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The rotation of the polarization plane of light in a nonequilibrium, highly rarefied molecular gas 
between two plane-parallel solid surfaces is analyzed. The effect is attributed to Coriolis forces 
which act on the electrons in a rotating molecule and to the onset of a vector polarization along the 
directions of the angular momenta of the rotation of the molecules as they are scattered by a 
surface. The role ofgyration vector is played by the pseudovector representing the rotational 
angular momentum of the gas molecules. The deviation of the gas from equilibrium is assumed to 
be caused by one of three factors: a difference between the temperatures of the surfaces, a 
difference between the gas pressures at the ends of the gap, and a translational motion of the 
surfaces with respect to each other, while the distance between them remains constant. For these 
different types of deviation from equilibrium, the rotation of the polarization plane of the light is 
caused by scattering processes which differ in spatial symmetry. The polarization-plane rotation 
can be utilized to study a nonspherical scattering of molecules by a solid surface. Imposing a weak 
magnetic field causes the angle through which the polarization plane is rotated to become a 
function of the coordinate of the beam axis in the gap, by virtue of a precession mechanism by 
which the field acts on the moments of the molecule. 

I. INTRODUCTION 

The distribution function of a nonequilibrium gas con- 
sisting of molecules having rotational degrees of freedom is 
anisotropic in terms of the directions of both the velocity v 
and the rotational moment M of the molecules (Ref. 1 ). The 
anisotropy of the distribution of the molecular gas with re- 
spect to the orientations of the moment of the molecules 
causes the dielectric constant of the gas to become a tensor, 
and the nonequilibrium gas becomes an optically anisotropic 
medium. One manifestation of optical anisotropy of a non- 
equilibrium gas is birefringence. This effect has been ob- 
served in flowing gaseousC0, (Ref. 2)  and is described the- 
oretically in Ref. 3. The birefringence in a nonequilibrium 
Knudsen gas was studied in Ref. 4. In contrast with a dense 
gas, in which an anisotropic distribution of the orientations 
of molecules is established as a result of nonspherical inter- 
molecular collisions, a polarization of the rotational mo- 
ments in a Knudsen gas arises as a result of nonspherical 
collisions of the molecules with a surface. Since the birefrin- 
gence is determined by the symmetric part of the dielectric 
tensor, it is sensitive to the existence of a polarization of the 
rotational moments, described by a symmetric second-rank 
tensor, in the gas. 

If a vector polarization of the rotational moments of the 
molecules arises in a nonequilibrium gas, the gas becomes a 
gyrotropic medium, capable of rotating the plane of polar- 
ization of light. We know (Ref. 5, for example) that for most 
gases intermolecular collisions lead to a tensor polarization 
of the rotational moments. Exceptional cases are highly po- 
lar molecules, for which there is also a vector polarization. 
Collisions of molecules with a surface lead to both a tensor 
polarization and a vector polarization of the rotational mo- 
m e n t ~ . ~  In the present paper we analyze the rotation of the 
polarization plane of light in a nonequilibrium Knudsen mo- 
lecular gas between two plane-parallel surfaces. 

The polarization-plane rotation is described by the anti- 
symmetric imaginary part of the dielectric tensor, which is 
the dual of the pseudovector g, which is called "gyration 

vector."' In the Faraday effect the role of the gyration vector 
is played by the external magnetic field B, and the effect itself 
is a consequence of a dispersion of the polarizability of the 
molecules and of Lorentz forces which act on the electrons 
moving in the molecules in the field B. In the case B = 0 the 
role of the gyration vector in a nonequilibrium molecular gas 
can be played by the vector average rotational moment of the 
molecules, (M), which, like B, is a pseudovector, while the 
role of the Lorentz forces is played by Coriolis forces. Incor- 
porating the Coriolis forces which exist during the rotation 
of molecules leads to an antisymmetric part of the tensor 
describing the scattering of light by nondegenerate mole- 
c u l e ~ . ~  In an equilibrium gas, the distribution of the mole- 
cules with respect to rotational moment M is isotropic, and 
there is no polarization-plane rotation. In a nonequilibrium 
gas, as we will show below, it is possible to arrange condi- 
tions corresponding to (M) #O. The appearance of a non- 
vanishing average moment with B = 0 in a Knudsen molec- 
ular gas between two plane-parallel surfaces at different 
temperatures ("thermopolarization") has been studied and 
described previously.y In contrast with the known polariza- 
tion-plane rotation in a rotating medium,' we will be discuss- 
ing here types of deviations from equilibrium which do not 
lead to a rotation of the gas as a whole. 

