We might 
say that in this case the plasma boundary can be assumed to 
be abrupt regardless of the density profile near it. Near the 
boundary, Eq. (3a) takes the following form in this case: 

This equation is typical of an incompressible fluid ( the limit 
y + rn ). Here we assume g = const (z)  < 0 near the surface, 
that the plasma fills the half-space z > 0, and that p ( 0 )  = 0. 
The boundary conditions in this case reduce to the require- 
ment that [= be regular at z>0. It is easy to see that for any 
profilep (z)  a solution of Eq. ( 19) which satisfies the bound- 
ary conditions is 

and that the corresponding eigenvalue is indeed given by 
expression ( 7 ) .  The exponential decay of the solutions into 
the interior of the plasma with a length scale l /k  justifies the 
approximations which were made in the derivation of Eq. 
( 19), since in the short-wavelength limit we can indeed as- 
sume that the value of g is constant over this length scale, and 
we can ignore terms of higher order i n p  in comparison with 
those which we have retained in ( 19). 

As we have already mentioned, the Rayleigh-Taylor 
mode which grows most rapidly has a feature which distin- 
guishes it from other modes. Solution (20) differs from the 
other solutions of the same boundary-value problem in that 
it does not depend on the unperturbed profiles and is diver- 
gence-free; i.e., it locally reproduces the properties of global 
Rayleigh-Taylor modes. We can illustrate the situation in 
the simple example of a power-law profile of the unper- 
turbed plasma density near the boundary: p a z', where 
s = 1,2, ... . In  this case Eq. ( 19) reduces to an equation for 
the confluent hypergeometric function." The spectrum cor- 
responding to the boundary conditions is 

The corresponding eigenfunctions are expressed in terms of 
generalized Laguerre polynomials: 

We see that all eigenvalues and eigenfunctions other than 
those which correspond to the n = 0 local Rayleigh-Taylor 
mode depend explicitly on the parameters, which character- 
izes the density profile near the boundary. Consequently, 
under the restrictions on the magnetic shear near the plasma 
boundary which we listed above, this boundary behaves ex- 
actly as a sharp boundary would, regardless of the nature of 
the unperturbed profiles near it. In other words, it behaves in 
the manner of a density step, generating a classical Rayleigh- 
Taylor spectrum of instability growth rates, ( 7 ) .  

In the short-wavelength limit with which we are con- 
cerned here the spectrum of local instability modes can be 
studied asymptotically at n % 1 in the quasiclassical approxi- 
mation. We put Eq. ( 19) in the form 

(23) 
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where < is defined by ( 8 ) , and 

The eigenvalues 2 for Eq. (23) with the boundary condi- 
tions specified above can be found from the Bohr-Sommer- 
field quantization condition,"' which is asymptotically exact 
at n% 1: 

where n = 0, I ,  2, ... . The integration over z in (25) is re- 
stricted to the "classically accessible" region, in which we 
have q2 > 0. For example, for the power-law density profiles 
which we examined above, we find the following spectrum 
from (25): 

As expected, this spectrum is asymptotically the same as 
(21) at n%s. 

3.4. Effect of shear on the spectrum of local Rayleigh-Taylor 
modes 

We turn now to the question ofjust when it is legitimate 
to ignore the shear of the unperturbed magnetic field near 
the plasma boundary, i.e., to ignore the increase in the stabi- 
lizing term f' with distance into the plasma. By assumption, 
this term is zero at the plasma surface. It can be seen from 
( 12) that if the magnetic field changes direction abruptly at 
the plasma surface there will be no growth of sufficiently 
short-wavelength instabilities. We can show that local Ray- 
leigh-Taylor modes can indeed be suppressed when there is a 
shear, regardless of the profile of the unperturbed density 
near the boundary. This circumstance gives rise to a "stabil- 
ity window" in the space of parameters of the accelerated 
motion of the plasma. Within this window, the basid MHD 
instability modes are suppressed. 

We assume k = k,, and we assume that at z = 0 we have 
B, = 0. We can then write 

Integrating the equilibrium equation (2a), we find 

It follows that in the general case in which all terms on the 
left side of (28) are of the same order of magnitude the quan- 
tity B: falls off more rapidly than p toward the plasma 
boundary. For example, if we havep cc z' near the boundary 
then we have B cc z '+ ', i.e., the value off' at a point suffi- 
ciently close to the boundary is small in comparison with 
pd. We made use of this relation in the derivation of Eq. 
(19) in Subsection 3.3. Expression (27) for f' contains the 
large factor k ', so the effect of this form should be examined 
in more detail. For simplicity we consider a power-law den- 
sity profile near the boundary: 

According to (28) we then have 

where L is a length scale of the variations along the z direc- 
tion, and p,, and B ;i are characteristic values of the plasma 
density and of ( k ~ B ) ~ / k  2. Retaining the term f in (3a) in 
the short-wavelength limit, we again find Eq. (9 ) .  For an 
approximate determination of the eigenvalues u2, we again 
(as in Subsection 3.3) use the Bohr-Sommerfeld quantiza- 
tion condition in the form 

