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The dynamics of the decay of overlapping levels with identical quantum numbers and the 
formation of the spectral line contour are studied by the method of summation of diagrams for the 
S-matrix in the Furry picture. The result suggests that the shape of the contour differs 
significantly from the usual superposition of Lorentzian contours. The case of two adjacent levels, 
2s2 and 2p2, with identical exact quantum numbers is considered in the spectrum of helium-like 
uranium under coherent excitation conditions of the initial state. 

1. Multiply charged ions are objects in which many 
quantum-electrodynamic phenomena are more clearly 
manifest than for ordinary neutral atoms. As an example one 
may cite the observation of normally forbidden transitions in 
the spectra of multiply charged ions. These peculiarities are 
explained by the fact that the electrons participating in these 
transitions are highly relativistic. For example, in helium- 
like U90+ the velocity of the electron amounts to on the aver- 
age to 0.67 of the velocity of light.' 

In this paper we shall investigate one more effect which 
arises, apparently, only in the spectra of multiply charged 
ions, namely the overlap of the contours of spectral lines of 
two levels described by identical quantum numbers. We 
shall show that in this situation the total contour is substan- 
tially different from the usual superposition of the two Lor- 
entzian contours corresponding to the individual lines. This 
situation is new to atomic spectroscopy (see Sec. 3 for more 

S( m,0) is renormalizable, as can be seen directly from the 
expression for probabilities containing only matrix elements 
of the electron self-energy operator in lowest order.' We em- 
phasize that the entire theory of the line contour is formulat- 
ed in the resonance approximation. 

The characteristic process of excitation followed by ra- 
diation of a multiply charged ion is shown in Fig. 1. Here the 
thin solid line denotes the electron belonging to the ion, i, k, 
and f being the initial, intermediate, and final states of this 
electron. The double solid line depicts the incident parti- 
cle-atom, ion, etc., which excites the ion under study. The 
wavy line denotes the emitted quantum (photon) with wave 
vector k,, . Assuming that in the collision a certain level k is 
excited, and from it follows the transition to the final statef, 
then the probability of the emission process equals 
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details). 
For such relativistic systems as the multiply charged where S k y  ( 00 90) is the matrix element of the S-matrix. 

ions the construction of the contours of the spectral lines can In the general case, however, it is necessary to suppose 

be consistently carried out only on the basis of quantum elec- that after the collision between the ion and the incident par- 

trodynamics. ~h~ quantum-e~ectro~ynam~c theory of the ticle the state of the ion is described by the density matrix 

line contour for one-electron atoms was fully developed first Phi. ( ) then be rep1aced by the 

in the paper by Low.* The approach based on the summation 
of graphs for the S-matrix in the Furry picture is also con- 
~ e n i e n t . ~  This approach permits readily the generalization 
of the results to the case of atoms (ions) with several elec- 
trons. First considered within this framework was the prob- 
lem of overlapping levels for atoms.4 In a recently published 
paper by Brown5 a different quantum-electrodynamic meth- 
od was proposed, based on the use of single-time Green func- 
tions; among other things the problem of overlapping levels 
was considered. One more method, employing the theory of 
the T-matrix, was applied to the problem of construction of 
the line contour in Ref. 6. 

For the calculation of decay probabilities of states it is 
convenient to consider the evolution operator .$( ~ , 0 ) ,  as- 
suming that the system was prepared at the instant of time 
t = 0 and then decays. Here it is assumed that the decay does 
not depend on the method of preparation. Such a situation is 
typical of problems in spectroscopy. However in the case of 
two overlapping levels this statement of the problem needs 
refinement. It is asserted in Ref. ,5 that the theory based on 
the evolution operator S( w ,0) is nonrenormalizable. None- 
theless, in the resonance approximation the theory using 

Only the system ion + incident particle can be de- 
scribed by a definite wave function, the state of the subsys- 
tem (ion) is not pure. 

