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The dynamics of an electron in a quantized monochromatic field is analyzed. The state of the field 
is described in various representations. The wave functions of the system are derived. They show 
that as an electron moves in a coherent quantized field with a linear polarization a squeezed state 
of photons is formed. If the external field is circularly polarized, a coherent state forms. A 
squeezed state of photons also forms as an electron interacts with individual linearly polarized 
vacuum modes in a bounded volume. A study is made of the photon statistics for various states of 
the quantized external field. Expressions are derived for the radiation of a classical field and for 
the Compton effect. 

1. INTRODUCTION 

Effects of the intensity of electromagnetic radiation in 
interactions with electrons have been studied in depth in 
many places (e.g., Refs. 1-3) on the basis of exact Volkov 
solutions for the Dirac and Klein-Gordon equations for a 
charged particle in the field of a classical plane electromag- 
netic wave. New aspects of many-photon processes and in- 
tensity effects have been found for free electrons in analyses 
of various phenomena in quantum electrodynamics. The 
classical treatment of the external field in these studies, how- 
ever, has made it impossible to see effects stemming from 
quantum coherence. 

The advent of highly coherent sources of electromag- 
netic radiation opens up some interesting possibilities for 
new experiments to detect subtle effects of optical quantum 
coherence. The conventional mathematical apparatus of 
quantum electrodynamics in the occupation-number repre- 
sentation, i.e., with a diagonal photon-number operator, 
does not provide information about the phase state of pho- 
tons. Glauber4 and Klauder and SudarshanQave studied 
the statistical properties of a photon beam by means of a 
coherent-state representation. 

The new coherent photon states referred to as 
"squeezed" or "two-photon" states have recently been the 
subject of active theoretical and experimental research. 
These states are like ordinary coherent states of photons in 
that they will, under certain conditions, minimize the uncer- 
tainties in the "coordinate" and the "momentum," but they 
have no classical analog. 

Studies of the quantum coherence of electromagnetic 
radiation as it interacts with atoms have revealed some new 
and specific  effect^.^.' The interaction of a quantized mono- 
chromatic electromagnetic field with electrons was analyzed 
in Refs. 7-12. Bergou and VarroIo analyzed Compton scat- 
tering, carrying out a complete calculation of the scattering 
cross section for the case of a circular polarization of the 
external field. Bergou and Varro showed that the interaction 
of an electron with quantized radiation introduces a new 
statistics, and they demonstrated some of its properties in 
the case of circular polarization. 

Becker et al." carried out a particularly interesting 
study of the dynamics of a charged particle in a quantized 
monochromatic electromagnetic field in a bounded volume 

(in a cavity). Restricting their analysis to the long-wave- 
length and nonrelativistic approximations, and ignoring re- 
coil effects, they studied the phenomenon of a "squeezed 
charged" vacuum and the quantum-coherence effects which 
result from an interaction with an electron. They showed 
that sufficiently bright electron beams and sufficiently long 
waves would make it possible to observe a squeezing effect in 
the interaction of quantized electromagnetic radiation with 
electrons in a bounded volume. 

In the present paper we use exact solutions of the Dirac 
and Klein-Gordon equations for a particle in a quantized 
monochromatic radiation field to study quantum-coherence 
effects as electromagnetic radiation interacts with an elec- 
tron. We examine classical radiation and Compton scatter- 
ing for various states of the external field. 

2. QUANTUM EFFECTS IN THE MOTION OF A CHARGED 
PARTICLE IN A RADIATION FIELD 

The motion of a charged particle in a quantized mono- 
chromatic radiation field was first studied by Berson.I2 
However, the "coordinate" representation for the quantized 
field was used to derive exact solutions of the Dirac equation 
there, so further applications of these solutions were diffi- 
cult. In the present paper we use a solution of the Dirac 
equation in the occupation-number representation to study 
quantum-mechanical effects of the interaction of electrons 
with a quantized field 

inside a volume Vwhich has the shape of a rectangular paral- 
lelepiped. We impose periodic conditions at the boundaries. 
In the case of a linear polarization of the photons the solu- 
tion is 

