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The Stark shifts and the widths of highly excited states are calculated in a strong electric field 
(n4P-  1, n ) 1 ) for an arbitrary atom (the difference between the atomic field and the Coulomb 
field is taken into account by introducing quantum defects in a parabolic basis). A correction to 
the Bohr-Sommerfeld quantization rule, necessitated by the finite barrier penetration factor, is 
introduced. The possibility of analytic continuation into the above-barrier region is discussed. 
Scaling relations are obtained via a l/n-expansion for the near-threshold Stark resonances with 
quantum numbers n, ,I, n,, and m - 1. The theoretical results are compared with the 
experimental data on the photoionization of atoms in the presence of a constant electric field P. 

1. There are at present numerous experimental results 
on the near-threshold resonances in the photoionization 
cross sections of atoms in the presence of a constant electric 
field g (see Refs. 1-7 and the citations therein). In Refs. 8 
and 9 it was shown that the positions and widths of these 
resonances coincide with the complex energies 
E ( n l n z m )  - - E, - ir/2 of the Stark quasistationary states. 
Various methods have been used to calculate the positions 
E , ( ~ ' ~ ~ ~ )  and widths I'(n'n2m' of the resonances: summa- 
t i ~ n ' ~ - "  of the divergent perturbation-theory (PT) series 
and the l / n - e~~ans ion , ' ~ . ' ~  and also numerical solution of 
the Schrodinger equation with the radiation conditions314 
(divergent wave at infinity). 

Of greatest interest, from the point of view of experi- 
ment, are the states with n, -n $ 1, n, and m - 1, which have 
the lowest probability of decay in the field i9 (among all the 
n (n + 1 )/2 Stark sublevels with given n) . In this case the 1/ 
n-expansion is the most adequate method of calculation. 
However, its use to calculate the widths of the levels raises a 
peculiar difficulty: within the framework of the l/n-expan- 
sion the width I'( g ) is manifested only in sufficiently strong 
fields (specifically, after the classical solutions are joined 
and go off into the complex plane). This difficulty arises not 
only in problems involving the Stark effect,I3 but also in oth- 
er problems of quantum mechanics-for example, in prob- 
lems involving Yukawa and Hulthtn potentials.'5 There is 
always some region near the threshold in which the l/n- 
expansion does not determine the width of the levels." In the 
case of the Stark effect this prevents us from joining together 
the results of the l/n-expansion with the well-known (see 
Refs. 16 and 17, and also the reviews in Refs. 18 and 19) 
threshold behavior of I? ( %' ) in a weak field. In the present 
article we show that this difficulty is eliminated if one intro- 
duces into the quasiclassical quantization rules a correction 
for the finite barrier penetration factor. 

We briefly describe the contents of this article. Section 2 
presents the equations for the energies of the Stark reson- 
ances in an arbitrary atom for n $1, m (accurate to terms - l/n2 inclusive). Here the deviation of the atomic field 
from a Coulomb field (for all atoms excluding hydrogen) is 
taken into account by introducing quantum defects 
S(n, n,m) in a parabolic basis. Modification of the quasi- 
classical quantization rules, taking into account the finite 
barrier penetration factor is considered in Sec. 3, and the 

region below the classical ionization threshold in Sec. 4. In 
Sec. 5, scaling relations for the near-threshold resonances 
and their consequences are discussed. Finally, in Sections 6 
and 7 the results of numerical calculations are discussed and 
a comparison is made of theory and experiment. The Appen- 
dix covers some details of the calculations. 

In what follows, unless otherwise specified, we use 
atomic units and the reduced energy E and the reduced field 
I? 

n,, n,, and m are the parabolic quantum numbers (m>O), 
and n = n, + n, + m + 1 is the principal quantum number 
of the level. 

2. The fundamental equations. In the calculation of the 
energy of Rydberg states In,n,m) with n) 1, m we use the 
quasiclassical quantization conditions taking into account 
corrections of order fiZ (Ref. 20), the approximate separa- 
tion of the variables in the parabolic coordinates < = r + z 
and 77 = r - z in the region r >  ra (r, is the radius of the 
atomic shell), and the "hidden" symmetry of the Coulomb 
field,21922 which makes it possible to transform from the 
spherical basis Inlm) to the parabolic In ,n,m) . To deter- 
mine E and the separation constants Pi (0, + P, = 1 ) we de- 
rive the equations 

where 

i = 1 or 2, the parameter S = S(n ,n,m) is expressed in terms 
of the quantum defects pi for a free ( Z? = 0)  atom: 

*-I 

J==(n-1) 12, M= (n , - r~ ,+rn) /2=J-n~ ,  

and f(z), g (z ) ,  and h ( z )  are expressed in terms of the hyper- 
geometric function F(z) = ,F, (a,P;y;z) : 

f ( z )  = F ( ' / l ,  "4; 2 ;  z ) ,  

g(z) 5 / & ;  2 ;  Z )  + 2 / 3 F ( 3 / ~ ,  5/1; 1 ;  z ) ,  (5) 
I Z ( Z ) = F (  a .  2 ;  2 )  
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[in the derivation of formulas (5)  we have used Kummer's 
quadratic t ransf~rmation,~~ which greatly simplifies the an- 
swer]. These equations (for m = 0) have already been used 
before9; their derivation is given in Ref. 24. We note that the 
corrections not taken into account in Eqs. (2) are of order 
not greater than nP4, so that the accuracy of system (2) in 
the case of Rydberg states is quite high. 

