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In the context of the chaotic inflation scenario, we study the effects of inhomogeneity of an 
inflationary universe on nascent pregalactic perturbations. We predict anisotropy in the spectrum 
of matter-density inhomogeneities in the observable part of the universe. Assuming the most 
natural physical conditions in the early universe, the magnitude of the anisotropy is of the order of 
several percent. A detection of the predicted anisotropy could be counted as evidence favoring the 
chaotic inflation scenario. 

1. INTRODUCTION 

In its present form, the inflationary universe scenario 
enables one to solve any number of important problems 
spanning the gamut from cosmology to elementary particle 
physics (the field is reviewed in Ref. 1 ). I t  encompasses such 
issues as the horizon problem, the problem of the homogene- 
ity and flatness of the observable part of the universe, the 
lack of monopoles and other heavy stable particles predicted 
by grand unified models, and the origin of structure in the 
universe. 

The principal means by which it deals with these and 
other problems is by postulating that in the early stages of 
evolution of the universe, there was an episode of quasiex- 
ponential expansion (the inflationary stage) during which 
all physical dimensions were magnified by an enormous fac- 
tor. The region of the universe that is observable at the pres- 
ent epoch is then the result of the expansion (in the distant 
past-i.e., inflation) of some primordial, causally-connect- 
ed region that may be considered in a natural way to have 
been both homogeneous and isotropic. The problem of the 
uniformity of the observable universe is thereby solved. The 
density of heavy particles and other exotic objects also de- 
creases during inflation, so that if they are not produced 
afterwards, one can account for their present undetectabi- 
lity. 

The inflationary universe scenario makes it possible to 
explain the origin of the observed structure of the universe in 
a completely natural manner (see the review in Ref. 2 ) .  Pre- 
galactic perturbations ( the precursors of galaxies and clus- 
ters of galaxies) are formed during inflation as a result of 
quantum fluctuations of both matter fields and of the metric 
as the scales of these fluctuations are effectively "distend- 
ed." The pregalactic perturbations then acquire the spec- 
trum necessary for the formation of the observable structure. 

The many advantages of the inflationary universe sce- 
nario qualify it as practically the only candidate theory that 
can describe the evolution of the very early universe. An 
extremely important question in this regard, then, is how 
one might conduct a direct test of the inflationary scenario; 
in other words, are there any physical consequences that 
might be detectable by present-day astrophysical observa- 
tions? Clearly, the theoretical prediction of such physical 
consequences together with their subsequent observational 
verification would not only serve to affirm the general idea of 
inflation, but would provide essential help in discriminating 
among the different versions of the inflationary scenario and 
elementary particle theories upon which the inflationary 
scenario is based. 

For example, one of the most important predictions of 
the inflationary universe scenario is that the cosmological 
constant R = p/p,, is equal to unity to high precision. This is 
the case in any version of the inflationary scenario, and in 
principle can be utilized as an observational test of the latter. 
Unfortunately, the sizable uncertainties in current observa- 
tional results prevent us from drawing any meaningful con- 
clusions about whether fZ is indeed close to unity.j 

Perhaps one of the most impressive achievements of the 
inflationary universe scenario is its explanation of the origin 
of the observed structure. The pregalactic perturbations that 
come into being during inflation may contain information 
about physical conditions in the very early universe, and this 
information may well be preserved in the properties of pres- 
ently observable structure. In the present paper, we wish to 
demonstrate that these properties can serve as a test of the 
inflationary universe scenario. 

One of the most prevalent trends in constructing a be- 
lievable inflationary scenario is the tendency to derive infla- 
tion as a consequence of those physical conditions that might 
seem the most natural and likely in the early universe. In our 
opinion, the most attractive approach along those lines is 
provided by the chaotic inflation scenario.' In that scenario, 
inflation in the early universe is not at all exotic or exccption- 
al, but on the contrary is entirely likely arid perhaps even 
ine~ i t ab le .~  The chaotic inflation scenario radically alters 
our concept of the global structure of the universe," allowing 
as it does for significant inhomogeneity on scales much larg- 
er than the observable horizon. 