Here u ( p )  is a free Dirac bispinor which satisfies the equa- 
tion 

( i p +  m )  Z L  ( p )  =0, (2.2) 

and D ( a )  and U( - z )  are respectively a unitary displace- 
ment operator and a unitary squeezing operator, given by4.I3 
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D ( a )  =exp [ a  ( c + - c ) ]  , (2.3) 

ee,, 
b, = -------- 

(2w V )  '" 

In (2.l) ,  f, is the Cmomentum of an electron in the radi- 
ation field, where 

2 b V 1 9  1 1 
fnu=pu+lL ( I  - --) [ n  i -? - a' - - 

l i p  2 

In the case of a circular polarization of quantized exter- 
nal radiation inside a volume V with periodic conditions at 
the boundaries, the solution of the Dirac equation is 

where 

The 4-momentum of an electron in the radiation field is de- 
scribed in this case by 

(2.9) 

Solutions of the Klein-Gordon equation can be found 
from expressions (2.1) and (2.7), for the cases of linear and 
circular polarization, respectively, by assuming that the 
expression in square brackets is unity and by omitting the 
Dirac bispinors. 

Of particular interest is the wave function of a charged 
particle in vacuum in a bounded volume. It follows from 
expression (2.1) that electron interaction with individual 
linearly polarized vacuum modes in a bounded volume pro- 
duces a squeezed state 

U ( - z ) D ( a )  (O>=l-z; a ) .  (2.10) 

This state generates some special statistical properties of the 
quantized field in an interaction with an electron with the 
electromagnetic vacuum. This effect was found by Becker et 
al." for a nonrelativistic electron in the long-wave approxi- 
mation without recoil. They called it a "squeezed charged 
vacuum." 

As an electron interacts with individual circularly po- 
larized vacuum modes in a bounded volume, an ordinary 
"one-photon" coherent state forms: 

If we discard the spinor parts of solutions (2.1) and 
(2.7) (for the Klein-Gordon equation, for example), the 
wave function of an electron in vacuum with a bounded vol- 
ume is thus expressed in terms of a squeezed state (2.10) or a 
coherent state (2.11 1. 

Up to this point we have been discussing (as in Ref. 10) 

the case in which the external field is specified in the occupa- 
tion-number representation. A topic of particular interest is 
the dynamics of a charged particle in quantized external 
fields in states which minimize the uncertainties in the coor- 
dinate and momentum of a photon. 

Among such quantized field states the most important 
are coherent and squeezed field states. 

We first consider the case of a coherent external field. 
Following Ref. 12, we accordingly construct a packet of 
wave functions (2.1 ) and (2.7): 

In the case of linearly polarized electromagnetic radi- 
ation we find the following expression for the wave function: 

XI-z exp (2 ikx)  ; (a+? ( x )  ) exp ( - ikx)  ), (2.13) 

wheref, is given by (2.6) with n = 0, 

and JP(x)  l2 = JP l 2  = ji is the expectation value of the num- 
ber of photons. 

In the case of circularly polarized radiation, the follow- 
ing expression is found for the wave function: 

%P ( x )  = ~ X P [  i  (fox-Im a8p (x) ) ] 

where f, is given by (2.9) with n = 0, 

and IP(x) l 2  = I/3 1 = Z is the expectation value of the num- 
ber of photons in the radiation mode when the interaction is 
turned off. 

It can be seen from (2.13) and (2.15) that the electron 
wave function is expressed in terms of a squeezed field state 
in the case of linear polarization in the field of a coherent 
wave. In the case of circularly polarized radiation the wave 
function of the electron-plus-field system is expressed in 
terms of a coherent state. As in the case of the motion of an 
electron in vacuum, the photon part of the wave function is a 
squeezed or coherent state if we ignore the spin part of 
expression (2.13 ) or (2.15 ), respectively (for the Klein- 
Gordon or Schrodinger equation, for example). 

We make the transformation from wave functions 
(2.13) and (2.15) to the case of a classical field-the Volkov 
wave functions3-by projecting these states.onto the coher- 
ent field state lP), i.e., by using ( P  1 rCDP), and by taking the 
limits E -+ a, V-+ CE , while the photon density Z/V remains 
finite. 