In the weak (10-0) field region, using the expansion of 
the functionsf(z), g(z), and h (z) for small z, we obtain from 
Eqs. (2)  the expansions 

which for 6 = 0 coincide with the ~ e l l - k n o w n ' ~ . ' ~  perturba- 
tion-theory expansions (here m = 0, x = (n, - n2)/n, and 
p, is obtained by making the substitution 
x -+ - x ,  F- - F) .  For arbitrary F Eqs. (2) were solved 
numerically. 

Before considering the results of the numerical calcula- 
tions, we will investigate system (2)  qualitatively. Here we 
omit terms of order l/n2, as a result of which only the func- 
tion f(z) remains in Eqs. (2).  We will call such an approxi- 
mation a l/n-approximation, and the solution of the com- 
plete system - a l/n2-approximation. The variable z, 
decreases with growth of F, remaining negative all the time, 
while z, grows; as long as z, < 1 the solution (i.e., E,  P,, and 
&) remains real. At z2 = 1 a singularity of the function f(z) 
is reached, after which the solution departs to the complex 
plane. The value F = F, , at which z2 = 1, we shall call the 
classical ionization threshold [in the limit n + m it corre- 
sponds to the vanishing of the barrier in the effective poten- 
tialI6 U2(77) 1. 

Setting z, = 1 in system (2) taken in the l/n-approxi- 
mation, we arrive at the equation 

which does not depend on the quantum defect 6. Here 

Numerical solution of this equation gives the curvep = 0 in 
Fig. 1. 

We calculated F, for all the states in which one of the 
numbers x,, x2, or ,u vanishes in the limit n+  co 
(xi  = (n, + 1/2)/n, ,u = m/n). The results are presented 
in Fig. 1. The values of F, for an arbitrary state In ,n2m) lie 
inside the curvilinear triangle in Fig. 1 (see also Ref. 25). 

FIG. 1 .  Classical ionization threshold F, for three series of states; x 
= x I  - x2 = (n, - n,)/n. 

Figure 2 shows values of F, for a few series of states which 
are of experimental interest ( n  , % n2 and m, p = 1-5 ) . With 
growth of p the value of F, markedly decreases, which is 
reflected in the width of the atomic levels-see Table I1 be- 
low. 

As long as F<F,  the solution of system (2) remains 
real and does not describe the width of the atomic levels in 
that region where ionization has a tunneling character 
(here, however, the position of the levels is calculated with 
high accuracy-see Sec. 5 below). To overcome this diffi- 
culty we consider quantkation conditions which take ac- 
count of the finite-barrier-penetration factor. 

3. As is well known,I6 for the potential 
V(r) = - r- ' - g z  the variables in the Schrodinger equa- 
tion separate in the parabolic coordinates l, 77, p: 

After transforming to the reduced variables E, F, and 
y = n - 2 ~ ,  the equation for X, takes the form 

In the classically allowed region 

FIG. 2. The dependence of F, on n (the parabolic quantum numbers are 
shown for each curve). 
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x Z - [ p ( y )  I-'" sin [B(  y)+n/41, yo<Y<lll, ( 10) 

and according to Langer's method, with allowance for the 
correction of order fi2 to the quasiclassical appro~imation,'~ 
the phase B(y) is equal to 

Returning to the variable y, we have accurate to terms of 
order l/n2 

where the prime denotes the derivative with respect toy. The 
quasiclassical solution ( 10) is inapplicable when the turning 
points y,,, are close to the top of the potential barrier 

For m=O, setting y=y, , , ( l+ap)  and a = ( F /  
64n4A3) '/', we reduce Eq. (9) in the region Jpl& (PZ3/F) 'I8 

to standard formz3: 

(1 1) 
In the general case, when the energy E is not necessarily 

close to the top of the barrier in U,(v), 

(121 
(7,1~,~ are the turning points, 77, < 77 < 77, is the below-barrier 
region). For the states with m = 0 this integral can be calcu- 
lated analytically: 

wherez, = 16&P/~', and f(z) is given by Eq. (5). The bar- 
rier vanishes when E = - 4(P2F) "' and 2, = 1 (a = 0). It 
is not difficult to see that ( 13) goes over to ( 1 1 ) as z2 -. 1. 