This last point plays a key role in our considerations. 
We wish to show that inhomogeneities on the largest scales 
can affect the spectrum of pregalactic perturbations that 
form during inflation. The mechanism involved is quite sim- 
ple, and can be elucidated as follows. As high-frequency per- 
turbations propagate against a nonuniform background, 
there is an effective "refraction" of the corresponding waves 
due mainly to inhomogeneities of the metric. In that sense, 
the effect is largely analogous to the well-known result ob- 
tained by Sachs and Wolfe.' In the language of quantum 
theory, we are dealing with polarization of the vacuum by 
background inhomogeneities. The net result of this effect is 
that the pregalactic perturbations that derive from vacuum 
fluctuations possess an anisotropic spectrum, and this ani- 
sotropy should be preserved in the spectrum of observable 
structure on scales at which the effects of nonlinear pro- 
cesses associated with the formation of galaxies and clusters 
of galaxies are negligible (that is, on scales of dozens of me- 
gaparsecs or more ). 
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An important remark is in order with regard to the way 
in which we derive our basic result. We shall be investigating 
the evolution of vacuum fluctuations, all the while remain- 
ing within the confines of field theory. The main contribu- 
tion to the anisotropy of the spectrum of fluctuations comes 
from the evolutionary phase in which fluctuations exist on a 
scale much smaller than the Planck length. There exist seri- 
ous reservations about the applicability of field theory at 
such distances. The theory that ultimately describes interac- 
tions beyond the Planck length may turn out to be substan- 
tially different; at present, the most popular alternative is 
superstring theory.' It would therefore be exceedingly desir- 
able to study the problem that we attack in this paper, for 
example, from the vantage point of superstring theory. The 
anisotropy of vacuum fluctuations might then be due to po- 
larization of the string vacuum induced by background inho- 
mogeneities. It is to be hoped that considerations based on a 
more realistic theory will not qualitatively modify our re- 
sults. 

Bearing in mind the foregoing remarks, we now proceed 
with our calculations. In  Sec. 2, we examine the principal 
results relevant to the evolution of a homogeneous and iso- 
tropic model, and in Sec. 3 we consider the origin of prega- 
lactic perturbations in the context of the linear theory. Sec- 
tion 4 is devoted to an investigation of the development of 
small-scale fluctuations in an inhomogeneous background 
in the quasilinear approximation, and in Sec. 5 we study both 
qualitatively and quantitatively the onset of anisotropy in 
the spectrum of the pregalactic perturbations. In  Sec. 6 we 
analyze the anisotropy of the observable structure, and we 
close in Sec. 7 by formulating our main conclusions. 

2. HOMOGENEOUS COSMOLOGICAL SOLUTION 

For simplicity, we consider a model containing a single 
scalar field p driving inflation. The Lagrangian for this mod- 
el takes the form 

where M, = G I"-, 1.22.10'" GeV is the Planck mass and 
G is the gravitational constant (throughout this paper, we 
employ a system of units in which f i  = c = 1 ) .  In order for 
the chaotic inflation scenario to be feasible, the potential 
V(p)  of the scalar field must have a finite slope, as would a 
power function, for example. From here on, then, in explicit 
expressions we employ the potential 

The equations of motion implied by the Lagrangian ( 1) 
are 

and in the present case, Eq. ( 4 )  follows from Eq. (3 ) .  
Let us briefly review some results bearing upon the evo- 

lution of a homogeneous and isotropic region filled with a 
uniform field p .  (The reader can find a detailed analysis in 
Ref. 9.) In addition, we restrict ourselves to a spatially flat 
model. The metric is then 

ds'=g,,,d.r"dx'=rlt"-n' ( t )  dx" ( 5 )  

or, in conformal coordinates, 

a ( t )  here is the scale factor. The relationship between phys- 
ical time t and conformal time 7 is given by 

The equations describing homogeneous evolution may be 
derived from ( 3 )  and (4) ,  and they take the form 

where ~ = a / a  is the Hubble parameter. Henceforth, a dot 
over a function denotes a derivative with respect to time t, 
while a prime denotes a derivative with respect to conformal 
time 77. 