There are several reasons for the interest in research on 
polarization-plane rotation in a Knudsen gas. This effect 
arises in the first approximation in the small parameter p, 
which represents the deviation of the molecules from a 
spherical shape, and it can be studied by advanced methods, 
as estimates show. In contrast with the gas of a continuous 
medium, in which both the kinetic and optical properties are 
determined by local values of macroscopic quantities and 
their derivatives, the corresponding effects in a Knudsen gas 
also depend on the geometry of the system. The polarization- 
plane rotation exhibits its most interesting features in a weak 
magnetic field, in which case the magnetic polarization of 
the molecules can be ignored (B = 10'-10' G, T z  300 K )  in 
comparison with the polarization which arises upon devi- 
ation from equilibrium. Such a field causes only a change in 
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the orientation of the moments of the molecules by virtue of 
their precession around the direction of the vector B, and the 
moment of the molecules changes orientation as they move 
freely in the gap from wall to wall. Because of this effect, the 
polarization-plane rotation depends on the coordinate of the 
beam in the gap, as does the birefringen~e.~ The precession 
gives rise to a vector polarization in the plane perpendicular 
to the field direction. This polarization depends on the 
strength of the field. The characteristics of the polarization- 
plane rotation depend strongly not only on the nature of the 
deviation from equilibrium but also on whether the devi- 
ation from equilibrium constitutes an ordinary vector or a 
pseudovector. The latter, along with the spatial-inversion 
symmetry properties of the nonspherical part of the proba- 
bility for the scattering of molecules by the surface, deter- 
mines the nature of the inhomogeneity which arises in the 
optical properties of the gas. 

Note that optical phenomena in a nonequilibrium gas 
can serve as a unique tool for identifying the contributions of 
the vector polarization (polarization-plane rotation) or ten- 
sor polarization (birefringence) of the rotational moments 
of molecules, while transport in a field"' provides informa- 
tion which is summed over all types of polarizations. 

In this paper we describe research into these features of 
polarization-plane rotation in a collisionless nonequilibrium 
molecular gas. The effect is analyzed on the basis of symme- 
try considerations regarding the system. In particular, the 
polarization-plane rotation is studied in the cases in which 
the deviation from equilibrium is caused by different factors: 
a difference between the temperatures of the surfaces, a flow 
of the gas along the gap, and a motion of the surfaces with 
respect to each other. 

2. KINETIC DESCRIPTION OF POLARIZATION-PLANE 
ROTATION 

The polarizability tensor a,, of a rotating molecule, 
averaged over possible orientations of its axis with a given 
direction of its rotational moment, is'' 

where m = M/M. The scalar ( -a,) and symmetric ( -a2) 
parts of the polarizability tensor are related to the geometric 
structure of the molecule, while the antisymmetric part 
( -a, ) is caused by Coriolis forces and the dispersion of the 
polarizability tensor.' For most molecules we would have'' 
a,/a,,- 10-3-10-4. 

The dielectric tensor of a nonequilibrium rarefied gas 
can be written in the form E , ~  = E : ~  + i ~ $ ,  where the anti- 
symmetric part is EP; = ei,,gl, and the gyration vector g is 
given by 

Here N is the density of molecules, and the angle brackets 
(...) mean an average with the nonequilibrium distribution 
function f(v,M) of the gas. The symmetry of the tensor E, 

under the condition of a simultaneous change in the sign of 
magnetic field B in accordance with the Onsager relation 
E, (B)  = E, ( - B )  holds for only a medium at thermody- 
namic equilibrium. l 2  With B = 0, the appearance of an anti- 
symmetric part of E,, would thus be possible in only non- 
equilibrium systems. The quantity a ,  is a function of the 

rotational moment M and of the light frequency w. The 
expression for g, is conveniently written in the form 

where t ;" are coefficients which determine the relationship 
between the components of the vector M and the equivalent 
spherical harmonics Y , ,  (m) (Ref. 13). The behavior of the 
polarization-plane rotation as a function of the frequency, w, 
of the light wave, is determined (as in the Faraday effect) by 
the frequency dispersion of the polarizability a (w)  of the 
molecules. In expression ( 1 ) we have a ,  -da/aw. 