Substituting (29) and (30) into (31),  and integrating, we 
find 

where 

and K ( Q )  and E ( Q )  are complete elliptic intervals. The di- 
mensionless paramter x characterizes the effect of the shear 
on the local Rayleigh-Taylor modes. It is easy to see that in 
the limitx-0 spectrum (32) is the same as expression (26) 
found earlier. On the contrary, the limit X -  CQ corresponds 
to a suppression of the Rayleigh-Taylor modes by the shear. 
In this case we find 

It can be seen from (33) that the growth rates of modes with 
n $ 1  are exponentially small at large values of X. If we as- 
sume that (33) gives us a rough estimate of the growth rate 
of the fundamental ( n  = 0 )  mode, we see that the latter is 
also exponentially small. We recall that according to the dis- 
cussion in Sec. 2 this mode is again the dominant one for the 
given values of the wave numbers (k, #0, k, = 0 ) .  

What is the physical meaning of the parameterx? For a 
thin shell inside which a magnetic field B, is being acceler- 
ated by the pressure of an azimuthal magnetic field B, we 
have 

where L represents the thickness of the shell in this case. 
During the inward acceleration of the liner, under the condi- 
tion B : > B t, the Rayleigh-Taylor mode localized on the 
outer surface of the plasma is dominant for constrictions 
(perturbations with m = 0 )  according to the discussion 
above, and in this case we have Bil = B,. During the stop- 
ping stage with B f > B :, perturbations with m % 1, which 
have the same Rayleigh-Taylor spectrum, are predominant, 
and in this case we have B,, =B,.  According to (34), and 
under the assumptions- 1, we have 

We see that if B, and B, are close enough in magnitude the 
value of x will be large, and the growth rate of the local 
Rayleigh-Taylor mode exponentially small, despite the fi- 
nite acceleration (g) of the plasma shell. This effect is specif- 
ic to a plasma shell of finite thickness and cannot be derived 
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in the approximation of an infinitely thin shell (Sec. 4). 
Figure 1 shows spectra of the instability growth rates of 

a plasma liner of finite thickness (the ratio of the liner thick- 
ness S to its average radius R is 1 ) found through a numerical 
solution of boundary-value problem (3)-(5). The liner is 
accelerated inward; the corresponding unperturbed solution 
is given below in Sec. 5. Here we haves = 2, and the curves 
have been plotted for various values of x and B, at a fixed 
value of the current through the liner. In this case B, in (35) 
is the field inside the liner, and B, is the azimuthal field at 
the outer boundary of the liner. We see that, in agreement 
with (33), at sufficiently large values of X, reached by virtue 
of an increase in B,, the growth rate falls off more rapidly 
than /gl, while retaining the characteristic Rayleigh-Taylor 
shape a a k ' I 2 .  This result means that over the time required 
to reach a fixed velocity increment Au = JgJ At the develop- 
ment of the Rayleigh-Taylor instability, characterized by 
the value of ( ~ ( t ) A t ,  can be kept arbitrarily small. It follows 
that it is possible to use shear to suppress the most dangerous 
instability (local Rayleigh-Taylor) mode. 

4. SPECTRA OFTHE INSTABILITY GROWTH RATES OF AN 
INFINITELY THIN LINER 

Among the various problems involving calculation of 
instantaneous instability growth rates for the compression of 
magnetic flux in a hollow cylindrical liner by a longitudinal 
current flowing through the liner, we focus here on the limit- 
ing case of an infinitely thin, ideally conducting liner. This is 
the simplest problem in this category for which an exact 
analytic solution can be found. It is convenient to work di- 
rectly from the equations of motion of a thin liner in these 
calculations. 

The equation of motion of a perturbed element 
R (t)dpdz of the liner surface is" 

where R ( t )  is the liner radius, ,u = 2n-x ( t )  R ( t )  = const is 
the mass per unit length of the liner, { is the displacement of 
the point of the liner under consideration with respect to its 
unperturbed position r = e,R(t),  e, is a unit vector in the 
radial direction, ndS is an element of the perturbed liner 
surface, 

FIG. 1. Spectraof the growth rates ofthe Rayleigh-Taylor ( m  = 0) insta- 
bility mode of a hollow plasma liner of finite thickness ( 6 / R  = l )  for 
various values of the parameter X: 1) ,y = 0.01; 2) x = 1; 3)  x = 2.33. 

and B jb' and B il' are the perturbations of the azimuthal 
magnetic field outside the liner and at the axial field inside it. 
These perturbations can be calculated in the same way as in 
Sec. 2. Choosing a perturbation in the form 4 = g( t )  
x exp( imp + ikz), and setting a g/at = 06 in the spirit of 
this approach, we find the following dispersion relation for 
(T: 