From ( 9 ) ,  we find that 

where a, and p, are constants that describe both the rapid 
evolution of the scalar field (& cc a 9 and the "slow roll- 
ing" regime ( p z  - ( 1/3H)dV/dp) .  In the region under 
consideration, inflation begins when & * /2 becomes less than 
V ( q )  . The scale factor then starts to vary quasi-exponential- 
ly, 

0 ( t )  =ao exp( J 11 dt  ) 
with a slowly varying function H ( t ) .  After inflation begins, 
the scalar field g, rapidly leaves the slow rolling regime, as is 
evident from Eq. ( 10). 

3. FLUCTUATIONS. LINEAR THEORY 

Let us now go on to consider the process whereby prega- 
lactic perturbation are formed. Scalar-type perturbations 
play a fundamental part in this process. For scalar-type per- 
turbations of the metric it is most convenient to use the rela- 
tivistic potential gauge described in Ref. 10, in which the 
metric that describes perturbations of the homogeneous 
background considered in the previous section is of the form 

Here @ and \V are the relativistic potentials. Perturbations of 
the metric correspond to disturbances of the scalar field 
x=Sp. 

The equations describing the evolution of perturbations 
to first order may be obtained by linearizing Eqs. ( 3 )  and 
(4 )  in @, W, and X: 

We emphasize here that Eq. ( 14) holds in the case of a 
spatially flat background solution. The relativistic potentials 
@ and W in the present instance are identical to the gauge 
invariant introduced by Bardeen. " 
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In quantum field theory, @, Y, and x are operators, 
which can be represented in the linear theory by 

where a; and a,  are creation and annihilation operators, 
respectively, and h.c. denotes the hermitian conjugate. 

At high frequencies ( k  $ a H )  , self-gravitation is gen- 
eral, and the normalized solutions for the eigenmodes X, in 
this frequency domain take the form (see Ref. 12) 

Equation ( 13) then implies that in this same frequency do- 
main, 

At low frequencies (distances larger than the Hubble scale, 
k 5 a H ) ,  we find by solving Eq. ( 14) that 

where A ,  and B, are slowly varying functions of time. 
Notice now that when k 5 OH, we can neglect the term 

containing A@ in ( 14).  In this approximation, A ,  and B, in 
( 19) become constants. Furthermore, the second term in 
( 19) describes an evanescent mode, which rapidly becomes 
negligible. The first term in ( 19) can also be transformed if 
one recognizes that H /H' varies in time much more slowly 
than the scale factor. To high accuracy, then, the result is 

Merging Eqs. ( 18) and (20) at the instant the horizon 
is crossed (when k = a H ) ,  we obtain 

where the subscript k refers to homogeneous quantities cor- 
responding to the wave number k at the moment the horizon 
is crossed. 

For the potential ( 2 ) ,  we obtain 

up to a factor of order unity. Here a ,  is the value of the scale 
factor right at the end of inflation [when k 2 / 2  becomes 
equal to V ( p )  1 .  

If we choose as the quantum state the vacuum state 
defined by the conditions a, 10) = 0, then (22) will charac- 
terize the spectrum of pregalactic perturbations. The aggre- 
gate of observational limits on this spectrum then yields a 
value for the self-action constant of the scalar field p, 

(see Ref. 2 ) .  

4. FLUCTUATIONS. QUASILINEAR APPROXIMATION 

In the preceding section, we examined the behavior of 
fluctuations in a homogeneous background. We now wish to 
study the effects of large-scale background inhomogeneities 
on small-scale fluctuations. 