We turn now to the construction of wave packets for the 
case in which the quantized external field is in a squeezed 
state 1 f;B ) : 
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The coefficients (n IS;@ ) are expressed in terms of Hermite 
polynomials. Explicit expressions for them are given in Ref. 
13, among other places. 

For a linearly polarized external field we find the fol- 
lowing result for the wave function: 

There are three wa J S  to specify the photon state Iph) here: in 
the occupation-number representation, In); in the Glauber 
representation, I/3 ); and in a squeezed state, IQ@ ). We have 
the following expressions for these representations, respec- 
tively: 

(9,. (I) I c + c I  $,,, (x)  )=n (pZ+v2) +v2+x2, (3.3a) 

( $ e p ( ~ )  I~+cl$eP (x))=I I3 I2(p2+v2) +v2+x2, (3.3b) 

( $ r s p ( ~ )  I C+C ($;ep(~) )=(I '+v") (pZ+v2) +vZ+x2, ( 3 . 3 ~ )  

where r and 0 are defined by (2.19), and 

where P ( x )  is given by (2.14), and It can be seen from expressions (3.3) that as an electron 
- moves in vacuum the expectation value of the number of 6 (x) =ce-2:hx,re'ee-21kx 

(2.19) photons is nonzero. 

For a circularly polarized external electromagnet field We turn now to the second-order correlation function 

we find G(')=( (c+) 'c2)- (<c+c))'. (3.5) . . , . 

for which we find the following expression: 

G(~)=G;; (p2+vZ)2+( ph 1 ( c + ) ~ c ~ ~  )zpZv2 
~ e x p ( - i k x c + c ) D  (a) 15 (x) ; ( x )  ), (2.20) I--- 

+ 2( ph I c+c ( ph ) [v'l 
where P ( x )  and C ( x )  are given by expressions (2.16) and 
(2.19 1, respectively, and 5 = k, ( 1 - I b 1 '/kp). In contrast +v2(p2+v2) +2x2 (p+v) v, (3.6) +3y2vZ+xZ (p+v) I 
with the linear-polarization case, state (2.20) is expressed in where G 2) is correlation function (3.5) in which the aver- 
terms of a squeezed state of a photon: age is taken over photon states. When the photon state is .. .. specified in the occupation-number representation, In), we 

Qrep(x) =exp[i(f,z+Im a (2) B.(x) ) 1 r 1 + - 21 have 
u (PI 

X V,, exp (-ikxc+c) 1 5 (I) ; fi (x) +a (x) ), (2.20a) ~ i z = - n ,  

(nl ( ~ + ) ~ c ~ l n > = r z ~ - n ,  (nlc+cln>=n. (3.7) 
where 

(x)  =a ch r-a' exp [i (2Ex-O)] sh r, 0-arg 6. (2.21 ) If the photon state is instead expressed in the coherent- 
state representation, (/3 ), we have 

3. SOME STATISTICAL PROPERTIES OF PHOTONS AS THEY 
INTERACT WITH ELECTRONS 

As we have already mentioned, the interaction of pho- 
tons with electrons results in substantial changes in the sta- 
tistical properties of the photons. Bergou and Varro" 
showed that the interaction of an incoherent photon beam 
(in the occupation-number representation) with electrons 
leads to some new effects. They examined certain statistical 
aspects of the electron-photon system for the case in which 
states are specified in the occupation-number representa- 
tion. 

Let us examine the statistics of the photons produced in 
an interaction with an electron for various states of the origi- 
nal photon beam. We begin with the case in which the pho- 
tons of the external field are linearly polarized. Working 
from wave functions (2.1 ), (2.13 1, and (2.18), and taking 
an average over the states of the electron, we find the follow- 
ing expression for the expectation value of the number of 
photons: 

~ ' 2 '  =O, 
ph (3.8) 

< p /  (~+)"~lp)=IpI"  ( p l c + ~ I p ) = l p ( ~ .  