2mZK, (kR)  B: kRI , (kR)  +- 
KKK,' ( k R )  1 211 [ I,' ( k H )  

and R ( t )  is the unperturbed acceleration of the liner. 
Since the free term in dispersion relation (38) is nega- 

tive for all values of m and k which are not zero simulta- 
neously, there exists one root of Eq. (38) which corresponds 
to a finite instability growth rate. In the limit m = 0, k-0 
the instability growth rate remains finite if B > 3B f .  Equa- 
tion (38) describes a joint manifestation of MHD.instabili- 
ties of a conducting shell in a magnetic field, e.g., the insta- 
bility with respect to constrictions and the Rayleigh-Taylor 
instabilities due to acceleration. With B, = 0 and k- w we 
find classical Rayleigh-Taylor spectrum (7)  from ( 38). The 
growth rates of the instabilities of a shell which is compress- 
ing (by inertia) a longitudinal magnetic field B, inside itself 
in the absence of an external field B, also forms Rayleigh- 
Taylor spectrum ( 7 )  in the limit k-0, m - w . Here m/R ( t )  
serves as a wave number. 

Let us take a more detailed look at the important partic- 
ular case of one of the fundamental instabillty modes-the 
m = 0 constriction mode in the limit of large wave numbers, 
k- W .  In this case, relation (38) takes the form 

where we have used the notation x2 = B :/JB - B: ( in 
accordance with (35).  At small values of X, Eq. (40) be- 
comes (7) .  For large values of x we have 

where g,,, = B ;/8.rnt. 
There is an important difference between the behavior 

of the Rayleigh-Taylor mode in the limitx - w for a plasma 
slab of finite thickness, (33), and that in the limit of an infi- 
nitely thin liner, (41 ). In the latter case the growth rate falls 
off with increasingx, just asg does. Accordingly, a perturba- 
tion growth uAt = Au(k /2g,,, ) ' I 2  will correspond to a 
fixed velocity increment Au = lgl At; this perturbation 
growth is smaller by a factor of only fi than the correspond- 
ing value found for B, = 0, Ig/ = g,,, , i.e., in the absence of 
"stabilization" by a longitudinal magnetic field. Ths mecha- 
nism for the suppression of Rayleigh-Taylor instability 
modes by shear which we discussed in the preceding section 
of the paper operates only in a slab of finite thickness S. In 
other words, as the liner becomes thinner a longitudinal 
magnetic field fails to stabilize perturbations of progressive- 
ly shorter length, and a Rayleigh-Taylor instability sets in 
more rapidly. A finite liner thickness is thus a stabilizing 
factor in the presence of a longitudinal magnetic field. 

82 Sov. Phys. JETP 69 (I), July 1989 Bud'ko etal. 82 



Figure 2 shows the instability growth-rate spectra for 
an infinitely thin liner which correspond to a joint solution of 
Eqs. (38) and (39). It was assumed that the liner is com- 
pressed from an initial state of rest, R (0 )  = R,, R (0 )  = 0, 
during the flow of a constant current through the liner. In 
the process, the liner compresses an initial magnetic field B, 
which it encloses. Hence 

B,(t) =Bq,oa-' (t) ,  Bz( t )  =BZoa-' (t), (42) 

wherea( t )  -R(t)/R, is the solution of Eq. (39) with (42).  
A characteristic parameter of the problem is the ratio of the 
pressures of the longitudinal and azimuthal magnetic fields. 
The initial value of this ratio is 

As the compression proceeds, it increases in proportion to 
a P 2 ,  according to (42). Figure 2 is plotted for the value 
b = 0.1. The unit of time here is the quantity 

where x, is the initial value of the mass per unit surface area 
of the liner. 

Figure 2a shows the spectrum of growth rates at the 
beginning of the compression for the case a = 1, a = - 0.9. 
For all wave numbers m = 0, 1, 2, ... the spectrum has the 
characteristic Rayleigh-Taylor shape. The growth rates in- 
crease in a square root fashion with increasing wave number, 
as was pointed out above. Figure 2b corresponds to a time 
near the equilibrium position, at which a is close to zero; 
here we have a = 0.32, a = - 0.075. For moderate values 
of the wave numbers m and k, the growth rates are small, 
although they increase asymptotically as the root of the 

wave number, as before. Finally, Fig. 2c shows the growth- 
rate spectrum during the stopping of a liner by an axial mag- 
netic field: a = 0.164, a = 16.5 > 0. The spectrum retains 
the characteristic Rayleigh-Taylor root asymptotic behav- 
ior, but modes with large values of m of course become pre- 
dominant in this case. 

5. SPECTRA OF GROWTH RATES OF RAYLEIGH-TAYLOR 
AND BULK CONVECTIVE INSTABILITIES OF A LINER OF 
FINITE THICKNESS 

Let us track the qualitative changes in the instability 
growth-rate spectrum during the motion of a plasma liner of 
finite thickness, which is compressing an axial magnetic field 
via flow of a strong longitudinal current through the lin- 
er.22,23 TO illustrate the method developed above, we will 
take a more detailed look at self-similar solutions of the 
problem of the implosion of a plasma liner in a magnetic 
field, for which analytic expressions are known for the pro- 
files of the hydrodynamic variables which figure in (3) .  Self- 
similar solutions with uniform d e f ~ r m a t i o n ~ ' . ~ ~  describe spe- 
cifically the well-developed stage of the compression 
proceeds, to which the approach which we are using here is 
applicable (Sec. 2.). For such solutions the hydrodynamic 
variables depend in the following way on the self-similar co- 
ordinate 7 = r/R ( t )  and on the time: 

r t = t  1 ,  p(r, t )=p,a( t )F2N(v) ,  

1) (r, t )  =pus ( t )  -2: P (11). 

