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The polarizability of a small inhomogeneous particle whose dielectric constant ~ ( r )  crosses zero 
is shown to be of a resonant nature. The problem is solved exactly i f ~ ( r )  is a linear function. In 
this case the photoabsorption and the polarizability each have at the frequency w =: 0.273w,,, a 
resonance of width yz0.076w0, where w, is the maximum plasma frequency in the particle. The 
results are compared with those in the case of a homogeneous dielectric ball. The natural 
oscillations of a small dielectric particle are analyzed. The results can be used to describe the 
optical properties of many-electron atoms and to interpret the characteristics of finely dispersed 
particles and biological specimens. 

Effects which accompany the scattering of light by 
small particles are of interest in a long list of fields, from 
space physics to biology and medi~ine. ' .~  The particular 
problem in the scatterinrg (or diffraction) of light by parti- 
cles of finite dimensions which has been studied most com- 
prehensively is the scattering by a homogeneous dielectric 
ball (the Mie problem) .'."he results of the solution of this 
problem are widely used in interpreting a variety of experi- 
ments. Landau and Lifshitz4 attempted to go beyond the 
scope of the homogeneous-ball model. They analyzed the 
polarizability of homogeneous dielectric particles of arbi- 
trary shape with a sharp boundary. 

In the present paper, the Mie model is generalized in 
another direction: the electrodynamic properties of spheri- 
cally symmetric but inhomogeneous" particles are analyzed. 
The results show that the properties of these particles are 
quite different from those predicted by the Mie model. 

I. INTRODUCTION 

The scattering of a plane electromagnetic wave by an 
inhomogeneous particle is described by the following equa- 
tion in the case in which the electric displacement and elec- 
tric field in the particle can be assumed to be linear and local: 

rot rot E-kZ& (r, o )  E=O, 

e'k' 

E 1 ,,,=e,e'kr-tf (n, k) - , 
r 

Here e, is the amplitude of the incident wave, f(n,k) is the 
amplitude of the scattering in the direction n = r/r, and 
E ( ~ , w )  is the distribution of the dielectric constant in the 
particle." For a homogeneous spherical particle with a di- 
electric constant & ( a ) ,  Eq. ( 1 ) reduces to a Helmholtz equa- 
tion, so the problem can be solved ~ompletely. ' .~ The exact 
expression for the dipole polarizability in this case can be 
written in the form 

E (a) -1 
a ( o )  =a3 q=ka. 

E ( u ) + Z + ~ ( E ( ~ ) ,  q )  ' 

If the wavelength of the radiation is significantly larger 
than the radius of the particle, i.e., if A)a (i.e., q 4 1 ), the 
function r ( ~ ( w ) , q )  in (2)  can be expanded in a series in q: 

We thus see that the leading term of the expansion of the 
polarizability a ( w )  in powers of q is 

e ( o )  -1 
a. ( 0 )  =(13 

e ( o )  +2 

Expression (4)  agrees with the exact value of the static 
polarizability of a homogeneous ball with a dielectric con- 
stant E(W) (58 in Ref. 5 ) .  That the leading term a, ,(@) of the 
expansion of the particle polarizability a ( w )  in powers of a /  
A can be found from the solution of the static problem is a 
rather general circumstance. It  has been shownh.' that in the 
long-wavelength approximation a solution of scattering 
problem ( 1 ) can be sought as a power series in a parameter 
a/A, where a is the characteristic dimension of the region in 
which the quantity ~ ( r , w )  - 1 is nonzero. Accordingly, we 
write the field and scattering amplitude in the following 
form in a zeroth approximation: 

E=-VV(r), f (n, k) =k2[n[dn]], (5 )  

where V(r) and d are determined by the electrostatics equa- 
tion 

div [e (r, o)  VV(r)] =O, 
(6a) 

dn 
V I ,,,=-e,r + -- , d=a, (w) e,.  

r2 (6b) 

If the particle is not spherically symmetric, the polarizability 
a,(w) is a tensor. 

We wish to stress that Eq. (6)  and expressions (5)  con- 
stitute the long-wavelength approximation of the exact for- 
mulation of scattering problem ( 1 ); this approximation is 
valid under the condition a 4 A .  

