
Mass shift of a classical charge in the presence of conducting boundaries 
S. L. Lebedev 

I.  Ya. Yakovlev Chuvash State Pedagogicallnstitute 
(Submitted 12 December 1988) 
Zh. Eksp. Teor. Fiz. 96,44-52 (July 1989) 

It is proposed to calculate the classical part of the mass shift ofa uniformly accelerating charge,'.* 
by an alternate method in which the role of the "photon mass" is played by the reciprocal of the 
distance from the charge to a conducting planar boundary parallel to the line of motion of the 
charge. The mass shift obtained in this manner turns out to be an elementary function of the 
product of that distance by the acceleration w,. The existence of a dispersion relation for the real 
and imaginary parts of this mass shift is proved. The mass shift for a charge accelerating along the 
axis of a rectangular waveguide with perfectly conducting walls is found. Results of numerical 
calculations are given for several ratios of the sides of the rectangular cross section. The effect of 
the boundary on the mass shift vanishes when the distance between the charge and the walls of the 
waveguide substantially exceeds c2/w,, which is the distance characteristic of the self-field of a 
uniformily accelerating charge. 

1. INTRODUCTION 

The mass shift of a classical charged particle moving in 
a constant uniform electric field was found in Ref. 1 as a 
special case of the quantum shift and was further studied in 
Refs. 2-4. It was shown there that the mass shift Am, arises 
as result of a change in the infrastucture of the self-field of a 
uniformly accelerated (UA) charge and determines the cor- 
rection to the classical action of the particle, equal to the 
change in the self-action in the external field as compared to 
the self-action in the absence of the field (the difference be- 
tween the indicated quantities will be denoted below by the 
symbol 1;): 

Here e denotes the charge of the particle, iir, (T )  = dx, (T) /  

dr,  where T is the proper time along the world line x, (T), 
and A' (x;p) is the propagator of a "photon" with mass ,LA, 

equal for p = 0 to" 

Dc (x) = A c  (x; 0) = (i/4n2) (x2+ i0)-'. (2)  

The expression ( 1 ) contains the characteristic infrared ( IR)  
divergence as p -0, preventing the direct use of D' (x )  in 
place of A' ( x ; p )  in Eq. ( 1 ).I 

In this paper we study the mass shift in the presence, in 
addition to the external accelerating field, of a perfectly con- 
ducting boundary (plane, rectangular waveguide) parallel 
to the line of motion of the charge. In that case the geometry 
of the region, occupied by the self-field of the UA charge, is 
modified not only by the acceleration but also as a result of 
the conditions at the boundary. This leads to elimination of 
the IR divergence not with the help of a photon mass but 
owing to one or several parameters characteristic of the 
transverse dimensions of the waveguide or of the relative 
position of the charge and the boundary, and to a depend- 
ence of Am, on these parameters. 

Especially simple formulas are obtained in the case of a 
planar boundary: 

where w,, = le~l /m is the acceleration of the charge in an 
electric field of intensity E, R is twice the distance from the 
charge to the plane, and V, (Rw,) is an elementary function 
(see Sec. 2 below) with the following asymptotic behavior 
for R w , ~  1: 

Rev l  (Rw,) =-nf.. . (5 

(the subscript 1 refers to the spin of the self-field of the 
charge). Comparison with formula ( 80) of Ref. 1 or (7 )  of 
Ref. 2 gives the asymptotic correspondence between the 
"photon mass" and the distance: 

Analogous calculations for the mass shift of a scalar 
charge, performed on the assumption of Dirichlet boundary 
conditions for the scalar self-field at the boundary, deter- 
mine the function V,(Rw,,) (see below). Here the functions 
V, (Rw,) and V,(Rw,) replace the functionss, (p2/w: ) and 
S,(p2/m2) of Ref. 3 and have similar to them properties, but 
are simpler. We have also shown that in our case too the real 
and imaginary parts of the shift Am, are connected by a 
dispersion relation expressing the causal connection be- 
tween the reactive change of the self-field of the charge and 
its radiation, see Ref. 3. 