The passage from (2)  to ( 1 ) may be justified if the level 
is sufficiently well isolated in energy from other levels. But 
we are interested in precisely the opposite case: two adjacent 
levels 1 and 2 which are equally excited by the collision. 
Conditions for coherent excitation of the atom by light were 

FIG. 1 .  Characteristic process of excitation and subsequent radiation by a 
multiply charged ion; i, k, fare the initial, intermediate, and final states of 
the electron. 
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where 

FIG. 2. Emission amplitude for the transition from an isolated level A to 
the ground state C to lowest order in the coupling constant. 

discussed in Ref. 7. They consist in the overlap of the widths 
of the levels: in that situation levels 1 and 2 are excited by the 
same harmonics of the spectrum of the excitation force (the 
effective force acting on the atom upon irradiation by light, 
collision, etc.). Under such conditions the phases of the os- 
cillations excited in the atom (transitions from the levels 1 
and 2) are the same, and that means coherence. In the case of 
excitation by collision the argument is substantially the 
same. To coherent excitation corresponds the choice of the 
matrix p,, in the form p ,  , = p ,, = p,, = p,,. Then 

Normalization of the matrixpk, is specified by the condition 

j ~W,+~, ,= I .  (4) 

2. Before passing from overlapping levels to radiation 
we briefly consider the process of one-quantum transition 
from an isolated excited level A to the ground level C. To 
lowest order in the coupling constant this process is de- 
scribed by the diagram in Fig. 2. The transition amplitude, 
obtained by direct calculation of the corresponding matrix 
element of the S-matrix, equals 

UcA=e(?n/o, , )  '" [ (ae )  'exp (-ik,r) 11 C A ,  ( 6 )  

where EA , E, are single-electron energies, [...I cA is the ma- 
trix element calculated using single-electron (Dirac) wave 
functions k,,, w,, , e are the wave vector, frequency and 
polarization of the photon, a are the Dirac matrices. 

To obtain the usual Lorentzian line contour it is neces- 
sary that the self-energy insertions into the single-electron 
lines be taken into account. The summation of all such inser- 
tions into the initial state line in the resonance approxima- 
tion3 results in the replacement of EA in Eq. (5 )  by 
E, + AE, ', where AE, ' = (Z"'),, is the diagonal ele- 
ment of the self-energy operator in lowest order (radiative 
correction). Here 

where SEA is the Lamb shift of the level and T, is the radia- 
tive width of the level. Summation of all the insertions into 
the final state line results in the replacement of Ec by 
Ec + SE, . In addition to the self-energy diagrams one must 
also sum the one-loop diagrams. In what follows the electron 
lines in the diagrams summed over the self-energy insertions 
in the resonance approximation will be represented by heavy 
lines. 

After performing the indicated replacements in Eq. 
( 5 ) ,  substituting into Eq. ( I ) ,  integrating over the direc- 
tions of emission of the photon v,, E k,, /w,, and summing 
over the polarizations e,  we obtain 

is the partial width of the state A,  due to the transition to the 
ground state C, 

is the transition frequency with the Lamb shift in the initial 
and final state taken into account. 

3. Let us consider now the overlap of the contours of 
spectral lines of two adjacent levels A and B, from which 
transitions are possible to the ground state C. We suppose 
that the levels A and B are described by an identical set of 
quantum numbers. We consider first the amplitude SAC. 
Now there occur, in addition to the usual resonance denomi- 
nators due to keeping in sums over intermediate states just 
the state A,  new resonance denominators corresponding to 
the state B. Diagrammatically the summation over such de- 
nominators is depicted in Fig. 3. Figure 3a describes the re- 
sult of the summation of ordinary resonance denominators. 
In addition it is necessary, first, to sum over all insertions of 
the block X (see Fig. 3b) into the electron line of the initial 
state. The result of such a summation is 

where 

and we have introduced the notations: 

aAc=aAc-l/zil?A, 
(13) 

AE,B'=AEBAT= (2'") A B = ~ E A B - ' / Z ~ ~ A B .  (14) 

Second, one must add to expression ( 11 ) the result of the 
replacement of the vertex in the diagrams of Fig. 3b by the 
block Y (see Fig. 3c). This means that U,, in Eq. ( 11 ) 
should be replaced by 

It is not hard to verify directly that upon such a summation 
the contribution of all resonant denominators is taken into 
account. 