For E(W)  = - 2, the polarizability a,(@) in (4) has a 
pole due to the existence of so-called natural oscillations of 
Eq. (6a):  solutions which are localized at the particle and 
which decay as r- W .  Such solutions exist for certain values 
of E ( W )  for homogeneous particles of arbitrary shape.4 Note, 
however, that these natural oscillations are an artifact of the 
long-wavelength approximation: the exact polarizability 
a ( w )  found from Eq. ( 1 ) is bounded by radiative-damping 
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effects. These effects can be taken into account approximate- 
ly by replacing a,(w) by8 

For the particular case of a homogeneous ball, we see by 
substituting (4)  into (7) and comparing with (3)  that 
expression (7) does indeed give a correct description of the 
radiative damping [the imaginary term in the denominator 
in (3) 3, but it ignores the shift of the resonance in the polar- 
izability. That circumstance is of no importance to us at this 
point. 

We will be using Eq. (6)  to analyze particles with an 
inhomogeneous distribution of the dielectric constant 
E ( ~ , w ) .  A study of the properties of such particles leads to 
some new effects--effects not embodied in the homogeneops 
Mie model. 

II. GENERAL PROPERTIES OF THE POLARlZABlLlTY OF AN 
INHOMOGENEOUS PARTICLE 

Before we take up a specific model, it is worthwhile to 
derive some general electrodynamic properties of small par- 
ticles by working directly from Eq. (6) .  We will be omitting 
the argument w from the dielectric constant ~ ( r , w ) .  

I. Photoabsorption cross section. Let us calculate the en- 
ergy Q absorbed by a particle per unit time, 

Here we have used (5) .  Expression (8) can be integrated by 
parts. By virtue of Eq. ( 6 ) ,  we are left with only an integral 
over a surface S of infinite radius, so the expression for Q 
becomes 

Q=- w ds 1 ,+,, ds=nr2 sin 0 d0 drp, 
8 

(9)  

We see thus that in our long-wavelength approximation 
the vector W serves as the energy flux density of the electro- 
magnetic field. Using in (9)  the boundary conditions of Eq. 
(6) ,  andnotingthat&(r)l,,, = 1, wefind 

0 
Q=- Ieo1'Ima0(o). 

2 (10) 

Dividing this expression by the energy flux density (c /  
8 r )  1 e, 1 2, we find the known expression for the photoabsorp- 
tion cross section ($93 in Ref. 5; Ref. 9) :  

Note the difference between expressions ( 10) and ( 1 1 ). 
Expression ( 10) describes the power absorped by a particle 
in a uniform external field.'' Expression ( 11 ), on the other 
hand, describes the cross section for the absorption of a plane 
electromagnetic wave by a small particle in the dipole ap- 
proximation. The latter expression is valid under two condi- 
tions. The first is a&, which makes static equations (6)  
applicable. The second is k 3 a o ( o )  4 1, which guarantees 
that radiative damping will play only a minor role [see the 
discussion of Eq. (7) 1. 

2. Singularity of the field; plasma (Langmuir) waves. 
According to expression (8) ,  the photoabsorption Q is gen- 

erally determined by the imaginary part of dielectric con- 
stant ~ ( r ) .  However, Qmay also be nonzero for a rea ldr ) ,  if 
the field V(r) in (8 )  has a singularity. In a homogeneous 
particle, the field will have no singularities, as has been es- 
tablished previously. A singularity arises in the case of an 
inhomogeneous particle if ~ ( r )  crosses zero inside the parti- 
cle. We will take a more detailed look at this question for the 
case of a spherically symmetric ~ ( r  ) distribution. In Eq. (6)  
we can separate the angular variables in this case: 

where 19 is the angle between the vectors r and e,. For the 
radial function V(r) we find 

where the prime means differentiation with respect to r. Let 
us assume that at some point r = r, the function E ( r )  vanish- 
es linearly; i.e., we assume ~ ( r , )  = 0, with ~ ' ( r , )  #O. The 
point r = r, is a singular point for Eq. ( 13), and a general 
solution ( 13) near this point is 