To the left of the barrier the solution of Eq. ( 1 1 ), corre- 
sponding to the quasistationary state (divergent wave as 
p -, a, ), takes the form3' 

x,- [ z  (1-Za/z2) sin [ O  ( z )  +n/4], (14) 

where 

The quantization condition arises from the requirement of 
coincidence of functions ( 10) and ( 14) in the overlap region 
/a1 < r ( n " ' ( ~ ~ ~ / ~ ) ~ ' ~ ,  which always exists for large n. In 
this case we make the substitution p = (?/4 - a) ' / '  (the 
parabolic approximation, yzy,,, ) and go over in the com- 
plex y plane to a contour integral which includes the points 
y =yo and y = y1(7 = 2a1"). We finally come to system 

(2),  in which it is necessary to make in the second equation 
the substitution: 

n2+nz-v(a) 1237 (15)- 

[for n, such a substitution is not necessary since the poten- 
tial U, (6) is a barrier potential for all F >  01. Here in the 1/ 
n-approximation 

and in the l/n2-approximation, i.e., taking into account in 
system (2)  terms which are proportional to F/8n2, 

(the properties of these functions are considered in Appen- 
dix A).  Let us now discuss these formulas. 

a )  For F<F, Eqs. (2)  with allowance for substitution 
( 15) give the correct threshold behavior of the widths of the 
atomic levels in a weak field (see the next Section). 

b) For F<F, the solution of system (2)  becomes com- 
plex. The singularity at F, = F, can be avoided by choosing 
the correct sign Im E = - r / 2  < 0: 

On the other hand, taking into account the asymptotic limit 
(A2) (see Appendix A), substitution ( 15) takes the form 

vJ-+v2+iu/r~,  (18) 

which is consistent with substitution ( 17) for I 1 - z, / 4 1. 
Hence it follows that analytic continuation of the Bohr- 
Sommerfeld quantization rules from the region of the quasi- 
discrete spectrum to the above-barrier region determines 
both the position and the width of the levels (far from the 
complex turning points). This explains a fact which was pre- 
viously established empiri~ally, '~. '~ namely that the l/n-ex- 
pansion, even without account of the penetrability of the 
barrier, allows one to calculate the width of the quasistation- 
ary states in a strong field (after the joining of the two classi- 
cal solutions). 

C )  The function ( 16) has singularities at the points 

a=o,,=(nfl/ ,)z,  n=-0, 1. 2 ,  . . . , (19) 

which correspond to the poles of the amplitude of scattering 
by the parabolic barrier V(x) = - 02x2/2. In this case 

$ = const D-,,-% (2"2e-'x'4k) 

where 

x = ( f r / r n o )  112 E, a=-K/o,  li=m=l. 

The amplitudes of the reflected ( A )  and transmitted ( B )  
waves 

have poles at a = a,, where E = En = - i(n + 1/2)w, and 
the wave functions are given by 
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(We note that the substitution w -+ iw transforms the para- 
bolic barrier into a harmonic-oscillator potential, and the 
energy values E = En correspond to oscillator's energy 
spectrum.) On the other hand, the existence of the poles A 
and B at the mirror points a = a: = - (n + 1/2)i would 
contradict the Hermitian character of the Hamiltonian: then 
there would exist square-integrable (n>O) wave functions 

corresponding to complex energy eigenvalues E = E :. 
d )  The effect of the penetrability of the barrier on the 

quasiclassical quantization rules were considered by Rice 
and Good,26 Drukarev," and Kondratovich and Os- 
t rov~ki ' i .~~  The expressions in Refs. 26 and 27 for the correc- 
tion to the quantization rules correspond to 

rp (a) =arg r(lls+in) +a(l-In a) ,  

which is practically identical to Eq. ( 16) for real a )  1. How- 
ever, as the level approaches the apex of the barrier this 
expression becomes inaccurate. In particular, the function 
p ( a )  would in this case have singularities not only at a = a,, 
but also the points a = a:, which do not correspond to poles 
of the scattering amplitude. 

4. The weak field region. Using the perturbation-theory 
expansion (6),  we find from Eq. (12) 

where 

(here 0 < R - <A + < 1 and the terms which vanish as F-+ 0 
have been omitted. Taking Eq. (A4) into account, we see 
that Eqs. (2)  go over into the usual quantization rules accu- 
rate to terms of order l/n2 if we work in the l/n-approxima- 
tion, and to terms of order l/n4 in the l/n2-approximation 
(see also item 4) of Appendix A).  A new feature is the ap- 
pearance of an imaginary part, albeit exponentially small, in 
n,: Im n2 = - (477) exp( - 2n-a). Setting E = E, - i r /  
2, we arrive from the condition 

1 2  

J p dp= (n+l/ , )  n 
4, 

at the Gamow formula for the level width: 
P2 

r=T- l e -2na  , ~ = 2 j  p-' dq, 

9, 

where Tis the period of the oscillations of the classical parti- 
cle. 