To evaluate the mass shift for a charge moving in a rec- 
tangular waveguide we made use of the results of Ref. 5, 
where, in particular, the Green function (GF)  for the elec- 
tromagnetic field in a rectangular parallelepiped is obtained. 
The G F  for the waveguide is obtained by letting one of the 
edges of the parallelepiped go to infinity. The mass shift in 
the waveguide is represented as a double sum over image 
charges whose terms are elementary functions, which is con- 
venient for numerical calculations. The mass shift ReAm 
obtained in formula (3  1 ) differs from Re Am, by a quantity 
due only to the effects of the boundaries (see below) and 
exhibits correct asymptotic behavior in the external field: In 
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a weak field it coincides with half of the Coulomb interaction 
energy between the charge and the image charges, while in a 
strong field it coincides with the mass shift - aw,/2 of a UA 
charge in a space without boundary.' In the intermediate 
region, w,- ' -a,  (wherea, is the length of one of the sides of 
the cross section of the waveguide), the shift Re Am depends 
on the position of the charge and does not reduce to a simple 
sum of the Coulomb shift and the shift - aw,/2. 

2. MASSSHIFT IN THE PRESENCE OF ACONDUCTING PLANE 

The change produced in the self-action of a classical 
charge by the presence ofthe plane is taken into account by a 
modification of the causal propagator, Eq. (2)  (see, e.g., 
Ref. 6,  p. 105 of Russian translation): 

DBe (x, x') = - 1 1 
(2-x') '+id- (x-2) '+iO 

which ensures that the Dirichlet boundary conditions are 
satisfied for the self-field of the charge; here 2; is the "mirror 
image" of the vector 2;. We assume that the conducting 
boundary coincides with the (x,,x,) plane and the motion 
takes place along a straight line parallel to the axis x,, so that 
the%; in Eq. (7)  is connected with 2; = (x', ix; ) as follows: 

Then for the UA charge we find upon settting x = x ( r ) ,  
x' = x( r l ) ,  see Ref. 2, that 

where R = 2xl. 
In the presence of boundaries formula ( 1 ) should con- 

tain D ', (x,;' ) instead of A' (x  - x';p ). If, moreover, the - 

procedure 1; is understood as 

right-hand side of Eq. (1)  determines the 'total shift 
Am = Am, + Am,, where Am, is the shift that vanishes 
together with the acceleration (field), while Am, is the shift 
due to the Coulomb interaction of the varticle with the im- 
age charge. It is obvious that to obtain Am, one should use 
formula ( 1 ) with A' replaces by D - Dc [see Eq. (7)  1,  
and the factor jc, (r) xjc, (7') should be replaced by its limit 
for E = 0, equal to ( - 1 ), with the symbol 1; omitted: 

m 

It is relevant that Am, is equal to half the Coulomb interac- 
tion energy of two equal and opposite charges at a distance of 
R = 21xI I from each other. The reason is that the work per- 
formed in moving the charge away from the boundary 
should be equal to 

(no work is performed to move the image charge). 
Keeping the notation Am, for the mass shift due to 

acceleration, see Eq. ( 1 ), we have in the case of the plane 

-cth 0 + )-i(0 cth @-I) ,  ( 12) 
2 sh (0/2) 

so that the exact expressions for Re Am, and Im Am, take 
on the form 

aw0 Re Am. = -( -cth 0 + 
2 

awo Im Am. = - (-0 cth 0+1). 
2x 

(15) 

The interval Ar  = r - r' = w,-'0 is the characteristic inter- 
val of proper time between the emission of the photon at the 
instant r and its absorption (after reflection from the mir- 
ror) at the instant r', see Fig. 1. This follows from the fact 
that Eq. ( 13) may be rewritten in the form [see Eq. (8)  1 

In the case of a scalar charge we obtain by following 
Ref. 3, replacing i, x; - 1 in Eq. ( 1 1 ) , and making use of 
Eq. (8)  

Here 0 is the same as in Eq. ( 13 ) . 
For R % wO- ' formulas (4)  and ( 5 ) are easily obtained 

from Eq. ( 12); the mass shift Am, vanishes with vanishing 
field (w, = 0) .  