The angle (p) through which the polarization plane of 
the light is rotated over a path length 1 in the gas is 

where k is the wave vector. 
Our basic task in calculating the gyration vector g is 

thus to determine the nonequilibrium distribution function 
f(v,M). In the present paper we examine the polarization- 
plane rotation in a collisionless molecular gas between two- 
plane parallel surfaces atz = - L /2 andz = L /2, where L is 
the distance between the surfaces. The distribution function 
f(v,M) is found from the solution of the Boltzmann equa- 
tion for a collisionless gas and the system of integral bound- 
ary conditions at each surface. The kernel of the integral 
boundary conditions is the probability for the scattering of 
molecules having rotational degrees of freedom by the sur- 
face: W(vl, M' -v,M). To distinguish among the scattering 
processes which differ in spatial symmetry with respect to 
M' and M and to determine specifically which of these pro- 
cesses make nonzero contributions to the polarization-plane 
rotation, we expand Was an expansion in spherical harmon- 
ics of M' and M: 

where if at least one of the indices I ', 1 is nonzero we have 
W,.,,lm -p W, ,,,, wherep2- (Ref. 14). 

3. SYMMETRY PROPERTIES 

Whether a polarization-plane rotation can occur and 
the general properties of this effect (e.g., whether it is of even 
or odd parity with respect to the field) can be resolved on the 
basis of the spatial symmetry of the system. For this purpose, 
we construct a phenomenological expression for a gyration 
pseudovector from all the vectors of the problem. First, we 
have the macroscopic inhomogeneity X, which is either a 
vector (in the case of a thermal or density deviation from 
equilibrium) or pseudovector (if the deviation from equilib- 
rium is caused by a motion of the surfaces). If, for example, 
the temperatures of the surfaces differ by AT, then the vector 
X is ATe, and is directed along the z axis, away from the 
colder surface toward the warmer (e, is a unit vector along 
the z axis). If there is a gradient in the density ( N )  of the 
molecules along the gap, we have the vector X = VN. If the 
surfaces are moving in different directions at a velocity u 
which is perpendicular to the vector n (the normal to the 
surface), we have a pseudovector X = [u X n] (Ref. 4).  We 
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will be assuming that the direction of the density gradient 
and the direction of the velocity of one of the surfaces are 
along they axis. 

In a Knudsen gas in a plane gap there is a physically 
distinct direction: that normal to the surfaces, along, say, the 
vector n for one of the surfaces. If the surfaces are identical, 
the gyration vector is not affected by an interchange of the 
surfaces (by which we mean a replacement of n by - n with- 
out changes in the directions of any other vectors of the 
problem). In the opposite case, combinations of vectors 
which are of odd parity with respect to n can also contribute 
to the expression for the gyration vector. When a magnetic 
field is turned on, the direction of the pseudovector B be- 
comes physically preferred. In this case we should take ac- 
count of the spatial inhomogeneity of the optical properties 
of the collisionless gas, which results from the change (due 
to precession in the field) in the orientations of the molecules 
during their free motion between the surfaces. When a field 
is applied to a plane gap there is a spatial inhomogeneity of 
the optical properties of the gas along the z axis perpendicu- 
lar to the surfaces; i.e., the gyration vector depends on the 
vector Z = ze, which characteristizes the position of the axis 
of the light beam in the gap. The origin for the vector Z is 
conveniently put in the middle of the gap. 

According to ( 3 ) ,  the components of the gyration vec- 
tor can be expressed in terms of the components of a spheri- 
cal first-rank tensor p, ,, . A general expression for p, ,, , ex- 
panded in irreducible tensors constructed from the 
components of the vectors of the problem, can be written in 
the form 

Here the (...) are Clebsch-Gordan coefficients, and 
r = (p,,p,,p,,p,,P,,P,) is the set of indices over which the 
summation is carried out. The expansion coefficients B, de- 
pend on the absolute values of the vectors X, B, and Z and 
are determined by the nonspherical part of the probability 
for the scattering of molecules by the surface. If the probabil- 
ity W is invariant under spatial inversion, then the 0, are 
scalars; in the opposite case, they are pseudoscalars. The 
reason is that the polarization of the gas along M arises upon 
a single scattering of gas molecules by the surface, so that the 
tensor p,,, is nonvanishing even in the first approximation in 
the small parameterp (which represents the deviation of the 
molecules from a spherical shape) and is linear in W,. 