The problem of the Stark effect in the hydrogen atom 
does not reduce to a one-dimensional problem. In this case 
the quasiclassical formula is 

where 

(see Appendix B). Here we assume that n > 1 and we make 
the scaling transformation 

so that 

As F-0 formula (23) takes the form 

[see Eqs. (2 1 ) and (B4) I ,  which functionally coincides with 
the exact asymptotic of the width I"n'n2m'(g) as 
Z? -0, differing only by a numerical factor in the pre-expo- 
nential factor. We note that approximation (26) possesses 
good accuracy even for not large quantum numbers. Thus, 
Rnln*m ,~("l"'m)/rcnln,m) - - 0.865, 0.905, and 0.947, re- 
spectively, for the ground state 10,0,0) and the states 10,0,1) 
and 10,1,0), and for n2) 1 

Thus, taking account of the penetrability of the barrier 
in the quasiclassical quantization rules gives the correct be- 
havior of the widths of the atomic levels in a weak field. 

5. Numerical solution of system (2)  with account of the 
substitution ( 15) gives a reasonable interpolation between 
the weak field region and the "scaling" region F >  F, . Typi- 
cal results, in the instance of the state 119,0,0) in the hydro- 
gen atom, are presented in Fig. 3 of Ref. 30. Correction ( 15) 
is very important for FS F, , but with further growth of the 
field its role decreases (as can be seen from Fig. 3, for 
F >  1.25F,, even without taking the penetrability of the bar- 
rier into account, the l/n-approximation determines the 
width of the level with sufficient accuracy). 

As to the effect of the penetrability of the barrier on the 
position E , ' " ' " ~ ~ ~  of the quasistationary level, it is not large. 
For example, t; = 2n2E,(" - - - - 0.1508 and 
- 0.1574 without taking account of the penetrability of the 

barrier, while &I, = - 0.1490 and - 0.1488 with this ac- 
count (for n = 20 and F = 0.35; here the first number corre- 
sponds to the l/n-approximation, the second to the l/n2- 
approximation). It can be seen that introducing correction 
( 15) stabilizes the calculated values of E L ,  and determines 
the energy with accuracy of the order of lop4. This allows us 
to limit ourselves in the majority of cases to the solution of 
Eqs. (2)  and ( 15) in the l/n-approximation. 

Numerical calculations of the energy levels and widths 
were carried out for the hydrogen atom by Damburg and 
K o l o ~ o v . ~ ~  We have calculated the values of 
Y = ( - 2E, ) and r by two independent methods: 1 ) 
summation of the perturbation-theory series with the help of 
PadC-Hermite approximants, and 2)  solution of Eqs. (2)  in 
the l/n- and l/n2-approximations. The results for the states 
with n, = n2 = (n - 1)/2 and m = 0 along with the corre- 
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TABLE I. 

sponding values from Ref. 29 are listed in Table I. The agree- 
ment of all the calculations is quite good, which confirms the 
method of summation of divergent PT series (for the Stark 
effect) which we have chosen and permits one to use the 
PadkHermite approximants and Eqs. (2) for still stronger 
fields. 

6. Scaling for near-threshold  resonance^.^) Let n - co 
and n,/n, m/n -0. In this limit the system (2)  reduces to 
one equation: 

whose solution we denote by E,, (F) .  Using the l/n-expan- 
sion, l3  it is possible to show that for the states with nl  - n % 1, 
n, and m - 1 the following relations are satisfied: for E > 0 

(n,, 2 m) 

F 

Method of 
calculation 

PHA 1121 
l l n  
llnz 
1291 

and in the below-threshold energy region E < 0 

- (1/2RZ) [E,, (6 '8)  +q ( (fin.) '8) - (filn.) ' q  (n.'g) 1. E , ( ~ ' ' " ~ )  - 
(29) 

Here f i  = n, + (m + 1)/2 - 6, n, = n - S (the analog of 
the effective principal quantum number n - p, , which is in- 
troduced16 for Rydberg states in the spherical basis (nlm) ), 
S = S(nln2m), p = 2n, + m + 1, and the functions y,, (F) 
and q (F) are expressed in terms of E,, (F)-see Ref. 30 and 
Appendix C.  These equations give definite scaling laws for 
the Stark resonances and are accurate to order l/n2 (see 
Appendix C )  . 