Graphs of the functions V, and V,, are shown in Fig. 2. 
For convenience in making comparisons with their ana- 
logs-the functions S,  and S, of Ref. 3-we measure the 
abscissa in units of 2/w0y, corresponding to II ' I '  = p/wo in 
Ref. 3. 

One's attention is called to not only the qualitative but 
also the quantitative agreement between the functions 
V, (Rw,,), V,(Rw,,) determining the mass shifts, on the one 

FIG. 1. 
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FIG. 2. 

hand, and S ,  ( A ) ,  S,,(A) on the other. Besides the agreement direct evaluation of the integrals with Eqs. ( 12), ( 13) and 
of all the limiting values ofthe functions V,,  V,) and S , ,  SO (16)  taken into account. The D R  were obtained with the 
(for Rw,,> 1 ,  RwO< 1 and correspondingly A  < 1, A> 1 1 ,  we help of the relation (z2 = ( x  - x ' ) ~  < 0 )  
have the characteristic ratio cc 

Re V, Re S ,  
lim - = lim - = 3, 
n , , - o R e V o  ,,,ReS., 

whose value was related in Ref. 3  to the differences between which may be used, in view of Eq. ( 8 ) ,  to replace D ', (x ,x l )  
the spin degrees of freedom of massive vector and scalar in Eq. ( 1 1 )  by 
fields." The minimum point of the function Re V,, and the - 
intersection points of the graphs of all four functions are also 1 A (z, Rr-R) -A ( z ,  R') 

A(z,O)-A(a,H) = - 5  
close to the corresponding points for the functions Re SO, h"-K 

dR'. (23) 
1?- 

ImS,,, Re S , ,  Im S , .  The relation 

lim (Im S,/Im S,,) =I Substitution of expression (23)  into Eq. ( 1 1  ) and the evalu- 
A- = 

( 1 8 )  ation first of the integral over the difference of the proper 

is not true for V,  and V,,: times, leads to the expression 

and the asymptotes of Im V, (Rw,) and Im V,(Rw,) near 
zero have themselves a power-law character in contrast to 
the essential singularity of the functions Im S ,  ( A )  and Im 
S,(A) at infinity. 

The agreement in the behavior of the functions V,, V,, 
and S, ,  S,, for Rw0> 1 and A< 1 in fact expressed by the cor- 
respondence in Eq. ( 6 ) .  In actuality, as can be seen from a 
comparison of the graphs of the functions Im V ,  and Im S, ,  
the region of validity of the correspondence ( 6 )  is much 
wider: It is valid at least for 0  <A ' I 2 -  (Rw,,) - ' 5 3, and on 
the entire numerical axis ( I  = 1 , O )  for the real parts of V, 
and S,  . 

3. DISPERSION RELATION 

The above observed analogy between the two ap- 
proaches to the description of the mass shift becomes even 
deeper because of the existence, in our case as well, of a dis- 
persion relation ( D R )  between the real and imaginary parts 
of the shift. 

The D R  for A W,, ( R )  ( I  = 0 , l )  has the form 

2 Re 4 W., ( R s )  dx 
Im 4War(R) = -- 4 - 

Jl " x2-1 x ' 
(20) 

in which (M = 1 + wiR ' / 2 ) ,  for example, for I  = 1 

cD(R)=-M(MZ- I ) - ; "  arch fil 

-1-in[M sign R. (MZ- 1)-"- (~c;,R)-'l 

and is connected with V,(Rwo)  in Eq. (12) .  After an ob- 
vious change of variable of integration and utilization of the 
asymptotic (as R  -+ co ) properties of @ ( R )  we obtain the 
desired result, Eqs. (20)  and (21 ) after separating the real 
and imaginary parts. 