In the coordinate system which we have selected, the 
vectors n and Z are collinear with the z axis, so we have 
9, = q, = 0 in expansion (6) .  We restrict the analysis to the 
first approximation in the deviation from equilibrium, X, 
and we setp,  = 1. Expression (6)  can then be rewritten as 

If the surfaces are identical, p, can be only even; if they are 
different (i.e., if the probabilities for the scattering of mole- 
cules by the surfaces are different), it can also be odd. 

TABLE I. B=O 

In the absence of a magnetic field we should set 
p3 =p4  = 0 in (7) ,  since the spatial inhomogeneity of the 
effect along z also disappears when the field is turned off. 
With B = 0, expression (7 )  thus takes the form 

The possible appearance of (M) # 0 ( p ,  ,, a (M) ) in the ab- 
sence of an external magnetic field was first pointed out in 
Ref. 9. 

Table I shows the results of an analysis of the polariza- 
tion-plane rotation carried out through the use of expansion 
(8)  for three types of deviation from equilibrium. For 
X = A Te,, for example, we have a gyration vector g # 0 only 
if the scattering probability is invariant under inversion 
( W-) and the surfaces are identical ( S ,  ); in this case we 
have gllX. The existence of terms in expansion (5 )  of the 
probability W which are not invariant under spatial inver- 
sion was discussed in Ref. 6. For an X = VNparallel to e, we 
have a vector g#O in two cases: if the scattering probability 
is invariant under inversion ( W+ ) and the surfaces are dif- 
ferent ( S -  ), or if the probability is not invariant under in- 
version and the surfaces are identical. In the first of these 
cases we have g 1 1  ex, i.e., g 1 X, and in the second g [ I  e,, i.e., g 
1 1  X. For X = [u  x n]  parallel to e x ,  we again have g#O in 
two cases: if the scattering probability is invariant under in- 
version and the surfaces are identical (g  1 1  e x ,  i.e., g [ (  X ) ;  if 
the probability is not invariant under inversion and the sur- 
faces are different (g  1 1  e,, i.e., g 1 X). 

In a magnetic field, the possibilities for the occurrence 
of a polarization-plane rotation are considerably richer. Ta- 
ble I1 shows the results of an analysis of these possibilities 
found through the use of expansion ( 7 )  for X = [u  X n] ; 
Table 111 shows the corresponding results for X = VN, and 
Table IV shows the corresponding results for X = ATe,. A 
note is in order here. Generally speaking, expansion (7)  
takes no account of the mechanism by which the magnetic 
field influences the polarization-plane rotation. A preces- 
sion mechanism could give rise to a gyration vector g,lB 
which, along with go (in the case B = 0 ) ,  would make up the 

TABLE 11. tun1 'I ex 

I I I 

68 Sov. Phys. JETP 69 (I), July 1989 Popov eta/ 68 



TABLE 111. C-V , !  eu 

total vector g .  The terms in ( 7 )  which lead to a vector gn IIB 
should thus be eliminated. The reason is that in the kinetic 
calculation below we will take account of only the precession 
mechanism for the effect of the field on the polarization- 
plane rotation, which operates under the condition 
pB4  k ,  T ( T=: 300 K, B< lo3 G) .  Magnetic polarization of 
the molecules-which we are not discussing here-leads to a 
gn JIB. 

Summarizing the tabulated results, we note that under 
conditions such that we have a gyration vector go#O in the 
absence of a field the application of a field B which is not 
parallel to go results in the appearance of (in addition to go) a 
vector g;,  which has two components which are perpendicu- 
lar to each other and to the vector B. One of these compo- 
nents, which lies in the plane of go and B, is even in the field 
( B ,  ), while the other, which is perpendicular to this plane, 
is odd in the field ( B -  ). Both are even with respect to z 
( Z ,  ) . According to the Onsager relation, the imaginary 
antisymmetric part of the tensor E,, should be odd in B (Ref. 
12). This property, however, holds only for a medium in 
thermodynamic equilibrium. The tensor E,, has terms which 
are both odd and even with respect to B because of the devi- 
ation of the system from equilibrium. Furthermore, a mag- 
netic field lifts the restrictions on the symmetry properties of 
the system with respect to interchange of the surfaces. The 
resultant additional gyration vector gg has for an inter- 
change of the surfaces symmetry properties which differ 
from those ofg, and g;. Like g; it has two components in the 
plane perpendicular to the vector B. Like g;, the component 
of the vector g i  which is even in the field lies in the plane of 
g, and B, while the odd component is perpendicular to this 
plane. In contrast with g, however, both components of gg  
are odd along z(Z- ) . It should be kept in mind here that as 
light propagates along thez axis the contribution of the com- 
ponents of the gyration vector g which are odd in z, and also 
the polarization-plane rotation, turn out to be zero because 
of the integration over z in (4) .  If, on the other hand, the 
beam is directed along the gap (perpendicular to e, ), then 