We point out a number of consequences of these scaling 
relations. 

a) As a rule, in an experiment the field 29 is fixed and a 
set of resonances with given n, and m is observed. In this case 
the principal quantum number n corresponding to the inter- 
section of the Stark level with the boundary of the ionization 
limit E = 0 is equal to 

(2,2,0), n=5 
1.8 (-4) 
0.1125 

I 
(5,5,0), n=li 

1.0 (-5) 
0.1464 

v I 

and the slope of the level at the point of intersection is equal 
to 

(7.7.0). n=15 
3.0 (-6) 
0,1519 

v I 
4,92402 
4.92385 
4.92406 
4.9240 

10.713 
10.7128 
10.7127 
10.688 

(30) 
With growth ofp the slope decreases, in agreement with nu- 
merical calculations. l2  

b)  In the hydrogen atom the reduced energies E ; , , , ~  of 
the states In - 2,1,0) and In - 3,0,2) are extraordinarily 

14577 
14.5767 
14.5766 
14.5771 

2 .283(-6)  
2.22 (-6) 
2,19(-6)  
2,282 ( - 6 )  

2 ,83(-6)  
2,82 ( - 6 )  
2.80(-6) 
2,815 ( - 6 )  

close to each other (see Fig. 1 in Ref. 9 for n = 25); the same 
holds, although with less accuracy, for E: , ,~~ = n2r(n'"2m) . 
The explanation of this result follows from Eqs. (28): the 
states under discussion have the same values of p and 
f i  = n - p/2 (n, = n for hydrogen), wherefore the posi- 
tions and the widths of the resonances differ (for given 8 ) 
only in terms of order l/n2. The same is true for the states 
(n - 3,1,1) and (n - 4,0,3); In - 3,2,0), In - 4,1,2), and 
In - 5,0,4); etc. (as long a s p 4 n ) .  

On the other hand, for the states In - m - 1,0,m) we 
have f i  = n - (m + 1)/2, wherefore E' and E" differ already 
in terms of order l/n. 

C )  For the hydrogen atom all S=O, and f i  does not de- 
pend on n,. Therefore the positions of the above-threshold 
resonances with fixed n, and m but different n, should be 
close to each other, with their widths proportional top (see 
also Ref. 28). For example, 

1,35 ( -6 )  
1.347 ( - 6 )  
1.338(-6) 
1.338(-6) 

d)  The width of the peaks in the region E > 0 increase 
rapidly with the energy of the resonance. The condition 
T -- AE allows one to estimate the value n = n, at which 
neighboring resonances overlap and the structure in the pho- 
toionization cross sections vanishes. Using Eqs. (28) and 
the linear approximation for E,, (F) ,  we find 

n,=lc,b-"'f nZ+(m+l ) /2+6 ,  (32) 

where kc = 0.787( 1 + xo) 'I4, andx, is a root of the equation 

For the numer of peaks which can be observed in the above- 
threshold region, we obtain the estimate 
An = n, - n(O1%'k, %'-1'4, kl  = 0.332, 0.095, and 0.043 for 
p = 1,2, and 3. The structure in the photoionization cross 
sections is most noticeable for the states In,,O,O), and with 
growth of p the number of peaks An falls off rapidly. For 
example, for a hydrogen atom in a field 8 = 8.0 kV/cm we 

- - 

have An - 9 for the series In ,,O,O) and An =: 1 for Inl, 1,O). 
7. Comparison with experiment. Reference 6 gives the 

positions and widths of the below-threshold ( E  <O) Stark 
resonances with m = 0 in the hydrogen atom. These 
numbers are in good agreement both with calculations based 
on Eq. (2)  in the l/n-approximation (taking into account 
the penetrability of the barrier) and with the results of the 
summation of the perturbation-theory series (see Table 11, 
which gives the values of E,'"'"'"' taken with the opposite 
sign, and T/2). Here the error in the experimental energies 
E, can reach 2 cm- ' (see Ref. 6) .  

As can be seen from Table 11, the widths T'"'"'"' at first 
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TABLE I1 

glance vary irregularly, although the resonances are ar- 
ranged in order of decreasing E, . This apparent irregularity 
is explained if we compare F = n4 with the classical ioniza- 
tion threshold F, (n,n,m); there is a distinct correlation 
between the quantities r / 2  and f = (F - F, )/F, (the lat- 
ter characterizes the closeness of the resonance energy to the 
top of the potential barrier). 

Table I1 also gives the values of - E, for rubidium and 
sodium. The experimental data were taken from the graphs 
in Refs. 1 and 3 and have an accuracy of - 1 cm-' (as the 
resonances begin to overlap, the accuracy decreases), within 
the limits of which the theory agrees with experiment. Here 
it is important to take into account the quantum defect S in 
Eqs. 2, particularly in the case of r~bid ium.~ '  Similar results 
were also obtained for other states. More detailed tables giv- 
en in Ref. 31 include around 50 states In,n,m) with m = 0 
and 1. In all cases the positions of the resonances agree to 
within several percent; for l?'"'"'"' the agreement between 
theory and experiment is somewhat poorer, but at the pres- 
ent time even the widths have not been determined experi- 
mentally at so high an accuracy. 