R, ( r ,  2 )  =&,,a ( t )  -' Hq ( r l ) ,  Bz (r ,  t) =E,,,a(l) -' I I z  (TI), (45) 

where R ( t )  is the time-dependent characteristic radius of 
the plasma cylinder (e.g., the mean radius of a hollow plas- 
ma cylinder or the external radius of a solid Z-pinch); 

FIG. 2. Spectra of the instability growth rates of a hol- 
low, infinitely thin, ideally conducting liner. a-t = 0, 
a =  1, a=  -0.9, b=0 .1 ;  b-t= 1.18; a = 0 . 3 2 ,  
a=  -0.075, b=0.1 ;  c-t= 1.36, a=0 .164 ,  
ii = 16.5, b = 0.1. 
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Oo, p,, B,, , and B, are normalization constants; and N ( v ) ,  
P ( 7 ) ,  H ,  ( v ) ,  and Hz ( 7 )  are dimensionless functions (re- 
presentatives) which describe the self-similar spatial pro- 
files. The a ( t )  dependence is determined by the equation of 
m o t i ~ n ~ . * ~  

where the parameters p = 4n-pO/B :, and b = B $/B io 
characterize the relative roles of the kinetic pressure of the 
plasma and the pressure of the axial magnetic field, the unit 
of time is t, = (~T~, , ) ' /~R, , /B , , ,  and Ro and a ( t )  are de- 
fined as in Sec. 4. The initial conditions are a ( 0 )  = 1, 
a(0) = 0. 

With /? + b = 1, Eq. (46) describes a steady-state 
equilibrium of the plasma: a ( t )  = 1 = const.. For 0 <P 
+ b < 1 we find periodic solutions which describe radial os- 

cillations of the liner around its equilibrium position with a 
period on the order oft,, (Ref. 24). ForB + b < 1 the degree 
of compression of the liner in the course of these oscillations 
is significant. Finally, the case P = b = 0 corresponds to an 
unbounded compression of the liner in the absence of a coun- 
terpressure ( a  collapse) over a finite time T = (n - /2 )  '"t0. 

To avoid complicating the analysis below with a discus- 
sion of the tangential shock at the liner ~ur face , '~  we restrict 
the analysis to self-similar solutions which describe the com- 
pression of a liner with a negligibly low plasma pressure: 
0 = 0. The dynamics of such a liner is determined complete- 
ly by its inertia and by the balance between the magnetic- 
pressure forces exerted on the liner from without and from 
within, as in the simple model in Sec. 4. We will discuss the 
stabilizing effect of a finite plasma pressure in Sec. 6 below. 
In this case we choose a density profile with a smooth decay 
toward the inner and outer boundaries of the liner: 

- 
where6 = 772 - 7 1 ,  R = ( q l  + 7?)/2,  and 7, and 7, are the 
inner and outer radii of the liner. This profile corresponds" 
to the following profiles of the magnetic-field components: 

In the case under consideration here, both surface and 
bulk convective instability modes can occur. From the sta- 
bility standpoint, the most dangerous combinations of flow 
parameters are the vanishing of the plasma density (p  = 0 )  
and of f *, the latter describing the bending of the field lines 
by a perturbation: 

In accordance with the discussion in Sec. 3, surface Ray- 
leigh-Taylor modes occur in just the case in which these two 
quantities vanish simultaneously. For the plasma liner un- 
der consideration here, this situation may be realized a t  the 
outer surface of the liner as it is being accelerated inward by 
the pressure of an azimuthal magnetic field for the m = 0 
mode, and during the stopping of the liner by the axial mag- 
netic field for the k = 0 mode. In these cases, the local Ray- 
leigh-Taylor modes described in Subsection 3.3, with the 
growth-rate spectra given by (7 ) ,  develop as k- cc and 
m - C C ,  respectively. As was mentioned in Subsection 3.3, 
the corresponding perturbations become localized over a 
distance on the order of l /k or R /m near the unstable liner 
surface. This situation is illustrated by Fig. 3, which shows 
perturbation profiles {, ( r )  for modes with kR, = 5 and 10, 
m = 0, at the initial time with b = 0.01. Although according 
to (7 )  the growth rates of these instabilities are not limited at 
large wave numbers, these instabilities can be suppressed by 
shear with an appropriate combination of values of B, and 