TABLE IV. ATe, 

the contribution of g i  to the effect may also vanish, because 
of the finite thickness of the beam and the ensuing need for 
averaging over z in this case. Generally speaking, a spatial 
inhomogeneity of the polarization-plane rotation in a beam 
of finite thickness results in a depolarization of the light. 

4. POLARIZATION-PLANE ROTATION FOR THE CASE OF 
SURFACES AT DIFFERENT TEMPERATURES 

The problem of determining nonequilibrium function f 
for the case in which the surfaces have different tempera- 
tures ( T  and T + AT) was solved in Ref. 10. The depend- 
ence off on M arises in this case even in the first approxima- 
tion in the parameter ,u (a  measure of the deviation from a 
spherical shape). Also restricting the present discussion to 
the linear approximation in AT/T, we write an expression 
for P, ,, : 

Here DA - ,, are the Wigner rotation functions," a,  are the 
Euler angles which specify the orientation of the coordinate 
system (x1,y',z') associated with the field B (z' 11  B ) ,  f, ( E )  
is a Maxwellian distribution, E is the energy of the molecule, 
r = (v,M), r, = (v,M), v, = v - 2n(vn), dI '= dvMdM, 
y is the gyromagnetic ratio ofthe molecule, and W + and W - 
refer to scattering by the lower and upper surfaces, respec- 
tively. 

As in Ref. 10, we will be using the following expansion 
for W,, ,, : 

wheres = (L,,1,,1,',1, ), (M ) is theaverage value of the rota- 
tional moment, (:::) are the Wigner 3j symbols, and we are 
assuming that the coefficients A ,  are constants. 

We break Wl0,,, up into two parts: C,,, and H ,,,. The first 
is invariant under spatial inversion, while the second 
changes sign: 

Using expansion (10) and the symmetry properties of the 
spherical harmonics, we see that the indices I,' + I, + 1, and 
m ,' + m , for C,,, are even, while those for HI,, are respective- 
ly odd and even. It is not difficult to verify that the terms C,,, 
do not contribute to expression (9) ,  by virtue of the integra- 
tion over the angles specifying the orientations of the vectors 
v and v' in the xy plane and the symmetry properties of the 3j 
symbols. A polarization-plane rotation is therefore possible 
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in the case of different surface temperatures only if the prob- 
ability for the scattering of the molecules is not invariant 
under spatial inversion. 

In the absence of a field ( B  = 0 )  the tensor p,,, is not 
zero if the surfaces are identical (in the sense 
HI,,+ =HI , , - ) ;  on the contrary, we have p,,, = 0  if 
H,,,+ = - HI,,-, i.e., if the surfaces are different. Further- 
more, in the absence of a field the tensor p,,,, degenerates to 
p,,,, so the direction of the gyration vector go is the z  axis. 
When a field is applied, the tensor p,,, is nonzero not only in 
the case HI,,+ = H I ( ) -  but also in the case HI,,+ = - H I , , - .  
In the former case p,,,, and thus the gyration vector g are 
even functions of the coordinate z, while in the latter case 
they are odd. 

In the case of identical surfaces the gyration vector can 
be written as follows according to ( 3 )  and (9 ) :  

1 Qt Qt 
I ,  = - J PI, (x) exp (-x2) sin - can - dx, 

1 0  0 22 2x (12)  

where b = B/B, x  = v, (m /2k ,  T )  '", R  = yB, 
r  = ~ ( m / 2 k ,  T )  ' I 2 ,  t = z (m /2kB  T )  "' and P,, ( x )  is a poly- 
nomial of degree 1,. For the very simple model W  ,,,,,,,, for 
which only the terms with 1, = 0  are nonzero in expansion 
( l o ) ,  the polynomial P,,(x) is unity. 