In Ref. 30 it has been shown that scaling relation (28) is 
satisfied for E > 0. Let us turn now to the below threshold 
resonances. The experimental values of the energy E,'"'"'"' 

taken from Refs. 1, 3, 5, and 6 were scaled and shifted in the 
following way: 

~ , , , , , ~ ~ = 2 f i ' ~ , ( ~ ' ~ ' ~ )  -s ( (Rn.)'8) + (R ln . )  'q ( n . ' 8 ) .  (33) 
If Eq. (29) is satisfied, the values ;,nl,m, -plotted versus 
I; = i i4% should lie on a universal curve E,, ( F )  regardless of 

- E,, cm-' 

theory lexpt.l(~ef. 6 )  

the atom under consideration. As can be seen from Fig. 3, 
this is indeed the case. We note that the points corresponding 
to fixed n and n, = 0,1, ..., 4 agree within the limits of accura- 
cy of the figure, which is in accord with statement c )  in Sec. 
6. 

As to the widths of the resonances, for F 2  0.5 the ex- 
perimental points lie on a universal curve based on Eq. (28) 

16,1,0 
16,0,0 
15,1,0 
15,0,0 
14,2,0 
13,2,0 
12,3,0 
11,4,0 
11,3,0 
10,4,0 

r/2, cm- 

theory lexpt . (~ef .  6 )  

FIG. 3. Verification of scaling relation ( 2 9 )  for the below-threshold Stark 
resonances. For each experimental point its quantum n_umbers ( n ,  and 
n,) are indicated; for all states m = 0. The solid curve is E,, ( F ) .  Symbols: 
0-the states In,,n2,m) in the hydrogenatom (Ref. 6 )  for P = 16.8 kV/ 
cm (10<n,<17, O<n2<4); C t h e  states In,,n2,m) in hydrogen (Refs. 4 
and 5 )  for = 8.0 kV/cm ( n ,  = 15-21, n2 = 0 and 1 ) ;  A-the states 
1 n ,,0,0) in the sodium atom (Ref. 3 )  for P = 3.59 kV/cm and n ,  = 23- 
26; A-the states In,,O,O) for rubidium (Ref. 1 )  for = 2.189 kV/cm 
and n ,  = 19-24. 

8.9 
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0.2654 
0.3096 
0.2626 
0.3074 
0.2362 
0.2329 
0.2143 
0,2001 
0.2107 
0.1965 

9.0 

Rb (C = : I  189 kV/cm 

- E,, cm-' 

nln2m / 6 ( expt. 
theory [(Ref. 1 )  
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Na (6 =3,59 kV/cm 

I 
106.6 
123,3 
167.6 
196.7 
211.5 
274.2 
313.8 
352.2 
384.4 
419.1 

n,n2m 

26,0,0 
25,0,1 
25,0,0 
24,0,1 
24,1,0 
24,0,0 
23,0,1 
23,0,0 
22,0,1 
22,1,1 

133 
157*2 
160 
163 
185 
185 
217*2 
247 
284 
289 

23,0,0 
22,0,0 
21,1,0 
20,2,0 
21,0,0 
20,1,0 
20,0,0 
18,1,0 
16,2,0 
18,0,0 

0.15 
1.9 
7.0(-4) 
5.6 
0.27 
1.3 
3.3 
1.9(-3) 
2.5 ( -2)  

103,8 
126.5 
167.9 
198.5 
210.1 
275.9 
314.8 
351.4 
3€6 3 
419.2 

- Er,cm-' i theory I( Ref. 3 ) 

0.656 
0.681 
0.517 
0.400 
0.708 
0.531 
0.737 
0.561 
0.428 
0.802 

0.14 
2.1 
1.1 ( -4)  
6.6 
0.23 
1.6 
3.0 
1 3 - 3 )  
3.2 ( -2)  

0.140 
0,0073 
0.145 
0.0078 
0.130 
0.151 
0.0055 
0.157 
0.0092 
0.016 

132.8 
157.1 
159.5 
163.2 
184.2 
185.4 
214.6 
247.2 
284.0 
288.6 

0.292 
-0.119 

0.039 
-0.303 

0.155 
-0.081 
-0,001 

0.070 
-0.215 
-0.158 

15.5 
21.1 
35.5 
40.4 
50.3 
57.0 
60,7 
80.3 
83.1 
74.9 

15.5 
21.5 
35.5 
41 
50.5 
56.5 
61 
79 
84 
75 



[see Fig. 4 )  1. In this figure the field = fi4g is the abscissa, 
and the quantities 

are the ordinates. 
For F <  0.4 deviations from scaling are observed and are 

due to the finite penetrability of the barrier. The numerical 
solution of Eq. (2)  is in agreement with experiment, as can 
be seen from Table 11. Here the term with p ( a )  in ( 15) plays 
in the region F>F* a comparatively small role, in agree- 
ment with the remarks in Sec. 3. 

8. The number of experimental points in Figs. 3 and 4 
could be easily increased. The agreement is good in all of the 
cases which we have considered, and undoubtedly the ob- 
served peaks in the photoionization cross sections corre- 
spond to the Stark quasistationary states. The scaling rela- 
tions (28) and (29) can be used to describe Rydberg states 
close to E = 0 for any atom. These relations are suitable both 
as a test of numerical calculations and to identify the quan- 
tum numbers (n,n2m) of the peaks in photoionization spec- 
tra. 