For the motion of an electron in a field in a squeezed 
state we have 

~ : , ' = 2 / v ' B 1 ~ - 2  R e ~ ' ~ ' ~ e - ' ~ + v ' ~ + y ' ~ v ' ~ ,  

(5; ( C + ) Z ~ ~ ~ ;  ; > = ~ ~ ' - p 1 v r e - ' e ~ 2 + 4 ~ v ' ~ [ 2 + 2 v ' 4 ,  (3.9) 

( I ; ;  ~ I c + c \  5; p>=IBi?+vJ2. 

Taking the expectation value of the correlation function 
over the phases 8 and p, we find 

- 
G @ )  ph - -- V' 2 (p' 7, f V' 3, (2 j 0 ,2 + I ) ,  

(5; PI ( c + ) ~ c ~  1 6; ~ ) = ( p 1 ' + v t 4 )  I P I4+4vf2 (p"+v") 

X.  I p12+2v'4+p'2v'z, (3.10) 

(%; PIc+cI%; p > = ( ~ ~ 2 + ~ ' 2 )  \p12+vf2. 

(c+c)=(  p h J c + c l  ph ) (p2+v2) +v2+ x2, (3.1) It can be seen from the expression for the expectation 
value of the correlation function over phases that the follow- 

where ing relation always holds: 
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We see from (3.6) that in the linear-polarization case the 
original correlation function is supplemented by some posi- 
tive quantities which depend on the parameters of the elec- 
tron and the field. If the second-order correlation function 
G 2' is negative before the interaction, i.e., if there is a pho- 
ton debunching, this correlation function may become posi- 
tive after the interaction with the electron, and a bunching of 
the field photons may be observed. If the field correlation 
function is nonnegative, G,,>O, in the initial state, i.e., if 
there is a bunching of photons, the interaction with the elec- 
tron will result in an intensification of the bunching of the 
external-field photons. The interaction of a quantized elec- 
tromagnetic field with an electron can thus lead to some 
substantial effects in the photon statistics. 

Calculations can be carried out in a corresponding way 
for a circular polarization of the external field. In this case 
we should start from wave functions (2.7), (2. IS), and 
(2.20). After taking an average over the parameters of the 
electron, we find the following expression for the expecta- 
tion value of the photon number operator: 

Herea is given by (2.8), and the photon states Iph) are given 
in one of three ways: in the occupation-number representa- 
tion, in the representation of coherent states, or in the repre- 
sentation of squeezed states. In these three cases we have the 
following respective expressions: 

herent field (3.16a) the correlation function is negathe, like 
the correlation function of the free field at values la\' < 1/2. 

4. CLASSICAL RADIATION BY AN ELECTRON MOVING IN A 
QUANTIZED MONOCHROMATIC FIELD 

Let us examine the classical radiation by an electron 
moving in a quantized monochromatic field, specified in var- 
ious representations. The current density j, and the operator 
representing the kinetic momentum of the electron, 5, are 
related by3 

where .rr, is an operator averaged over the spin states of the 
electron which is moving in a quantized electromagnetic 
field. If the quantized field is linearly polarized, we have 

where the wave vector k,  in A, is replaced by ic, [see 
(2.14) 1. 

The kinetic momentum (4.2) takes different forms in 
different representations of the quantized field. In the case of 
an incoherent field, in which the state is specified in the occu- 
pation-number representation, we can use the relation 

After an average is taken over the phases f3 and p, the 
latter expression becomes 

< ~ c b P ( x )  ( C + C ( * C ~ ~  ( x )  >= ( p ' 2 + ~ ' z )  IPIZ+v'Z+Ia12. (3.14) 

The second-order correlation function in the case of cir- 
cular polarization is given by 

where the average over the photon states is carried out in one 
of three representations: the photon number representation 
In), the coherent-state representation IP ), or the squeezed- 
state representation I{;O ). 