What we have in mind when we speak of large-scale 
inhomogeneities is the long-wavelength part of the fluctu- 
ation spectrum, with k 5 aH. During inflation, fluctuations 
on such scales can be treated as classical random inhomo- 
geneities.h As is clear from the solution (20) ,  the spatial 
form of these inhomogeneities is frozen in, so to speak, while 
their amplitude varies slowly with time. With respect to 
small-scale quantum fluctuations ( k  $ O H ) ,  such inhomo- 
geneities act as if they were background inhomogeneities. 
We shall concern ourselves here with the question of how 
extensively these background inhomogeneities affect the 
spectrum of nascent pregalactic perturbations. 

We employ the subscript c to designate field quantities 
describing large-scale background inhomogeneities. For ex- 
ample, @,. will denote an inhomogeneity in the relativistic 
potential, and X, an inhomogeneity in the scalar field on 
scales exceeding the Hubble distance. 

In the high-frequency domain ( k $ a H ) ,  we assume 
self-gravitation to be negligible, and examine the behavior of 
solutions for perturbations of the scalar field x in the back- 
ground with metric 

which contains large-scale inhomogeneities a,. . We write 
the equation for perturbations of the scalar field 

where 

in the quasilinear approximation, i.e., one which is linear in 
both the fluctuations x and the large-scale inhomogeneities 
@, and xL . We then obtain 

where 

We may expand the solution of (26) in creation and 
annihilation operators, as we did in ( 16) : 

Now however, the solution for the eigenmodes X, will 
differ from (17) on account of the presence of large-scale 
fluctuations @, and x,. . Recall that these can be treated as 
classical (albeit random) inhomogeneities, which is what 
makes the expansion of (27) feasible. 

We seek a solution for the eigenmodes ,y, in the form 

where S ,  ( 7 7 , ~ )  is an unknown phase induced by the back- 
ground inhomogeneities. We have separated out the factor 
( 1 + @, ) in (28) because of its connection with the choice 
of fluctuation spectrum on the initial hypersurface: in locally 
inertial coordinates, the high-frequency region of this spec- 
trum should be the same as the vacuum fluctuation spec- 
trum. On the initial hypersurface q = q,,, the necessary as- 
sumption for the phase S ,  ( 7 , ~ )  is 
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As with all the equations that we consider in the quasi- 
linear approximation, Eq. ( 2 8 )  is valid up to terms linear in 
a, , and in the same approximation the phase S ,  is also lin- 
ear in a, . In Eq. ( 2 8 ) ,  we have left the phase S, in the 
exponent for clarity and to facilitate subsequent calcula- 
tions. 

Substituting ( 2 7 )  and ( 2 8 )  into ( 2 6 ) ,  we obtain the 
equation for the phase S, in the approximation linear in the 
background inhomogeneities. At high frequencies ( k  p  a H ) ,  
we seek a solution for S ,  in the form of a WKB expansion in 
powers of k  ' ,  retaining only the first two terms. 

If we write 

some straightforward rearrangement yields the equations 
for S i  and S : :  

( 0 )  f (0)  
Sk +nVSk =2@c, ( 3 1 )  

where n = k / k  is the unit vector in the direction of k. The 
solution of ( 3  1 ) and ( 3 2 )  with ( 2 9 )  as the initial condition is 
elementary: 

I - - 
s:" (11. x ) = i [ A -  (nV)"  l c ( ; l , x - n ( q - ~ ) )  (q-r\)dq. 

m 

( 3 4 )  
Equations ( 2 7 ) ,  ( 2 8 ) ,  ( 3 0 ) ,  ( 3 3 ) ,  and ( 3 4 )  determine 

the evolution of high-frequency ( k p a H )  fluctuations of the 
field x in an inhomogeneous background. 