The authors express their sincere appreciation to V. M. 
Vainberg, B. M. Karnakov, E. A. Solov'ev, and especially to 
L. P. Pitaevskii for a discussion of results and helpful re- 
marks: 

APPENDIX A 

We list some properties of the function p (a ) .  
1 ) The behavior at large radius: 

n [ -%cia + ~,,a-('~-') - < arg a<n, (A21 
k = l  ' 2  

FIG. 4. Scaling for the widths of the Stark resonances: 0, a, and A-the 
states (n,,O,O), (n,,0,1), and (n,,1,0) in the hydrogen atom for P = 6.5 
and 8.0 kV/cm (Ref. 5); A-thestates (n,,n,,O) with n, = 0,1,2 (corre- 
spondingly p = 1,3,5) for sodium for P = 3.59 kV/cm (Ref. 3); 
F, = 0.383-see Eq. (C9). 

where 

c , = ( - l )  k-i (1-21-2k) B2, /2k(2k- l ) ,  la ( -+w 

and B ,, are the Bernoulli numbers. These series diverge al- 
though the coefficients ck decrease initially: c, = 1/24, 
c2 = 7/2880, ... (the smallest coefficient is c, = 5.906. lop4; 
for k) 1 these coefficients grow factorially ) . 

2) On the real axis we have 

Im rp(a) ='I2 In (1+e-2na), O<a<m, (A3 

cp ( a )  =1!24a+. . . f 1 l 2 i  exp(-2na),  a++m (A41 

3 ) p (a)  has logarithmic branch points at a = 0 (where 
it remains finite) and at the points ( 19): 

cp(a)=,iln(a-a,)+O(l), a-+a,. (-45) 

At the points a = a: this function is regular since the limit 

has a finite value. For this reason the amplitudes (20) do not 
have any singularities in this case. 

The properties of the function p ( a )  are considered in 
detail in Ref. 3 1. 

4) The preceding formulas pertain to the function p ( a )  
introduced in Eq. ( 16). For the l/n2-approximation, Eq. 
( 16' should be used; in this case the first term in Eq. (A1 ) is 
canceled and the expansion begins with c,a-" Apparently 
allowance for the succeeding  correction^^^ to the quasiclas- 
sical approximation, up to f i 2K  inclusive, leads to the func- 
tion 

K- 1 

for which pK (a )  = O(a - ' 2 K -  " ) as a-  CO. As can be seen 
from Eqs. (2) ,  the formal parameter f i 2  of the quasiclassical 
expansion for the energy is equal here to l/n2. Therefore 
substitution in ( 15) of the function pK for p should ensure a 
relative accuracy of order n - 2K in the quantization rules 
(for the position of the level E, ). For K = 1 and 2 this is the 
case. 

APPENDIX B 

In the derivation of the pre-exponential factor in Eq. 
(23) we have used the quasiclassical approximation. Since 
the normalization of the wave function (8)  is carried out in 
the classically allowed region 6, < 6 < l,, vo < 7 < ll;l ,, we 
have 

where ui and ri are defined by Eqs. (23'). Recognizing that 
the barrier exists only for the variable 7, we obtain 

where the parameter a is defined by Eq. ( 12). Calculating 
the flux of the particles escaping to infinity, we arrive at Eq. 
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(23). Formulas of this type can be obtained also for other 
problems with separable variables. 

In the limit as F-0 we have 

therefore in Eq. (23) the pre-exponential factor has the form 
T - ' (0) = l/2rn3, which is in agreement with the Gamow 
formula [for bounded motion in a Coulomb field we have 
T = 2 r (  - 2E)-312 = 2rn3 according to Kepler's third 
law]. 

For the states with m = 0 the integrals in Eqs. (23) can 
be calculated analytically: 

oi=n ( -E)- '"F ( ' l a ;  3 / 4 ;  1; z i ) ,  
(B3) 

~ , = - - 2 n p ~ ( - ~ ) - " F ( ~ / , ;  ' I 4 ;  2 ;  zi) 

[the variables zi are defined in Eqs. (2) 1. Hence 

in particular, T -' = ( 1 - 6F2 + ... ) /2?in3 for the states 
ln,,0,0) with n,$ 1. 

The second case, in which the pre-exponential factor is 
easily calculated, is that of the state JO,O,m) with 
m = n - 1 $1. With the help ofthe l/n-expansion weobtain 

T-'=(I-3t)"(l+t)/2nn3(l-t), (B5) 

where13 T( 1 - 72)4 = F, with T = T(F) -0 as F-0 and for 
O<T<  1/3. 

We note, finally, that for a short-range potential 8, -0 
and, according to Eq. ( 13), 

Therefore, in this case Eq. (26) gives the correct exponen- 
tia132 in the probability of ionization of the s-level (n = 1, 
E = ~ / 2  = - x2/2). 