For these states, the correlation function (3.15) takes 
the following respective forms: 

Taking the average of the latter expression over the 
phases 0 and p, we find 

It can be seen from (3.16b) and (3.16d) that the corre- 
lation function is positive, i.e., that the sign of the correlation 
functions of the free field is retained. In the case of an inco- 

In the case of a coherent field, in the Glauber-state rep- 
resentation, we find 

<p 1 n, ( x )  1 B) = p, + 2 R ,  -- - b, eZ (Re peiix + a)  ( 2  ) 
Finally, in the case of a squeezed state of the external field we 
have 

( bp b,  ez  (Re fieizx + a)  ( ~ ; B ~ ~ , ( X ) I ~ : B ) = P P + ~  h-- ) 
k p  

1 + - (ch 2r - sh 2r cos (0 f 2Xx)) . 
4 I ( 4 . 3 ~ )  

Averaging over kc in (4.3), we find the respective val- 
ues of the average kinetic momenta or quasimomenta of the 
electron: 
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The last expression in (4.4a) for the quasimomentum of 
an electron in a squeezed field depends on the phases of the 
external field, 8 and p. Taking an average over 0 and p, we 
find that this exnression becomes 

At high intensities of the external field, as ii- oo, we 
have V-  w , while ii/ V (the photon density) remains con- 
stant, the first two relations in (4.4a) become the expres- 
sions for the quasimomentum of an electron moving in an 
intense classical monochromatic field. These expressions 
were derived by means of a Volkov wave f~nc t ion .~  In the 
case of a squeezed external field (rf 0),  on the other hand, 
there is no such transition. 

Corresponding calculations for the case of a circularly 
polarized external field starting from wave functions (2.7), 
(2.15), and (2.20) lead to the following expression for the 
kinetic-momentum operator of the electron, n,: 

n , (x )  =p,- (eA,+2 R e  ab,) 

where A are the positive- and negative-frequency parts of 
the quantized monochromatic field, in which k,, has been 
replaced by k,, [see (2.16) 1. 

In the particle-number, coherent-state, and squeezed- 
state representations, the average kinetic momentum is giv- 
en by the following respective expressions, where we are us- 
ing (4.5): 

As in the case of a linearly polarized external field, the 
last expression in (4.6) contains the phases 8 and p. After an 
average is taken over these phases, that expression becomes 

Following R i t ~ s , ~  who calculated the spectrum of the 
classical radiation by an electron in a classical external field 
on the basis of Volkov functions, we carry out corresponding 
calculations for various representations of the quantized ex- 
ternal field. In the present section of the paper we assume 
that the energy and momentum of the radiated photon are 
much smaller than the energy and momentum of the elec- 

tron, and we ignore the inverse effect of the radiation on the 
electron. We assume that the state of the quantized external 
field is given. Under these assumptions we can use the equa- 
tions of classical electrodynamics for the radiation, where 
the current is determined by quantum-mechanical expecta- 
tion value (4.1). The intensity of the radiation by the elec- 
tron is given by 

dl,. 
r= 

Vd3 k' 

v li.(kl) 1'- 
Here j,, (k  ') is a Fourier component of the 4-current vector 
of the electron and is given by 

+- 

j,,(kf) = j j,(s) e x ~ [ - i k ' z  ( s )  Ids,  (4.9) 

where the integration is over the proper time of the electron. 
Expression (4.9) for the Fourier component of the current 
can be written in the following form,' where we are making 
use of (4.1): 

where 

XP y-xx = - (s-so) ,  
m 

II (4.11) 
i 

j ( y ) =  -- j kVr (  ph in . (y)  I ph )dy. 
kp 0 

Substituting in (4.11 ) the expectation values of the ki- 
netic momentum for the various representations (4.3) of the 
linearly polarized quantized field, we find 

kk' 
X In1 13e'"- b' Im B 2 e ' z ~ } ,  

2x7 

In the circular-polarization case we find 

We find the intensity of the radiation of the classical 
field, (4.8), by substituting (4.12) (for a linearly polarized 
external field) and (4.13) (circularly polarized) into 
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expression (4.10). We then find the following respective ex- 
pressions for the intensity: 

w 

bZ dl , ,  = - ' I m Z  x { - l ~ o ( s )  l Z + T ( l ~ i ( s )  I' 
4xqo(Lp) A = !  m 