B,. 
Other instability modes are naturally called "bulk con- 

vective modes." Bulk instabilities develop more rapidly or 
more slowly, depending on whether they band the magnetic 
field lines. Since their growth rates are higher for those 
wave-vector directions for which Eq. (50) can be satisfied- 
with our choice of the signs of B,, B,, m>O this situation 
corresponds to negative values of k-the spectra of the 
growth rates are asymmetric under the substitution k- - k 
in the case B, #O. Note the difference from the case of a liner 
of zero thickness (Fig. 2) :  The bulk instability modes are not 
concentrated near the surface. At large wave numbers I kR,,I, 
m % 1, they localize near the point r = r*, at which condition 
(50) holds for the given k and m. The situation is illustrated 
by Fig. 3, which shows profiles of perturbations of bulk 
modes with m = - kRo = 5 and m = - kRo = 10. The 
growth rates of the bulk convective modes differ from those 
of the Rayleigh-Taylor modes in that they are bounded at 
large wave numbers. In particular, in the problem at hand we 
find saturation for these modes as k - co and/or m - w . 

FIG. 3. Perturbation profiles g, ( r )  corresponding to eigenfunctions of 
various perturbation modes of a hollow cylindrical liner ( S / R  = 1 ) for 
t = 0 and b = 0.01. The solid lines correspond to bulk convective modes: 
1 )  m = kR,, = 5 ;  2 )  m = - kR,, = 10. The dashed lines correspond to 
Rayleigh-Taylor modes: 3 )  m = 0, kR,, = 5 ;  4 )  m = 0, kR,, = 0. 
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FIG. 4. Growth-rate spectra of the instabilities of a hollow plasma liner of 
finite thickness ( 6 / R  = 1) at f = 0 for a = 1. a )  a = - 1, b = 0; b) 
a =  -0.9; b=O. l .  

Corresponding estimates of the asymptotic values of the 
growth rate were derived in Ref. 5. As k -  cc ,with finite m, 
for example, we have 

When the finite magnitude of the thermal pressure of the 
plasma is taken into account, the asymptotic saturation of 
the growth rate gives way to a maximum of the growth rate 
at a large value of rn, followed by a decay to zero as m - cc . 
The bulk convective instability modes, just as the surface 
modes, can be stabilized by shear. The necessary condition 
on the shear for this stabilization is of the form of the Suy- 
dam criterion, generalized to incorporate the acceleration of 
the plasma. It follows from this discussion that as long as the 
local Rayleigh-Taylor modes are not suppressed they will 
grow the fastest. 

Figures 4-6 show the growth-rate spectra calculated by 
numerical solution of boundary-value problem ( 3  )-( 5 ) for 
an unperturbed motion described by the self-similar solution 
(46)-(4% with the parameter values v, = 0.5, 7, = 1.5, 
and S = R. 

Figures 4a and 4b, compare the growth-rate spectra 
plotted for the time t = 0 with a = 1 under conditions differ- 
ing in that there is a comparatively weak magnetic field in 

FIG. 5. Growth-rate spectra of the instabilities of a hollow plasma liner of 
finite thickness ( S / R  = 1) at t = 1.225, a = 0.103, ii. = - 0.64, and 
b = 0.01. 

Fig. 4b: b = 0 for Fig. 4a, and b = 0.1 for Fig. 4b. It can be 
seen from Figs. 4a and 4b that a magnetic field of this 
strength has essentially no effect on the growth rate of the 
local Rayleigh-Taylor instability mode. The growth rates of 
the bulk modes in Fig. 4b, on the other hand, are consider- 
ably smaller, although the dimensionless acceleration of the 
plasma is essentially the same in the two cases: a = - 1 for 
Fig. 4a and a = - 0.9 for Fig. 4b. This behavior of the 
growth rates agrees with ( 5  1 ), where the first term in square 
brackets is negative. 

Figure 5 shows the growth-rate spectrum calculated for 
b = 0.01 at the time with a = 0.103 and a = - 0.64. The 
dimensionless acceleration I&;;/ is only 30% lower than the 
initial value (a = - 0.99), but in this case the axial magnet- 
ic field is strong enough that the local Rayleigh-Taylor insta- 
bility mode can be completely suppressed by shear according 
to the discussion in Subsection 3.4. In addition, there is a 
substantial decrease in the growth rates of the bulk modes. 
In this case the parameter x has a value of only 4 [see (35) 1. 

FIG. 6. Growth-rate spectra of the instabilities of a hollow plasma liner of 
finite thickness ( S / R  = 1)  at t = 1.36, a = 0.164, a = 16.5, and b = 0.1. 
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Figure 5 thus demonstrates the existence of a stability 
window in the space of the parameters of the motion, in 
which the local Rayleigh-Taylor instability mode, which is 
the primary mode for the initial stage of the acceleration, is 
completely suppressed, and the growth of the bulk convec- 
tive modes is significantly slower. We wish to stress that 
these effects are not a consequence of a decrease in the accel- 
eration, which remains on the order of its initial value. 