APPENDIX C 
Derivation of the scaling relations 

We observe that the substitutions 

F-p-IF.  E - 1 1  E ,  n - p -  ' n ,  $,-$, 

do not change the values z,,, , and the left-hand sides of Eqs. 
(2)  acquire a common factor p1I4. Choosing p = (1 - S/ 
n)4, we can eliminate 6 and transform to the "hydrogen" 
variables 2, F, and E = n, : 

~ = p  e=211.'1:', = = n 4  n=bt ' r z=r~-6 .  (C1) 

Since 

(E ,  = ni - S),  the right-hand sides of Eqs. (2)  have the 
same value as for the state In ,n2m) in the hydrogen atom 
(S = 0).  

Now let n, n2,m. The position of the Stark resonances 
in the region E >  0 is determined primarily by the first of 
Eqs. (2),  which follows from the quantization condition in 
the coordinate 6. Recognizing that Y,  = 1 -p/2n, 
p = 2n2 + m + 1, we obtain in analogy with Eqs. ( C l )  the 
result that the scaling transformation 

reduces the problem to the limiting case n -+ W .  Combining 
Eqs. ( C l )  and (C2), we find the final form of the scaling 
factor A = pp: 

where S = S(n,n2m). 
To obtain the scaling relations we use the l/n-expan- 

sion: 

where E, = E,, (F) is the solution of Eq. (27) (we have taken 
account of the fact that Eqs. (2)  contain three small param- 
eters: Y, =p/2n, l/n2, and m2/n2). Successive expansion of 
Eqs. (2) in powers of l/n demonstrates that 

where for brevity we have written E--E(,, & = d~()/dF, etc. 
The functions E,,, c,, and 7, remain real for all 

0 < F <  w , but E,  and E, each acquires an imaginary part if 
F >  F, . Indeed, using the Kummer transformation2"or the 
hypergeometric function, Eq. (27) can be rewritten in para- 
metric form ( - l<u  < 1): 

from which it is clear that the function E,, (F) is real for all 
F >  0. It follows from Eq. (C6) that the same is also true for 
{,(F). The absence of an imaginary part in g, and v2 was 
also checked by summation of the corresponding PT Series. 

For F >  F, the first term in Eq. (C5) contributes to the 
real part, and the second term-to the imaginary part of the 
correction to E , .  Hence 

In the below-threshold region E ,  (F) is real. The same is also 
true for the subsequent terms in Eq. (C4); therefore in this 
case the l/n-expansion only determines the position of the 
level, but not its width (an analogous situation occurs for the 
Yukawa and Hulthtn potentials'5). Proceeding as in the 
foregoing and taking formulas (C1 )-(C3) into account, we 
find 

E ~ , , ~ , = ~ - " F , ,  ( A F )  +h-'"rl ( ( h p ) ' " ~ )  - C ~ - ' " Y I  ( p ~ ) .  (C8) 
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Transforming from E to the energy E, we obtain the scaling 
relations (28) and (29). Since the two first (nonvanishing) 
terms of the l/n-expansion were used in their derivation, 
their relative accuracy is of the order of l/n2. 

Let us determine the introduced functions y,, and r] .  

For F >  F* = 0.3834 we have 

and for F < F, and E,, (F) < 0 

q (F )= [ -E , I (~ ' ) ]  I-. ( c10)  

The E,, (F) curve intersects the ionization limit E = 0 at 
F= F*: 

e,,=ul /+u212+ . . . , /= (F- F.)/F'., (c11)  

where a,=0.9034, a ,=-0.0673,  a,=0.0173, 
a, = - 0.0063 ,..., i.e., a,  % la,/ > a,. This explains the ap- 
proximate linearity of the e,, curve (F),  which is conspi- 
cuously distinct in Fig. 3. We note that the function E,, (F) is 
real for 0 < F <  w and has no singularities for F = F, , while 
y,, (F) has a square-root singularity here. 

"Moscow Engineering-Physics Institute. 
"See Fig. 2 in Ref. 15 for the Yukawa potential and Fig. 3 in Ref. 13 for the 
Stark effect in the hydrogen atom. 

"See the Darwin expansion (Ref. 23) for the parabolic cylinder function 
W(a,r) .  

4'A brief presentation of the results of this section was published earlier. 30 
5'For fixed n the quantum defects S(n,n,m) decay with growth of n, and, 
in particular, with growth of the magnetic quantum number m [see Eq. 
(4) 1. As estimates we give the following numbers (n = 25, the rubidium 
atom): 6(24,0,0) = 0.633, 6(23, 1,O) = 0.491, S(22,2,0) = 0.386, 
S(22, 1, 1) =0.133,S(23,0, 1) =0.092,and6(22,0, 2) =0.0067. For 
hydrogen 6=0  for all states. 
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