Herep = ro - r, and the functions p, (p) and p2(p)  are ho- 
lomorphic in a certain neighborhood of the pointp = 0; here 
p1 (0)  = p2(0)  = 1 (Ref. 11 ). It can be seen from ( 14) that 
one of the two linearly independent solutions of Eq. (13) 
diverges logarithmically at r = r,. To give expression ( 14) 
an unambiguous meaning, we must specify the rule for cir- 
cumventing the branch point r = r,. We use the following 
standard procedure for this purpose: We assume that the 
dielectric constant E has a small, positive imaginary incre- 
ment Im E = S > 0. Physically, this assumption corresponds 
to the introduction of an infinitely slight absorption. Near 
the point r, we have 

E (r) -e' (ro) (r-ro) + i6=~ '  (ro) (r-Fo) , 

Fa=ro-i6/e1(ro). 

The substitution E-+E + iO is thus equivalent to assigning to 
r, an infinitely small imaginary part with a sign which is the 
opposite that of the derivative ( d d d r )  . = ,  . If ~ ( r )  increases 
monotonically from the center of the particle to its periph- 
ery, we should set ln(ro - r)  = lnlr, - rl - ir6'(r - r,) in 
(14). 

Let us find the contribution of this singularity of Eq. 
( 13) to the photoabsorption, (8).  Substituting ( 12) into 
(8) ,  we find 

m 

We again make use of the formal substitution E +E + iS. The 
latter expression can then be rewritten as - 

Using the known relation 
6 

lim -= 
a++o eZ+6" n6 (E) 
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and a relation which follows from ( 14), 

we finally find 

The quantity ~ ( r )  V1(r)  agrees within a factor of cos 6' 
with the radial component of the electromagnetic displace- 
ment vector D; its continuity along r follows directly from 
the equation div D = 0. 

If ~ ( r )  does not have an imaginary part, the photo- 
absorption which we are discussing here corresponds physi- 
cally to the excitation of plasma waves near the point with 
E = 0. This phenomenon is analogous to a linear conversion 
of ap-polarized transverse wave into plasma waves of a plas- 
ma which is inhomogeneous in one dimension ($88 in Ref. 5; 
Ref. 12). The field structures of the electromagnetic waves 
are completely different in these two cases, however, as we 
will see in Sec. 111. 

3. An inhomogeneous particle has no natural oscilla- 
tions. Let us consider the question of whether Eq. (6a) has 
natural oscillations, by which we mean nontrivial solutions 
which decay as r +  CC. Multiplying (6a) by V*( r )  and inte- 
grating over the entire space, we can show that the natural 
oscillations must satisfy the condition 

It can be seen from ( 16) that Eq. (6a) has no natural 
oscillations if ~ ( r )  is complex with Im ~ ( r )  > 0 or if ~ ( r )  is 
real and positive throughout space. Relation ( 16) does not, 
however, forbid the existence of natural oscillations for real 
E if there is a region in which the relation ~ ( r )  < 0 holds. For 
homogeneous particles of arbitrary shape, with ~ ( r )  chang- 
ing discontinuously at the boundary, such solutions do in 
fact exist at certain negative values of the dielectric constant. 
Their properties were studied in detail in Ref. 4. A particular 
case of a natural oscillation is a dipole oscillation of a homo- 
geneous spherical particle with E = - 2; this oscillation 
gives rise to a pole in polarizability (4) .  We will show that in 
the case of an inhomogeneous particle, for which ~ ( r )  
crosses zero continuously, Eq. (6a) has no natural oscilla- 
tions. 

Let us go back to the spherically symmetric case and 
make the assumption that we have natural oscillations of the 
dipole type, ( 12). The radial function V(r) near the singular 
point r = r,, of Eq. (13a) can then again be written in the 
form ( 14). We will show that in the case of natural oscilla- 
tions the function V(r) cannot have a singularity at the point 
r = r,,, i.e., that the coefficient C2 in ( 14) must be zero. Spe- 
cifically, as we showed in the preceding subsection, the term 
which contains the logarithm in (14) leads to a nonzero 
value of Q in ( 15). This value agrees within a factor of w/8a 
with the imaginary part of the integral in ( 16) [cf. expres- 
sions ( 8 )  and ( 16) 1 .  This result, however, contradicts con- 
dition ( 16), which must be satisfied by the natural oscilla- 
tions. Consequently, if a natural oscillation does exist, then 
we have C2 = 0 for it, and it indeed has no singularity3' at the 
point ro. 