Figure 6 is plotted for the time at which we have 
a = 0.164, 2 = 16.5 and corresponds to the case in which 
the liner is slowed by the axial magnetic field, with b = 0.1. 
Here again, a local Rayleigh-Taylor instability mode ap- 
pears, in this case at the inner surface of the liner: k = 0, 
m - a. The asymmetry of the spectral regions with k > 0 
and k < 0 is particularly clearly pronounced in Fig. 6. The 
growth rates of the bulk instability modes reach saturation at 
large values of k and finite values of m, in accordance with 
(51).  

The saturation of the bulk convective modes at large 
wave numbers should have the consequence that initial inho- 
mogeneities localized along the p or z direction may grow 
exponentially as a whole, without spreading out." They 
would thereby lead to the appearance of the bands or stria- 
tions which are observed in the structure of a liner with a 
magnetic field. 

6. GROWTH-RATE SPECTRA OF RAYLEIGH-TAYLOR AND 
BULK CONVECTIVE INSTABILITIES OF AZ-PINCH WITH A 
SHARP BOUNDARY 

We now consider the growth-rate spectra of the instabi- 
lities which occur in the plasma of a Z-pinch with a sharp 
boundary. We are interested in the effect of a finite plasma 
pressure on the growth rates for instabilities during the im- 
plosion of a pinch plasma accelerated toward the axis by the 
pressure of the azimuthal magnetic field of an axial current 
flowing through the pinch. 

We can illustrate the shape of this spectrum in the case 
of the unperturbed motion of the plasma of a Z-pinch, which 
is described by self-similar solution (45),  (46),  where 

The primary distinction between the nature of the insta- 
bility development in a solid Z-pinch and that in a hollow 
liner stems from the difference between density profiles (47) 
and (52). In this case the following condition holds over the 
entire plasma volume: 

In the stage of the inward acceleration of the plasma, with 
g > 0, the termg(dp/dr) in Eq. ( 3 )  is therefore negative, i.e., 
destabilizing. Consequently, the growth-rate spectra of the 
instabilities must be qualitatively similar to the correspond- 
ing spectra calculated for a hollow liner (cf., for example, 
Fig. 4, a and b, and Fig. 7, a and b) .  After the equilibrium 
position has been crossed, on the other hand, and the plasma 
is slowed by the thermal and/or magnetic counterpressure, g 
goes negative, and the corresponding term becomes stabiliz- 

FIG. 7. Growth-rate spectra of the instabilities of a compacted Z-pinch at 
i=O,  a =  1, a =  -0.89. a-/3=0.1, b=0.01;  b-/3=0.01, b=0.1. 
For clarity, the scale has been enlarged along the m axis. 

ing. The stabilizing effect is so strong that the growth rates of 
all of the instability modes, both surfaces and bulk, vanish 
(this result was established in Ref. 5 for the case of bulk 
modes). For a liner, on the other hand, this does not occur in 
the corresponding slowing stage, since in it we have g(dp/ 
d r )  <O near the inner surface, where the Rayleigh-Taylor 
and bulk instability modes develop. Consequently, Fig. 6 has 
no analog here. 

It is clear from this discussion that it is sufficient to 
examine the growth-rate spectra at the beginning of the com- 
pression for various combinations of the parametersp and b, 
in (46), which characterize the relative roles played by the 
thermal and magnetic counterpressures (for fi' + b < 1 ). 
Corresponding growth-rate spectra are shown in Figs. 7a 
and 7b for two combinations o f p  and b at a fixed value of the 
acceleration: ( a )  B=O. l ,  b =0.01; ( b )  p=O.Ol b = 0 . l .  
Comparing parts a and b of Fig. 7, we see that the growth 
rates of the local Rayleigh-Taylor modes, which are domi- 
nant in both cases, are essentially the same here. The growth 
rates of the bulk convective instability modes in case a, in 
which the thermal counterpressure is dominant, and in case 
b, in which the magnetic counterpressure is dominant, are 
close in value. A finite thermal pressure, like a longitudinal 
magnetic field, is thus a factor which stabilizes compression. 
Note that the finite thermal pressure has its greatest effect on 
the change in the spectra at  large values of m. While the 
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value of the growth rate reaches saturation in the limit 
m - cc in the case 0 = 0, at a finite value 0 # O  the growth 
rate goes through a maximum and then vanishes at 
m - ~ - " ~  (Ref. 5 ) . In agreement with this estimate, under 
the conditions in Fig. 7a the only nonvanishing growth rates 
are those of the bulk convective instability modes with 
m < 6, while under the conditions in Fig. 7b the range of m is 
considerably wider. This result means that a more signifi- 
cant filamentation should be observed experimentally in the 
absence of a longitudinal magnetic field, in the case in which 
the growth rate depends only weakly on k and has a clearly 
expressed maximum at m > 1. 

As in the case of a hollow plasma liner, there is a stabil- 
ity window here. In accordance with the discussion above, 
this window is wider than in the case of a liner, since it in- 
cludes the entire slowing stage and the subsequent expansion 
of the plasma, with g < 0. A solid Z-pinch in a longitudinal 
magnetic field is thus generally more stable than a plasma 
liner. 