The expressions derived here for the intensity of the 
radiation of a classical field are outwardly the same as the 
corresponding expressions of Ref. 3, where the calculations 
were carried out with the help of Volkov solutions. Their 
coefficients B, (s), however, are different, depending on the 
particular representation of the quantized external field. 
Furthermore, in the argument of the 6-function which im- 
poses a condition on the values of k J,, the quantity q,, is to be 
understood as expression (4.4a) or (4.6) for the case of a 
linear or circular polarization, respectively. As we have al- 
ready mentioned, q,, differs from its classical analog, so that 
allowance for the quantum-mechanical nature of the exter- 
nal field results in changes in the form of the discrete spec- 
trum k ;, . 
- In the case of linear polarization, the coefficients Bi (s) 
are related by 

b  P 
[ s ( n p )  -k'q+k'pl  B . ( s )  4- ( k ' k  -- - k . 6 )  B, ( s )  

k p  

kli' - -- b2B2 ( s )  =O, 
'lip 

and in the case of circular polarization they are related by 

( k ' b f  cc'klc') B - ( s )  + (k'b0+akk')  B + ( s )  
= [ s  ( R p )  +2 Re ~ ( k ' b f a ' k k ' ) ]  Bo ( s ) .  (4.17) 

As expected, the occupation-number representation de- 
scribes a state in which the energy of the electron is com- 
pletely determined, and there is no radiation. For a coherent 
state of the external field with a linear polarization, we find 
the following expressions for the coefficients: 

B,(s) =e2' ( ( 2 n +  1 -4a2) l ! , ,  ( s )  +4ue-'11, ( s )  

where 

In the case of circular polarization we find 

where 

The expressions for the intensity of the classical radi- 
ation of an electron in a coherent external field become the 
corresponding expressions of Ref. 3 when we take the limits - 
n - CQ and V-+ cc , holding T i /  V finite. 

If we choose the external field in a squeezed state, the 
expressions for the coefficients in the case of a linear polar- 
ization become slightly more complicated: 

m 

B u ( s ) =  ~ ~ ~ + ~ ~ ( ~ a ~ ) ~ , ( ~ ~ 1 ~ ) e x p [ i ( s + 2 l ) ~ l ~ x p ( - i l ~ ) ,  
I -.-. 

N , ( s )  =c'{2aBo(s)+(3R,(s-1)+(3'Bo(s+l)), (4.22) 

Il, (s)  =?" ((21 f,12+rh 3r -4a2)  Jla ( s )  +/tc*r-il l ,  ( s )  
+ (fi2-sh r  rli r r - ' " ) R o ( s - 2 )  + (P"-sl~ r  ch rc,'') B o ( s + 2 ) ) ,  

where 

2 (3 - 
a,=- ez (l i thi-aezlik')  -- 1 a 1 el'#, 

1' (4.23) 
lik' 

d = - - ----- b2(ij2-e-" sll r c11 r ) ' -  I dl elA. 
2 ( k p )  

Relations (4.20) and (4.21) remain valid for a circular 
polarization of a squeezed external field after we make the 
following substitution everywhere in them: 

With a squeezing parameter r = 0, expressions (4.22) 
become (4.18) for a coherent external field. 

It can be seen from expressions (4.14) and (4.15) that 
the wave vector k ', of the radiated photon, satisfies the con- 
dition 

which has the same form as in the case of a classical field,' 
except that k, is replaced by &, and the average kinetic mo- 
mentum q is given by (4.4) and (4.6). 

Denoting by wo the frequency of the wave in the frame 
of reference in which the electron is at rest on the average 
(q = O,qO = mr ), we have kq = - m where 
Go = a,, exp( - 22), and m. is the effective mass of an elec- 
tron in the field. This mass takes different forms, depending 
on the polarization and representation of the quantized ex- 
ternal field. From (4.25) we find a relation analogous to the 
expression for the Doppler effect: 

c ~ ) ' = . s n , , ( l - l ' " " ! ~ / ( i - / ~ ( ~ o . . ;  y ) .  (4.26) 

Expression (4.26) relates the frequency of the sth har- 
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monic in the frame of reference in which the electron is, on 
the average, at rest to its frequency (a') in a frame in which 
it has an average velocity v = q/q,. It can be seen from 
(4.26) that the radiation spectrum is discrete and that the 
frequency depends on the angle ( y ) between the direction of 
the radiation and the average momentum q. 