We denote by G the region with ~ ( r )  < 0. Region G is 
bounded, since we have ~ ( r )  1 ,- _ = 1 > 0. We denote its 

boundary by S. Multiplying (6a) by V*(r) ,  and integrating 
over G, we find 

\  5 ' -  I F [ \  V12dr=( ) .  (17) 
L. C 

where n, is the outward normal to S. Since we have 
~ ( r )  I S  = 0, the surface integral in (17) can be nonzero only 
if V(r) has a singularity on S. However, as we showed above 
for the case of a spherically symmetric ~ ( r )  distribution, 
natural oscillations of Eq. (6a) could not have such a singu- 
larity. We thus find that relation ( 17) can hold for a natural 
oscillation only if V(r) rO. A spherically inhomogeneous 
particle thus has no natural oscillation for any discontinuous 
~ ( r )  d is t r ibut i~n.~ '  

It can be seen from (6 )  that the existence of natural 
oscillations leads to a singularity of the polarizability ao (w) .  
It can be concluded from the results of this section of the 
paper that for an inhomogeneous particle a,,(@) will not 
have singularities at any real w. We recall that a homoge- 
neous spherical particle has natural oscillations in the case 
E = - 2. Its polarizability diverges in this case [see (4 )  1. A 
smearing of the boundary of the particle eliminates this di- 
vergence and gives rise to an absorption even if E is real, if 
~ ( r )  is continuous. The absorption of the incident radiation 
occurs in a thin surface layer. 

4. Analytic properties of the polarizability of an inhomo- 
geneous particle; sum rule. We defined a o ( w )  as the coeffi- 
cient in the asymptotic solution of Eq. ( 6 )  as r-  CC. The 
analytic properties of a,,(w) as the response function must 
therefore be extracted from the properties of the function 
~ ( r , w ) .  We again consider the spherically symmetric case. 
We can show that if ~ ( r , w )  is sufficiently smooth along the 
variable r and has the ordinary analytic properties in the 
upper half-plane of the complex variable w (we denote this 
region by I + ), i.e., if ~ ( r , w )  has no zeros and is analytic in I + 

($82 in Ref. 5 ) ,  then a O ( w )  is analytic in I +. 
In place of boundary-value problem ( 13), we consider a 

Cauchy problem, specifying the initial conditions on Eq. 
( 13a) to be V(r) I.=, = r [we are assuming that e l ( r ) /&( r )  
is finite at r = 01. The solution of this problem (which we 
denote by v) will obviously be the same, within a coefficient, 
as the solution of problem ( 13). In the limit r-  cc we have 

Comparing this expression with (13b), we find aO(w)  
= - C, (a )/CI (w)  . To this Cauchy problem we can apply 

a theorem concerning the analytic dependence of a solution 
of this problem on a parameter." This theorem asserts that 
the analyticity of the coefficients of Eq. ( 13a) in I + [which 
is a consequence of the assumed properties of the function 
E ( ~ , w ) ]  implies the analyticity of its solution in this region 
and thus the analyticity of the coefficients C ,  (w) and C?(W) 
in I +. Furthermore, C,  (w) cannot have zeros in I + [the 
condition C,  (a) = 0 corresponds to a natural oscillation of 
Eq. ( 13a) 1, for otherwise fluctuations of the dipole moment 
at the corresponding frequency would grow exponentially, 
and the particle would be unstable. It follows that a O ( w )  is 
analytic in I +, so it satisfies the Kramers-Kronig relations. 