7. GROWTH OF PERTURBATIONS DURING PLASMA 
COMPRESSION 

For each perturbation component (m,k)  at each time, 
we can find the maximum growth rate u,,, by solving the 
boundary-value problem ( 3 )-( 5) .  This approach is equilva- 
lent to writing the perturbation in the form 

1 

which is characteristic of the semiclassical approximation. 
The time evolution l,,,, (r,t) is assumed here to be slow in 
comparison with the variation of the exponential factor. Us- 
ing the first semiclassical approximation, we ignore the time 
dependence of the coefficient of the exponential function in 
(57). This simplification makes it possible to apply this 
method to time-dependent problems in which the variables 
in the equations for the perturbations cannot be separated. A 
direct calculation5 demonstrates the high accuracy of the 
first semiclassical approximation in problems of this class. 
In this approximation, the growth of the perturbations over 
a finite time interval t is estimated to be 

As we saw above, the growth-rate spectrum of the insta- 
bilities of a plasma liner at the beginning of the compression 
contains rapidly growing Rayleigh-Taylor modes, which are 
localized near the outer boundary of the liner and whose 
growth rates are not bounded as k -+ cc . It also contains bulk 
convective modes, whose growth rates are bounded in this 
limit (Fig. 4, a and b) .  The growth of each of the perturba- 
tion components (m,k)  during the compression is charac- 
terized by expression (58), in which the integral is evaluated 
from the beginning of the compression to the time at which 
the stability window is reached. 

Turning-on a longitudinal magnetic field results in a 
stabilization by shear of the most dangerous Rayleigh-Tay- 
lor modes during the compression and in a corresponding 
decrease of the maximum values of r,,,, . It thus bcomes 
possible to reach higher degrees of radial compression with- 

out a disruption of the cylindrical symmetry. This stabiliza- 
tion of the compression of a plasma liner by a longitudinal 
magnet field has in fact been observed in some recent experi- 
m e n t ~ , ~ ~ . ' ~  in which degrees of radial compression 
a- ' = 15-22 of a hollow plasma liner were reached; these 
are record high values for devices of this type. Note that, in 
contrast with the known results of the theory of the stability 
of steady-state plasma configurations, the dynamics of the 
compression is effectively stabilized by a comparatively 
weak longitudinal magnetic field ( b  5 lo-'). This effect is 
attributed to a decrease in the integral contribution to r,,,, 
in the later, most important, stages of the compression, as a 
result of the attainment of the stability window. A detailed 
numerical calculation of the stabilizing magnetic fields ( to  
optimize the compression process) is beyond the scopeof the 
present study. We simply note that for the experimental con- 
ditions of Refs. 23 and 24 the short-wavelength modes with 
kR,,-20 are the most dangerous, so the conclusion (of Ref. 
5)  that the compression is stabilized by a longitudinal field 
in the interval 

B, = ( 10-30 ~ G ) I  [MA]/R,, [cm] (59) 

applies to these modes (7 is the characteristic current flow- 
ing through the liner). That conclusion was reached as the 
result of a calculation for kR,, = 30. 

The theory indicates an interesting opportunity for sta- 
bilizing the entire compression process. Here it would be 
necessary to organize the compression process in such a way 
that the plasma parameters remained inside the stability 
window at all times, i.e., in such a way that the stability 
parameterx (Subsection 3.4) was quite large. This situation 
could be arranged by shaping the current pulse flowing 
through the liner in such a way that the pressure of the azi- 
muthal magnetic field which compresses the liner has the 
same time evolution as the pressure of the longitudinal mag- 
netic field frozen in the liner. This situation corresponds to a 
current growth I ( t )  cc R ( t )  ' .  We will not discuss the possi- 
bilities of a technical implementation of this regime here; we 
simply note that in most experiments the rapid disruption of 
cylindrical symmetry occurs specifically when the current 
growth comes to a stop. 

8. CONCLUSION 

We have derived a theory for the onset of instabilities 
during the accelerated motion of plasma liners and pinches 
with a sharp boundary for the initial, linear, stage of the 
evolution of the instabilities. We have classified the bulk and 
Rayleigh-Taylor instabilities of an accelerated plasma for Z- 
pinches and liners. We have calculated the instability spec- 
tra. The results show, in particular, that initial perturbations 
which are localized along the z or p direction have a tenden- 
cy to grow as a whole. This tendency probably explains the 
experimentally observed stratification and filamentation of 
the plasma. We have shown that a Rayleigh-Taylor surface 
instability mode is the most important and grows most rap- 
idly, but can be suppressed by a longitudinal magnetic field 
(by shear). In a finite range of parameter values of the accel- 
erated motion of the plasma, this instability can be sup- 
pressed completely, while the growth rates of the bulk con- 
vective instability modes can be reduced substantially. 