I t  follows from ( 12) that the gyration vector g has three 
components, one of which (g , , )  does not depend on the field 
and is directed along the z  axis, while the two others do de- 
pend on the field. One of the latter two ( g -  ) is perpendicular 
to the plane formed by the vectors e, and b and is odd in the 
field; the other ( g +  ), which lies in the plane of e, and b and is 
perpendicular to b, is even in the field. The results of the 
kinetic theory thus agree completely with conclusions which 
follow from asymmetry analysis of the system. 

The dependence of the vectors g+ and g- on the abso- 
lute value B  of the field, for a given orientation of the field, is 
a damped oscillation with a characteristic period R r z  1 ,  
where R  is the precession frequency of the rotational mo- 
ment of the molecule in the field, and r  is the average time 
taken by a molecule to pass from one surface to the other. A 
value R r z  1 corresponds to a single precession of M around 
the direction of B  as the molecule moves from one surface to 
the other; RT-2 corresponds to a twofold precession, etc. 
The damping of the oscillations is a consequence of the ve- 
locity distribution of the molecules. A similar behavior as a 
function of the absolute value of the field, B, is found in the 
thermomagnetic effect. lo 

The absolute value of the gyration vector satisfies the 
proportionality g,,. - p ( A T / T ) a , N ,  and for A T / T z O .  1 
and N = 10" m-3 it is 10-"in order of magnitude. Conse- 
quently, the angle through which the polarization plane of 
visible light would rotate over a one-meter path length under 
these conditions would be= l o p y  rad. Since the polariza- 
tion-plane rotation is odd in the macroscopic-inhomogene- 

ity vector of the gas, it can be multiplied by forcing the beam 
to traverse the same path repeatedly by means of reflections. 
The polarization-plane rotation would thus be amenable to 
experimental study by advanced methods, which are capable 
of measuring polarization-plane rotations within an error of 
l o p 9  rad (Ref. 1 5 ) .  

5. POLARIZATION-PLANE ROTATION IN THE PRESENCE OF 
A DENSITY GRADIENT 

Using the expression derived in Ref. 16 for the distribu- 
tion function f of a gas in the case in which a deviation from 
equilibrium is caused by a density gradient along the gap 
(VN 1 1  e,),  we can calculate the tensor p,,, which deter- 
mines the gyration vector g according to ( 3 ) :  

The index k over which the summation is carried out in ( 13) 
takes on only the values 1 [as can be verified by integrat- 
ing ( 1 3 ) over v' and using expression ( 10) for W ,  , ,,, ] . 

I t  can be seen from ( 1 3 )  that the polarization-plane 
rotation is caused by a mechanism for the scattering of mole- 
cules by the surface ( W,,,,, # O )  which differs from that in 
the case of a thermal deviation from equilibrium. The quan- 
tities W,, ,  can be broken up into two parts, K,, and Dl,, 
the first invariant under inversion, while the second changes 
sign: 

lL'lT ( -1 ' .  - I 7 ? ' .  n )  ( I T 3 .  I". 11) -Ii,t.7 ( I Y 3 .  r', n ) ,  
(14)  

ll.,,- (-  , 1.' .  - ~ l ) = - l ) , , - ( I ' ~ .  I " .n ) - t I< l , - ( rq .  r ' , n ) .  

I t  is not difficult to see that the indices 1,' + 1, + 1, and 
m ,' + m ,  in expansion ( 10) are respectively odd and even 
for k , ,  , while for Dl ,  for both are odd. 

In the case B  = 0  and with identical surfaces 
( D l ,  + = DIk  -, K , ,  + = K,,  -) ,  a rotation of the polariza- 
tion plane is possible only with a part Dl ,  of the scattering 
probability which is invariant under inversion. I t  can be veri- 
fied that the gyration vector g is parallel to e, in this case. If, 
on the other hand, the surfaces are different, the part K,,  of 
the scattering probability which is invariant under inversion 
will contribute to the polarization-plane rotation. The com- 
ponent of g which arises in this case is directed along the x  
axis. Setting m  = 0  in ( 13), and making use of the unitarity 
of the Wigner functions, we can verify that we have p,,, = 0, 
i.e., that g is perpendicular to e,. 

We now consider the case B#O. It follows from ( 1 3 )  
that when a field is applied the polarization-plane rotation 
becomes spatially nonuniform along z; i.e., the vector polar- 
ization of the gas along M depends on the coordinate z  of the 
point at which the polarization is considered, so the polar- 
ization-plane rotation depends on the coordinate z  of the 
beam in the gap. For the case of identical surfaces, the part of 
the scattering probability which is invariant under inversion 
leads to an odd dependence of p,,, and thus of g on z, while 
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the noninvariant part leads to an even dependence. If, on the 
other hand, the surfaces are different, then the difference 
K , ,  + - K , ,  -, which makes a contribution to p , ,  which is 
even in z, and the difference D l ,  + - D l ,  -, which makes an 
odd contribution, will figure in ( 13). Comparing these re- 
sults with the results of the symmetry analysis of the polar- 
ization-plane rotation, we find total agreement. 