We know that in the limit w - cc the dielectric constant 
has the asymptotic form ~ ( r , w )  I,,-, = 1 - w;  (r)/w2, 
where wi ( r )  = 4an (r)e2/m and n ( r )  is the electron den- 
sity. Applying a perturbation theory in (1  - E )  to ( 6 ) ,  we 
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can easily show that this approach leads to the correct high- 
frequency behavior of the polarizability: 

Here N is the total number of electrons in the particle. Using 
( 18), we find from the Kramers-Kronig relations that 
photoabsorption cross section ( 11 ) satisfies the dipole sum 
rule 

m 

Ill. EXACTLY SOLVABLE MODEL OF AN INHOMOGENEOUS 
DIELECTRIC PARTICLE 

Let us assume a plasma or electron swarmI3 in which 
the electron density varies linearly along the radius: 

n(r)=no(l-r/a), 

so the dielectric constant is given by 

0 0 2  11 --(I - .L),  r<a, 
E (r) = o2 a 

where w, = (4~rz ,e~/ rn) ' /~  is the maximum value of the 
plasma frequency in the particle. The function ~ ( r )  is con- 
tinuous, and at frequencies o < w, it vanishes at the point 

Formally, we could also deal with negative values of r, 
(which would correspond to the case o > wo) and also values 
r, > a (a dielectric particle with E > 1 ). Figure 1 shows the 
function ~ ( r )  in these three cases. 

The polarizability of a plasma particle of this sort is 
given by Eq. ( 13), which takes the following form when we 
use (20): 

The constant A in this expression and also the quantity 
a , (o)  in (22) are found from the conditions for the joining 
of function (23) with the expression for V(r) at r >  a [see 
(22)l.  Using the known formula for the differentiation of 
the hypergeometric function, we find the following expres- 
sions for A and a, ( a )  : 

It can be seen from these expressions that the dimen- 
sionless quantity a,(o)/a3 is determined by the value of the 
one parameter x, = r,/a, which is related in a single-valued 
way with the dimensionless frequency S1= w/w0 by 

Let us consider various ranges of this parameter. 
At x, < 0 (i.e., at frequencies w above the maximum 

plasma frequency w,) and at x, > 1 (i.e., at r, > a, for a di- 
electric particle with E > 1 ) , the dielectric constant is posi- 
tive everywhere inside the particle, and the polarizability 
a,( W )  is real, as can be seen from (24). For our purposes, the 
interesting case is O<x,<l (i.e., o<w,), in which ~ ( r )  
crosses zero inside the particle. In this case the function (23) 
diverges logarithmically at the point r = r,. Our values of 
the hypergeometric parameters ii, b, and c thus correspond 
to the special case ii + b = c,  in which the representation of 
the hypergeometric function in the region j 1 - xl < 1 ist4 

2 1 2 + (- + -) V !  (r) - - V(r) =o, 
m 

r r-ro r F (a, b, a+b; x) = 
(22) ( k ! ) "  

Introducing the dimensionless coordinate x = r/r,, and 11-~Jcl, 
using the substitution V = xp(x), we can put Eq. (22) in the 

(26) 

form of the hypergeometric equation, so that a solution, where $(x) is the logarithmic derivative of the gamma func- 
bounded at r = 0, of Eq. (22) in the region r<a can be ex- tion. At x > 1, the function (26) is complex, so the values of 
pressed in terms of the hypergeometric function: 

FIG. 1. Dielectric constant of an inhomogeneous plasma, ( 2 0 ) .  I-r,, < 0 FIG. 2. The potential distribution V ( r )  [normalized to theconstant A; see 
(i.e., a >  a,); 11--O(r,,(a(o < a,,); 111-(r, > a )  inhomogeneous dielec- ( 2 3 )  and ( 2 4 )  ] inside a plasma in a uniform oscillatory external field. I, 
tric particle with E >  1. 11-Real and imaginary parts of the function V ( r ) / A  in the case r, = a / 2 .  
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A and a o ( w )  in ( 2 4 )  turn out to be complex in the case 
< w,. 

It can be seen from expressions (23)  and ( 2 6 )  that the 
function V ( r )  takes indeed the form ( 14) near the singular 
point r  = ro. Figure 2  shows a plot of V ( r ) / A  for the case 
ro = a/2 (here we have w  = wd2'I2) .  At r  < ro, this quantity 
is real, and it diverges logarithmically at the point r  = ro [the 
potential V ( r )  itself in (23)  is complex at 0  < r, < a  for all 
values. of r, since the coefficient A is complex], while at r)ro 
its imaginary part acquires a discontinuity. 