A finite thickness of the plasma liner is another stabiliz- 
ing factor. To achieve the greatest degree of radial compres- 
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sion and to optimize the energy concentration process, one 
could vary both the thickness of the liner and the strength of 
the initial longitudinal magnetic field. A temporal shaping of 
the current pulse flowing through the liner also makes possi- 
ble in principle to organize the liner compression process in 
such a way that the parameters of the plasma being com- 
pressed do not go outside the stability window during the 
stage of the current rise. By taking this approach one could 
expect to surpass the degrees of radial compression which 
are presently the record high values, 20-22 (Ref. 23). 

We are indebted to S. M. Gol'berg and A. I. Kleev for 
assistance in the numerical calculations and for useful com- 
ments. We thank S. I. Anisimov and N. A. Inogamov for 
useful discussions and comments. We also thank R. B. 
Baksht and V. P. Smirnov for a discussion of experimental 
data on the development of instabilities in pinches and liners. 

" Jaycor, San Diego, California. 
'' For certain density profiles near a free boundary where there is a singu- 

lar point, both solutions of Eq. ( 3 )  are bounded at this point. As was 
shown in Ref. 10, one chooses then specifically the regular solution, i.e., 
that solution whose derivative is bounded at the singular point. 

'V. E. Golant, A. P. Zhilinskii, and S. A. Sakharov, Osnouyjzikiplazmy, 
Atomizdat, Moscow, 1977 (Fundamentals of Plasma Physics, Wiley, 
New York. 1980). 

'N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, 
McGraw-Hill, New York, 1972 (Russ. Transl. Atomizdat, Moscow, 
1977). 

'F. S. Felber, F. J. Wessel, N. C. Wild, et al., J. Appl. Phys. 64, 3831 
(1988). 

4N. R. Pereira and J .  Davies, "X-rays from Z-pinches," Preprint NRL. 
September 15, 1987. 

'A. B. Bud'ko, A. L. Velikovich, A. I. Kleev, et al., Zh. Eksp. Teor. Fiz. 
95,496 ( 1989) [Sov. Phys. JETP 68,279 ( 1989)l. 

"M. A. Liberman and A. L. Velikovich, Nucl. Fusion 26, 709 (1986). 
7S. I. Anisimov and Ya. B. Zel'dovich, Pis'ma Zh. Tekh. Fiz. 3, 1081 
(1977) [Sov. Tech. Phys. Lett. 3 ,445 (1977)l. 

'F. S. Felber and N. Rostoker, Phys. Fluids 24, 1049 (1981 ) .  
'F. Hattori, H. Takabe, and K. Mima, Phys. Fluids 29, 1719 (1986). 
"'N. A. Inogamov, Izv. Akad. Nauk SSSR, Mekhan. Zhidk. i Gaza No. 1, 

158 (1984). 
"W. A. Newcomb, Phys. Fluids 4, 391 ( 1961). 
"B. B. Kadomtsev, in: Voprosy teoriiplazmy, Vyp. 2 (ed. M. A. Leonto- 

vich), Atomizdat, Moscow, 1963 (Reviews of Plasma Physics, Vol. 2, 
Consultants Bureau, New York, 1966). 

"J. P. Goedbloed and P. H. Sakanaka, Phys. Fluids 17,908 (1974). 
I'D. L. Book and I. B. Bernstein, J .  Plasma Phys. 23, 521 (1980). 
I5N. A. Inogamov, Dokl. Akad. Nauk SSSR 278, 57 ( 1984) [Sov. Phys. 

Dokl. 29,714 (1984)l .  
"K. 0. Mikaelian, Phys. Rev. Lett. 48, 1365 (1982). 
I7H. A. Inogamov, Zh. Prikl. Mekh. Tekh. Fiz. No. 5, 110 (1985). 
"N. A. Inogamov, Izv. Akad. Nauk SSSR, Mekhan. Zhidk. iGaza No. 5, 

145 (1985). 
"N. A. Inogamov, Izv. Akad. Nauk SSSR, Mekhan. Zhidk. iGaza No. 6, 

92 (1985). 
"'L. D.  Landau and E. M. Lifshitz, Kvanrouaya mekhanika, Nauka, Mos- 

cow, 1974 (Quantum Mechanics: Non-Relativistic Theory, Pergamon, 
New York, 1977). 

"E. G.  Harris, Phys. Fluids 5, 1057 (1962). 
"F. S. Felber, F.  J. Wessel, N. C. Wild, et al., Laser and Particle Beams 5, 

699 (1987). 
"F. S. Felber, M. M. Malley, F.  J. Wessel, et al., Phys. Fluids 31, 2053 

(1988). 
'4F. S. Felber, Phys. Fluids 25, 643 (1982). 
"M. A. Liberman, A. L. Velikovich, and F. S. Felber, in: Megagauss 

Technology and  Pulsed Power Applications (Eds. C. M. Fowler, R. S. 
Caird, and D. J. Ericson), Plenum Press, New York, 1987, p. 107. 

Translated by Dave Parsons 

88 Sov. Phys. JETP 69 (I), July 1989 Bud'ko eta/. 88 