As a result of the indicated operations the following 
expression is obtained for the amplitude7: 

FIG. 3. Summation of resonance denominators: a-heavy line-the result 
of summing the resonance denominators corresponding to the state A ,  b- 
summation of insertions of block X, c-summation of insertions of block 
Y. 
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The denominator in formula (16) may be represented as 
follows 

(ZAc - mph 1 (ZBC - u p h  - (AEAB r ) 2  

= ( m ( l )  - uph ( d 2 '  - mph 1, (17) 

0 i 1 ' 2 ' = 1 / 2 ( ~ ~ c + ~ ~ c ) + 1 / 2  [ ( G A C - ~ B C ) ~ + ~ ( A E A B ' ) ~ ]  "', ( 18) 

where values of m"," indicate the location of the reconstruct- 
ed levels. We may therefore write instead of Eq. ( 16) 

The amplitude S,, is calculated analogously. Treating the 
excitation of the levels A and B as coherent, i.e., employing 
now formula (3 ) ,  integrating over the directions, and sum- 
ming over the polarizations we obtain the following expres- 
sion for the combined line contour: 

where 

(22) 
and the mixed partial width TAB,, is determined by the for- 
mula 

a 

It follows from Eq. (21) that the line contour arising in 
the case of overlap differs from the superposition of two Lor- 
entzian contours. The reason for this difference is twofold: 
first, the influence of the off-diagonal "shift" AEABr and, 
second, the presence of interference terms. We note that the 
interference terms for the differential cross sections (proba- 
bilities) can also arise in the case of overlap of levels with 
different quantum numbers. Such a situation was discussed, 
for example, in Ref. 7. However in passing over to total pro- 
babilities the nonLorentzian form of the contour is obtained 
only for levels with identical quantum numbers. 

Indeed, in the case of overlapping levels with different 
quantum numbers we have as a consequence of symmetry, 
first, AEABr = 0 and, second, T, , ,  = 0, so that both above 
reasons are inactive. For the differential cross sections, al- 
though AEABr = 0, the partial probability TAB,, does not 
vanish as there is no integration over angles and the interfer- 

ence terms are preserved regardless of the nature of the 
quantum numbers of levels A and B. 

4. We shall investigate the overlap of identical levels in 
the spectra of multiply charged ions, using two-electron ions 
as an example. For the characteristics of the levels, with the 
electrons assumed to be relativistic, we shall make use of the 
jj-coupling scheme, i.e., we shall specify the set of quantum 
numbers (nlj, n'l 'j'), where nlj is the set of single-electron 
quantum numbers (n is the principal quantum number, j is 
the total angular momentum, I is the orbital angular momen- 
tum),  and J-the total angular momentum of the ion. The 
orbital angular momentum I is not conserved for a relativis- 
tic electron but indicates the parity of the state. The levels 
are degenerate in the quantum number I; this degeneracy is 
lifted upon taking into account the interaction between the 
electrons and the Lamb shift. The splitting of the energy 
levels according to the values of J also occurs when the elec- 
tron-electron interaction is taken into account. For an ion 
the magnitude of this splitting is of the order of AEn' zEo/ 
Z,  where E, is the binding energy. We note that among levels 
belonging to the samejj-configuration E I1 '(nlj, n'l 'j'), there 
may be several levels with the same quantum numbers J a n d  
the same parity, determined by the sum I + I '. Further, for 
large values of the nuclear charge Z ( a Z -  1, where a 
z 1/137 is the fine structure constant) the radiative width is 
I?-aE,. Consequently, for appropriate numerical coeffi- 
cients it could happen that T z AE ' " I ,  which is the situation 
that interests us. 