As we mentioned in the preceding section of the paper, 
the effects which we are discussing here are analogous to a 
linear conversion of transverse waves into plasma waves in a 
plasma which is inhomogeneous in one dimension. It is ac- 
cordingly interesting to compare the field structures in the 
two cases. Figure 3, a and b, makes this comparison on a 
qualitative level. Far from the critical point E = 0  the field 
structures are different, as can be seen from Fig. 3, but near 
the critical point the nature of the singularity is precisely the 
same in the two cases. Note that, in contrast with the case of 
an inhomogeneous spherical particle which we have been 
discussing, there is no exactly solvable model of linear wave 
conversion in a plasma which is inhomogeneous in one di- 
mension. 

Figure 4  shows the polarizability 71 = a o ( w ) / a 3  as a 
function of the parameter 0 = o/wo.  Interestingly, the fre- 
quency dependence Im 71 ( 5 1 )  and Re 71 ( 5 1 )  looks the same 
as it would if we were dealing with an absorption line having 
a frequency o / w o  = 0.273 and a width y/wo = 0.076. Near 
the resonant frequency there is a region of negative disper- 
sion [ d  Re a o ( o ) / d w  < 01, in accordance with the 
Kramers-Kronig relations and as in the case of ordinary ab- 
sorption lines. These properties also characterize our model 
of an inhomogeneous dielectric particle, in contrast with the 
case of ordinary absorption lines. These properties also char- 
acterize our model of an inhomogeneous dielectric particle, 
in contrast with the case of a homogeneous particle, which 
has no absorption at all if E is real. 

At w>wo the imaginary part of the polarizability van- 
ishes, while the real part takes on its asymptotic form (18) 
quite rapidly [at w  = wo, the exact value is 71 = - 1/ 
( 5  + 33'2) =: - 0.098, while ( 1 8 )  predicts - 1/12 
=: - 0.083 1. The case w  = 0  corresponds to a homogeneous 
dielectric ball with E = - co : 71 ( 0 )  = 1. 

FIG. 3. Qualitative field structure of the electromagnetic wave (a)  in the 
case of scattering by a small inhomogeneous spherical particle and (b) in 
the case of reflection of ap-polarized wave from a plasma boundary which 
is inhomogeneous in one dimension (the wave is incident from the right in 
this figure). In both cases the dielectric constant crosses zero, giving rise 
to a singularity in the field, which is associated with the excitation of 
plasma waves. The field components along the gradient of E are shown 
here. The point x = 0 in Fig. 3b corresponds to a "cutoff" of the field." 

FIG. 4. Frequency dependence of the polarizability of a plasma, (20), 
normalized to a3. I, 11-Real and imaginary parts of the quantity 
Z(n) =ao(u) /a3;a tw>o, ,  we haveIma,(w) =O. 

IV. CONCLUSION 

An exactly solvable model of an inhomogeneous dielec- 
tric particle has been proposed. It has been shown that this 
model has absorption even if the dielectric constant ~ ( r )  is 
real. For a plasma, with E = 1 - wi ( r ) / w 2 ,  the frequency 
dependence of the photoabsorption is a resonant curve. The 
corresponding polarizability and cross section of the pho- 
toabsorption satisfy the Kramers-Kronig relations and a 
sum rule. 

It has been shown that an inhomogeneous dielectric 
particle has no natural oscillations for any continuous distri- 
bution ~ ( r ) ,  in contrast with the case of a homogeneous 
spherical particle, which does have natural dipole oscilla- 
tions in the case E = - 2. 

The methods and results of this study can be used to 
calculate the optical characteristics of complex atoms in the 
vacuum-UV and soft x-ray regions and in research on clus- 
ters, finely divided particles, biological specimens, and plas- 
mas in the atmosphere and in space. 

We wish to thank G. A. Askar'yan and the participants 
of seminars of A. N. Oraevskii, V. P. Silin, and V. I. Tatarskii 
for a discussion of this work. 

"We have in mind particles whose dielectric-constant profile varies con- 
tinuously. 

"Everywhere except in Subsection 11.3, the frequency w is assumed to be 
real. 

3'This assertion is valid for a natural oscillation of any multipolarity since 
the type of singularity of the equation for the radial function V(r) and 
also expression ( 14) remain the same as in the dipole case, which we are 
discussing. 

4'It can be shown that this assertion remains valid in the absence of spheri- 
cal symmetry. 
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