At low frequencies ( k  S a H ) ,  i.e., after the horizon has 
been crossed, the evolution of perturbations is described by 
the equations of the linear theory ( 12) - (  1 4 ) .  In this domain 
of wave numbers, it is more convenient to work with pertur- 
bations of the relativistic potential Q,. To this end, we first 
make use of an equation that follows from ( 13 ) to ( 1 4 ) ,  

which relates perturbations o f x  to perturbations of Q, in the 
high-frequency domain. We next write 

[cf. Eq. ( 1 8 )  1. Furthermore, expanding the phase C ,  ( v , x )  
in powers of k ' , as in ( 3 0 ) ,  we have 

and we thereby obtain the solution 
( 0 )  (0) 

Ck --Sk . 

By analogy with ( 2 0 1 ,  we find at low frequencies that 
B 

cDr=rlr - ex11 (-XI; ( q , ,  n )  ) ,  kGaH,  
II-  

( 4 0 )  

where the phase C ,  in ( 4 0 )  has been taken at the instant 

when qk crosses the horizon, and the magnitude of A ,  is 
given by Eqs. ( 2 1  ) and ( 2 2 ) .  

5. ANISOTROPY IN THE SPECTRUM OF PREGALACTIC 
PERTURBATIONS 

Let us now consider the spectrum of fluctuations Q, at 
the end of inflation. To  do so, we must calculate the correla- 
tion function 1 / 2 ( @ ( x ) @ ( x ' )  + @ ( x ' ) @ ( x ) )  at the mo- 
ment inflation ends-that is, at 7 = 7 , .  Note that at that 
time, the quantity H / H *  is of order unity. Up to a factor of 
order unity, then, and taking account of Eq. ( 4 0 ) ,  we obtain 

d3k 
+@ ( X I )  @ ( x )  )= I 1 Ak 1 ' exp  ( i k  ( x - X I )  ) 

x[exp ( - iCk ( x )  +iCL' ( x ' )  ) + e x p  (-iC-k ( x ' )  ( x )  ) 1. 

The scale of inhomogeneity in the phase C ,  ( x )  appearing in 
( 4 1 )  is much greater than that corresponding to the wave 
number k .  We may therefore expand the phase C ,  ( x )  in 
( 4 1 )  in powers of x  in the vicinity of the observation point, 
which with no loss of generality we may take to be the origin 
( X  = 0 ) .  For the real part of C ,  (x)  in this expansion, which 
is of higher order in k [see ( 3 7 ) - ( 3 9 )  1 ,  we retain the terms 
linear in x  and keep only the zero-order term in the imagi- 
nary part. 

We may then integrate ( 4 1 )  with respect to the new 
wave numbers k  - VRe C, I ,,. The expression for the 
correlation function then takes on the standard form 

1 
- 2 < Q) ( x )  Q) ( X I )  +@ ( X I )  @ ( x )  ) 

where 
'IN 

c k =  - 2dln(k31A~IZ)  
d l n k  

n-c J d q [ @ c ( q , x + n ( q k - q ) )  
m 

The change in the fluctuation spectrum due to back- 
ground inhomogeneities shows up in ( 4 2 )  through the quan- 
tity Y ,  , which is given by ( 4 3 ) .  It can be shown that the main 
contribution to Y ,  comes from the quadrupole term, and 
comprises at least 85% of the overall anisotropy. Restricting 
ourselves to the quadrupole part of y,, we may write 

In deriving Eqs. ( 4 3 )  and ( 4 4 ) ,  we have assumed that I A ,  1 
is independent of the direction of k .  

Before continuing our calculations, let us take a close 
look at this result. The anisotropy of the fluctuation spec- 
trum is characterized by the quantity ;, , which appears in 
( 4 2 )  and is defined by ( 4 3 ) .  Clearly, anisotropy appears 
only in the long-wavelength part of the spectrum ( k  S a H ) ;  

in that case, I A ,  I is given by Eq. ( 2 2 )  and the logarithmic 
derivative in ( 4 3 )  is nonzero. For k$aH,we would have 
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I A,  I ' - k and Y ,  = 0 according to (43 ). One may there- 
fore say that in the present approximation there is no anisot- 
ropy in fluctuations of those waves at the adiabatic stage 
( k > a H ) ,  but only of those in a nonadiabatic evolutionary 
regime (k  5 a H )  . 