As a concrete example one may cite the doubly excited 
levels ( 2 ~ , , ~ ,  2sIl2)(, and (2p,,?, 2pll,)o. For such levels we 
have, within the limits O~JJ-coupling and with the electron- 
electron interaction completely ignored, that formula (21) 
again reduces $ the superposition of two Lorentzian con- 
tours. Indeed, C is a single-particle operator and its off-diag- 
onal elements vanish in this case. Therefore a nontrivial re- 
sult is obtained only when the electron-electron interaction 
is taken into account. The wave functions of the mixed states 
have the form 

where the mixing coefficients are determined by diagonali- 
zation of the electron-electron interaction V. I t  follows from 
the orthogonality condition of 4'"."' that: 

For intermediate values of Z there is admixed to (24) 
one more level (2p,/?, 2p3,?)(, belonging to anotherjj-config- 
uration. We shall, however, ignore this admixture. 

All quantities entering formula (21) may be obtained 
from a knowledge of the coefficients a, : 
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TABLE I1 

z 1 . E n  1 2 I * k i  1 * I r4 1 r,3 1 8fi:LE3 1 F , I ,  

Here we made use in Eq. (28) of the relation (25).  Further, 
if one were to study, for example, the transition from the 
states A,  B to the state'' C = ( Is, 2p) ,, then 

Here E,, ( n  = 1,2 is the principal quantum number) is the 
energy of the electron in the Coulomb field and AE T,; are 
the corrections, due to the interaction, obtained in diagona- 
lizing the matrix V. 

Matrix elements of the interaction V, borrowed from 
Ref. 8, and calculated on that basis values of AE Y,; and 
a, ' A , B '  , are given Table I. All quantities with the dimension 
of energy are given in atomic units. We note that the matrix 
V is represented in Ref. 8 in the form of just the first two 
terms of its expansion in aZ, and this could result in substan- 
tial errors for large Z .  

Matrix elements of the interaction AE "" = AEyt  
- AE g t ,  values of SE,, borrowed from Ref. 9, and values of 

SEA ' and SE, ' calculated from formulas (26) and (27) are 
given in Table 11. We do not list here values of SE,, since for 
arbitrary Z one has the inequality SE,,$-SE,, .' The level 
widths rA and T B  , taken from Ref. 10, are also given in Ref. 
9. We determine these widths from the most intense transi- 
tions tabulated in Ref. 10. In addition the doubly excited 
levels have also a width due to autoionization, which, how- 
ever, becomes smaller than the radiative width for large Z. 
Further we list in Table I1 the quantity SEABr,  calculated 
directly from formula (28).  Lastly, the quantity T A B  may be 
expressed with the help of Eqs. (26) and (27) in terms of T A  
and r,  : 

FIG. 4. Calculation of the line contour from formula (21 ) for transition 
from overlapping levels A and B to the final state C( J = 1 ). 

It follows from the data in the Tables that, first, for Z >  50 we 
have indeed AE '"' z rA,, and, second, that the off-diagonal 
element AEABr z AE',, i.e., is not small. Consequently, in 
this region the difference between the total contour and the 
superposition of two Lorentzian contours should be substan- 
tial. 

The final result is shown in Fig. 4 for Z = 90. We have 
assumed here that , = , r , ,  = rB,  rAB,, 
= (TA,c  TB, ,  ) ' I 2  which should not cause too much of an 

error in the calculations. The solid line in Fig. 4 depicts the 
total contour obtained in the absence of interference terms 
and for AEjqB = 0, i.e., the superposition of two Lorentzian 
contours corresponding to the individual lines. The dashed - 
line depicts the result of the calculation according to formula 
(2  1 ) in the case when TAB, ,  and AE,, ' are different from 
zero. 

The two expressions for dWA , , ,  are normalized in 
the same fashion using formula ( 4 ) .  The result indicates that 
the form of the contour strongly differs from the usual super- 
position of Lorentzian contours. Let us note a certain analo- 
gy between the pair of levels here studied and the familiar 
pair of neutral kaons: the latter are also characterized by 
identical quantum numbers (with the weak interaction tak- 
en into account) and level overlap, although the interaction 
that determines the mixing of the initial states and decay 
lifetimes has a different physical origin. 

The authors are grateful to V. M. Shabaev for discus- 
sion. 

" In the preceding discussion we have considered the final state C to be 
stable, which cannot be said about the state (Is ,  2p) ,. It may be sup- 
posed, however, that allowance for the instability of the final state does 
not change the form of the contour, as happens in the case of an isolated 
level. 
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