In analyzing the dependence of the polarization-plane 
rotation on the absolute value and orientation of the field B 
we assume that the surfaces are identical and that the scat- 
tering probability is invariant under inversion 
( W,,, = K, ,  ). The expression for the gyration vector in 
this case is 

1 bit Ri I .=-j (x) exp ( - d 2 )  sill - sill -- (1.1, 
1 0  d 

2~ L 

I ,  = J zP,,  ( .r)  c s p  (-2)  d r .  
0 

It follows from (15) that we have g'l g-, g + l  B, g-1 
B, and g-1 ex.  Both gi and g are odd with respect to z, 
while g t  is even and g odd with respect to B. With B = 0 
or B I(e,, we have g = 0. These results agree with results 
which are shown in Table 111 and which correspond to the 
condition W+S+. The dependence of g on the absolute value 
of the field consists of damped oscillations which correspond 
to single, twofold, etc., precessions of the rotational moment 
of the molecules around the field direction over the time 
taken by the molecules to move between the surfaces. The 
absolute value of the gyration vector satisfies the proportion- 
ality g,, -,uLVNu, ; with N = 10" m-%nd LVN = 0. IN, 
it is lo-'' in order of magnitude. This result leads to the 
same estimate of the rotation of the polarization plane as in 
the case of the thermal deviation from equilibrium. 

6. ROTATION OFTHE POLARIZATION PLANE IN THE CASE 
OF A DEVIATION FROM EQUILIBRIUM CAUSED BY A 
MOTION OF THE SURFACES 

In accordance with the procedure of Ref. 4, we deter- 
mine the distribution function f and, in accordance with (3 ) ,  
the tensor p , ,  , which is given in the first approximation in 
the parameter u/V, (the measure of the deviation from 
equilibrium) and in the small parameter ,u(the measure of 
the deviation from a spherical shape) by 

Here we have k = + 1, as in ( 13). The same parts of the 
scattering probability thus make a nonzero contribution to 

the effect as in the problem involving a density gradient. 
Note, however, that the symmetry properties of the expres- 
sion found for the tensor p ,  ,, here differ from those of p ,  ,, of 
the preceding section of the paper because the vector repre- 
senting the deviation from equilibrium is a pseudovector 
when the surfaces are in relative motion. For example, when 
the vector representing the deviation from equilibrium is re- 
placed by a pseudovector there is a change in the parity of the 
tensor p,,, with respect to the coordinate z. Because of this 
point, we will not present the results of the kinetic calcula- 
tion in the same degree of detail as we did in Sec. 5. We 
simply note that the results agree completely with the results 
found from the symmetry analysis. For example, in the case 
of identical surfaces, with a scattering probability invariant 
under inversion, the gyration vector is nonzero even with 
B = 0. When a field is imposed, we again find the compo- 
nents gi and g- which supplement g,,. The first is even in the 
field, and the second odd: 

g=gui-g -+g+=g, (ex+ [be,] I ,+[b[be,]  11,). 

1 6 2 r  S2t 
Ij = - 1 zP,, (x) e i p  (-r') sin - cos - d r ,  

1" 2s x 

1 !2t !It 
1, = -- S X P , ,  ( x )  c.ip (-r ')  ( I - eos - cos - 

10 I, 26 2 2  

Here we have gi 1 g-, g+ 1 B, g 1 B, and g 1 ex .  Both g+ 
and g- are even in z. With B = 0 or B 11  ex, the components 
gi and g- are zero. These results correspond to those shown 
in Table I1 for the condition W+S+. The dependence of g+ 
and g- on the absolute value of the field consists of damped 
oscillations with increasing B. The absolute value of the 
gyration vector satisfies the proportionality 
g ,  -p(u/u , )a ,N.  With u/u, = 0.1 and N = 10" rnp3 we 
find the same magnitude for the rotation of the polarization 
plane of the light as in the preceding cases. 

We wish to thank V. D. Borrnan for interest in this 
study and for a discussion of the results. 
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