It is worth noting that this anisotropy is due to inhomo- 
geneities on a scale that is always far greater than that of the 
fluctuations we are considering here. Furthermore, anisot- 
ropy comes into play at a stage when the effects of large-scale 
inhomogeneities are already insignificant. One could per- 
haps interpret this result to mean that during the earliest 
phase of inflation, background inhomogeneities mainly po- 
larize the vacuum, without any substantial alteration of the 
fluctuation spectrum at fairly short wavelengths. However, 
starting at a certain instant, under conditions of a non-sta- 
tionary universe, quasiparticles are copiously produced 
from the polarized vacuum. This would then result in the 
onset of anisotropy in the fluctuation spectrum at the corre- 
sponding scale lengths.'' 

As we noted above, anisotropy in the spectrum of prega- 
lactic perturbations is basically quadrupole in nature. The 
quadrupole contribution to y, is given by Eq. (44) ,  and can 
be written as 

or, with (22), 
' 1X  

Notice that the magnitude of the anisotropy (the matrix x) 
is very slight, depending on the logarithm of the wave num- 
ber k. 

Let us separate the isotropic part out of (45),  since it 
does not contribute to the anisotropy. We denote the residu- 
al by v,, which we write in the form 

where 

The trace of the matrix A vanishes: averaging (47) over 
all directions of n yields zero. 

To characterize the degree of anisotropy, we use the 
mean square of the trace of A' : 

The average in (49) is taken over the random large-scale 
inhomogeneities @, . 

Bearing in mind that the inhomogeneities @, carry the 
contribution due to fluctuations on scales exceeding the 
Hubble distance, we finally obtain 

9 
c2 = f k 2  \ dl1 OIL - ?) 

1; 

where 
7 

ik = 
In (a,AshM,/k) ' 

If the initial spectrum is specified at the start of infla- 
tion, Eq. (50) yields 

If then inflation starts at a density of the order of the Planck 
density, then ln(a ,  /a,, ) - l oh .  Recalling also that 
f, - 10 ' for the wave numbers responsible for the struc- 
ture that is actually observed, and that A - 10 ", we obtain 

in the present case; that is, the anisotropy is of the order of 
several percent.2' 

If inflation begins at less than the Planck density, but 
the initial spectrum is specified at a time when the energy 
density is of the order of the Planck density, we again obtain 
the result (53). 

Thus, by making eminently reasonable assumptions 
about the initial conditions involving pregalactic perturba- 
tions in the early universe, we obtain an anisotropy of several 
percent. 

6. ANISOTROPY OF OBSERVED STRUCTURE 

Anisotropy in the spectrum of pregalactic perturba- 
tions ought to be manifested in the spectrum of the distribu- 
tion of matter in the observable part of the universe. The 
easiest way to detect the presence of anisotropy is perhaps by 
measuring the dependence of the correlation function 

on the directions of x. Here S ( x )  = Sp(x)/p,  wherep is the 
mean density of matter in the observable part of the universe, 
and 6p ( x )  is the inhomogeneity of this density. 

Naturally, anisotropy ought to show up in the correla- 
tion function (54) on those scales at which nonlinear pro- 
cesses associated with the formation of galaxies and clusters 
of galaxies have not come into play and destroyed informa- 
tion bearing on the spectrum of primordial inhomogenei- 
ties.We must therefore now concern ourselves with scales of 
the order of several dozen megaparsecs or more, up to the 
present size of the horizon. The lower limit on the scales 
considered, - 30 Mpc, also determines the scale over which 
S ( x )  is averaged in obtaining the correlation function. 

Since our concern here is with scales on which evolution 
has not emerged into the nonlinear regime, we have a linear 
relationship between 6 ( x )  and @(x) .  In the present epoch, 
this relationship is quite simple: 

on scales less than the Hubble distance. As for the evolution 
of @ ( x )  in the post-inflationary phase, most models vredict 
the appearance of a multiplicative factor. This factor is of no 
interest to us here, as we wish to consider the anisotropy of 
the spectrum. 