5.COMPTON EFFECT IN AN INTENSE QUANTIZED FIELD 

The radiation of a photon by an electron in an intense 
classical field was studied in Refs. 1-3, where the Volkov 
solution for the Dirac equation was used to calculate the 
probabilities for a many-photon process in a plane external 
electromagnetic wave. Since there may be several photons in 
the interaction region if the external field is intense, the pro- 
cess by which a photon is emitted involves the absorption of 
several photons of the external field. 

The Compton effect for a quantized field was analyzed 
in Refs. 9 and 10 in the particle-number representation. The 
probability for the process was calculated in Ref. 10 for the 
relativistic case, but the calculations were carried out com- 
pletely there only for a circularly polarized external field. 

The transition matrix element for the Compton effect 
with a linearly polarized external field has the same form as 
in the case of a classical field3: 

( 5 )  
where 

ke' - - kt ( k e r f )  =O, 
kk' 

and the coefficients are given by 

(5.3) 
Evaluating the matrix elements in (5.3) in the represen- 

tation of the number of particles of the quantized external 
field, we can then go over to the cases of coherent and 
squeezed fields by means of the transformation functions 

A,,+= C (B, l nf) (ni I Pi) Ani76 ( f n f  + k' - fni). 

ni .  n f  

Corresponding relations can be derived for the coefficients 
Bi_f .  In the case of the external-field particle-number repre- 
sentation the coefficients A and B are expressed in terms of 
Hermite polynomials in the following way: 

(mi n ni, nj)  

Htti-h (Y) H,,,-X (2) [ ( i /2)  sh A Z I - ~  ' h =O k !  (nt - k ) !  (nf - /i)! , (5.5) 

where 

and 

The expression for the probability for the emission of a 
photon, averaged over the initial polarization states of the 
electron and summed over the final states, is as follows, for a 
linearly polarized quantized external field, in the particle- 
number representation: 

)-*(pie'') (be") ]Re A'B 

For a circularly polarized field the matrix element is 
found in the same way as for a classical field3: 

Explicit expressions for the coefficients B, and B * and 
also for the probability for the emission of a photon in the 
case of a circularly polarized quantized external field are 
given in Ref. 10. It can be shown that these coefficients are 
related by 

where Aa = af - ai. 
The expressions for the matrix element, (5.9), and for 

the photon emission probability remain the same in form in 
the cases of coherent and squeezed external fields; the only 
change is that the coefficients in these expressions are trans- 
formed by means of relations analogous to (5.4). 

CONCLUSION 

We have analyzed the dynamics of a charged particle in 
a quantized monochromatic electromagnetic field whose 
state has been specified in various representations (the parti- 
cle-number, coherent-state, and squeezed-state representa- 
tions). It has been shown that a squeezed state is formed in a 
bounded volume both during the interaction of an electron 
with individual linearly polarized vacuum modes and during 
the motion of an electron in a quantized coherent radiation 
field with linear polarization. In the case of a circular polar- 
ization of the quantized external field, on the other hand, a 
coherent state of photons forms. We have calculated the ex- 
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pectation values of the photon-number operator and the sec- 
ond-order correlation functions. We have analyzed the sta- 
tistics for the interaction of an electron with quantized 
electromagnetic radiation for various states. 

The results show that the original correlation function 
is supplemented with some positive quantities which depend 
on the parameters of the electron and the field. If a debunch- 
ing of photons occurs before the interaction with the elec- 
tron, a bunching of the photons of the external field can be 
observed after the interaction. The interaction of a quantized 
electromagnetic field with an electron thus results in an in- 
tensification of the bunching of the photons and in impor- 
tant changes in the statistics of the external field. Expres- 
sions have been derived for the intensity of the radiation of a 
classical field and for the probability for the Compton effect 
for an electron which is moving in a quantized field of either 
linear or circular polarization. It has been shown that the 
results depend strongly on the state of the quantized external 
field. 
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