If we make in the D R  (20)  and ( 2  1 ) the replacement 
k R x - + y l  and denote p = l / k R  ( k  > 0, an arbitrary num- 
ber; to correspond with Eq. ( 6) one may take k  = y/2) ,  then 
these relations coincide in form with the D R  written in the 
two formulas (32)  of Ref. 3  (after the real and imaginary 
parts have been separated ); for example, our formula ( 2  1 ) 
becomes 

-2p 1n1 AIVal(l/ky) 
Re .A War ( f /kp)  = - 4 

y2-pL 
d , .  (24) 

0 

4. MASS SHIFT IN A RECTANGULAR WAVEGUIDE 
m 

2 Im AW.,(Rx) We assume that the axis of a rectangular waveguide of 
1,124 M7., ( R )  = - 4 dx. (21 ) dimension a ,  x a? is directed along the x,-axis, which is the 

n " x2-1 
direction of motion of the UA charge. The calculation 

The validity of Eqs. (20)  and (21) is readily verified by scheme, Eq. ( 1  I ) ,  remains unchanged but the expression 
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( 7 )  for D ', (x, XO becomes more complicated due to the Im Am 
appearance of an infinite number of image charges. If only 
the third and fourth components of the 4-velocity x, (7)  are Jft arch MI M ,  arch M,  

different from zero, we may take for D ', (x, x ')  the following ('IJl2--I) : ( M z 2 - I )  

expression (see Ref. 5 )  : 

Here 

and x ,  and x, are the coordinates of the particle in the trans- 
verse section of the waveguide (the origin of the coordinates 
is at one of the edges; the waveguide is assumed to be of 
infinite length). 

Further calculations with Eq. (8 )  taken into account 
are a repetition of those performed in the case of the plane, so 
that we obtain in the same notation as before" 

The expression for Am, in the case of the waveguide is 
readily obtained. As in the derivation of Eqs. (9 )  and (10) 
we make use of D ', (x, x ')  - D '(x - x')  and set w,, = 0 to 
obtain 

=" y, y, [ I-"p."n - R - R - R -  . (28) 
2 

PI  PZ 
RI 1 

The presence here of the factor 1 - 6,,, 6,,~ indicates the 
omission of the corresponding term forp, = 0 = p,. It is seen 
that Am, is real, see Eq. (26).  Introducing the notation 

~ l l , = l + ~ , ' R , ~ / 2 ,  i = l ,  2 .  3 ,  4 ,  (29) 

- 
hJ, arch M ,  M ,  arch M .  ] + ( ~ ~ 2 - 1 )  ,'J ( ~ ‘ ~ - 1 )  ~h t (30) 

With increasing p ,  and p, the individual terms in the square 
brackets of expressions (30) and ( 3  1 ) do not tend to zero 
separately, but owing to the different signs the sums in the 
square brackets rapidly decrease as p, - co or  p, + co , and 
the double sums in (30) and (31) converge. 

Results of numerical calculations of the quantities Re 
Am(L)  and L = (w,,a,)', for fixed z ,  -x , /a ,  = f, z,-x,/ 
a, = f and a, G=a,/a, = f and 1, are given in Fig. 3, a-c. 
For L-0  the mass shift tends to the Coulomb limit, Eq. 
(28),  when 

(see below), and for L - w to the value found in Ref. 1 : 

The graphs in Fig. 3, a-c can be approximately (for the 
same range of L )  by the following formula: 

in which C and C ,  depend on z , ,  z2, and G (see Appendix). 
The first term in Eq. (32) is negative [see (33) 1, is indepen- 
dent of the acceleration w,,, and coincides with Am. see Eqs. 
(26) and (28).  The second, also negative, term equals 
Re Am, for small values ofL 5 2C/3CI [ L  = 2C /3C, corre- 
sponds to the extremum of the right side of Eq. (32) 1. 

A comparison of formulas (31 ) and (32) is carried out 
in Table I where we used numerical values of the constants C 
and C ,  (see the Appendix): 

we write the real and imaginary parts of the total shift As it should, the agreement between formulas ( 3  1 ) and (32) 
Am = Am, + Am,, using the definition of the function V , :  worsens with increasing L .  
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TABLE I. 
G = I G = l ,  2, - I ! *  I 

2 2  = ' I *  I . 2 2  = 11. 

Re A m ,  alc. i2 t:? A I I I ,  r1.!~, , /2 

5. CONCLUSION 

In the paper we studied the effect of boundaries on the 
mass shift of a UA classical charge moving parallel to the 
boundaries. The mass shift turns out to be a function of the 
dimensionless parameter Rw,, where R determines the dis- 
tance from the charge to the boundary, and w, ' is the char- 
acteristic transverse dimension of the self-field of the UA 
charge, which appears in the Schott solutions [see, for exam- 
ple, Ref. 2, formula (42) ]. 

In the case of a conducting plane the mass shifts Am, of 
an electric and scalar charge, as functions of the parameter 
(Rw,,) -I, display a close analogy with the mass shifts of the 
same charges in the absence of a boundary, but with massive 
self-fields, provided the latter shifts are viewed as functions 
ofp/w,, [see Eq. (6) ,  Fig. 2, and the graphs for the real and 
imaginary parts of the functions S , ,  So in Ref. 31. 

The presence of the waveguide has a significant effect 
on the shift Re Am for R -a,  4 w,,-l, since in that case the 
slef-field near the boundary is not small, and the shift is de- 
termined by the Coulomb interaction between the charge 
and the image charges: 

Re Am-Arnc=aC/4a,, C<O. (34) 

In the opposite case, when R -a, $ w,- I ,  the self-field of the 
UA charge, being mainly concentrated near the trajectory 
(which we have located at the center), is little affected by the 
presence of the boundary so that the mass shift tends to the 
value it has in the absence of the waveguide:' 

Re A1n--au0/2. (35) 

It is important that the simple sum of the right sides of Eqs. 
(34) and (35), although giving the correct asymptotics for 
a ,  w,, $1 and a ,  w,, 4 1, nevertheless deviates substantially in 
the intermediate region (being too small according to the 
numerical calculations) from the true value of Re Am calcu- 
lated from formula (3  1 ) . This can also be established with 
the help of Eqs. (32) and (33): 

(Re Anz-Anl,+ aw,/2) /(aw,/2) =l+"4('lw,a,>0, w,,alGl. 

Lastly we note that for igLg8,  the value of Im Am in Eq. 
(30), calculated according to the same recipe as Re Am [see 
Eq. A 1 ) 1, decreases montonically in the following ranges: 

The author is grateful to V. I. Ritus for detailed discus- 
sions which helped in the understanding of the questions 

raised in this paper, and also to V. L. Pazin for help with the 
computer work. 

APPENDIX 

The basis for the derivation of the approximate formula 
(32) lies in the rapid convergence of the series ( 3  1 ) . If it is 
represented in the truncated off form 

.II N 

then, as is shown by numerical calculations, increasing N, 
starting with N = 6, changes the sum (A1 ) only in the 6th to 
4th decimal place (in the entire range h<L<8 under investi- 
gation). For infinite Ip, I and lp21 < N  and sufficiently small 
L, a general term of the series (3  1) may be approximated by 
two terms of a Taylor series, so that the coefficient Cis given 
by the expression 

Y N 

and C, by an analogous expression, but with the square roots 
appearing in the numerator. Both sums are convergent for 
N- UJ . The same method cannot be used to obtain the coeffi- 
cients C,, C,, ... that follow in the expansion (32): The series 
(3 1 ) is not uniformily convergent near the point L = 0 (see, 
e.g., Ref. 7, 93.3), and the coeffiecients C,, C, ,... are repre- 
sented by divergent series in the limit N -  UJ. 

"We use a system of units in which f i  = c = 1 ,  a = e2/4&, components 
of 4-vectors are denoted by a, = (a, ia,). 

,'We emphasize that the self-field is massless for us in both cases. 
"For p ,  = p, = 0 the parameter R ,  = 0, and the expression for V, ( 0  j 

contains the indeterminacy m - CO, which is removed by redefining the 
function V, (R,w,) at zero by continuity: lim V, (x) = 0 as x-0 .  
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