For the correlation function (54),  then, with (42) and 
(55) taken into consideration, we may write 

where Y ,  has been defined in (43 ), and 6, is the amplitude of 
the Fourier transform of 6 ( x )  in the isotropic case. 

If on the other hand we are interested in the quadrupole 
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contribution to the anisotropy, which as we already pointed 
out comprises at least 85% of the total, it is necessary to 
substitute Y, (as defined by Eqs. (47) and (48) of the pre- 
vious section) into (56) instead of y,. We then obtain 

where 

go($) = jL82 cos kx, 

d3k L, (x) = j Zn)" 6,'u cos kx. 

Since the functional dependence of the matrix A on the 
wave number k is very weak, we may neglect it entirely. We 
may then rewrite (59) in the form 

d3k 
E I  (x) =AaO 5 -  6:n.n, cos kx. 

(an) ' 
By symmetry, we then immediately obtain 

where x = x/x is the unit vector in the x direction. 
As we mentioned above, we are justified in taking only 

those perturbations with long enough wavelengths into ac- 
count, and if we do so by means of a weighting function 
exp( - kl) ,  where I is the cutoff scale length, the functions 
&,(x) and g,  ( x )  can be easily calculated. The former is posi- 
tive at small distances x < 3'12 1 and is negative at large dis- 
tances. Asymptotically, its absolute value decreases as x 4 .  

The function h ( x )  in (61),  which characterizes the aniso- 
tropic part of the correlation function, is everywhere posi- 
tive, and has a maximum at x = x,, = 1 / 2 ' / ' .  The value 
h (x,, ,  ) at the maximum is proportional to 1 -- 4 ,  and 

Thus, up to the factor given in (62), the magnitude of 
the anisotropy of the correlation function is determined by 
the matrix A, and its expectation value is given by Eq. (53).  

7. CONCLUSIONS 

According to the inflationary-universe scenario, the 
presently observable structure in the universe stems from the 
nonadiabatic enhancement of vacuum fluctuations during 
inflation. In this paper, we have chaotic inflation can induce 
anisotropy in the spectrum of pregalactic perturbations. On 
those scales at which subsequent nonlinear processes asso- 
ciated with the formation of galaxies and clusters of galaxies 
has not destroyed information about the spectrum of pri- 
mordial inhomogeneities (meaning scales of dozens of me- 
gaparsecs or more), the distribution of matter in the observ- 
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able part of the universe should be anisotropic. At the scales 
considered, one indicator of anisotropy is the magnitude of 
the scale invariant. The predicted anisotropy could perhaps 
most easily be detected by measuring the way in which 
the correlation function of density inhomogeneities, 
l ( x )  = (S(O)S(x)),  depends on the direction of x. 

We have arrived at a predicted level of anisotropy of 
several percent by employing field methods in our calcula- 
tions at scales much shorter than the Planck length. It is to 
be hoped that a more realistic calculation, perhaps making 
use of string theory, will not drastically alter our conclu- 
sions; this, however, is a question for the future. 

If there were to be a successful direct observational test 
of the predicted effect, it seems to us that it would amount to 
a vote in favor of the chaotic inflation scenario, and it would 
also shed a certain amount of light on the nature of interac- 
tions in the realm of energies inaccessible to direct experi- 
mental investigation. 

The authors would like to close by thanking A. D. 
Linde and V. F. Mukhanov for useful discussions of the re- 
sults contained herein. 

"The following analogy may be of some use. High-frequency oscillations 
tend to behave like particles. The spectrum of zero-point oscillations 
corresponds to a distribution function f = const in momentum space 
(with the samespread k' in T;; ). Obviously, f = const isan exact solu- 
tion of the collisionless kinetic equation in arbitrary external fields (the 
kinetic equation contains only derivatives of f ) .  Thus, the actual shape 
of the spectrum is responsible for preserving isotropy. 

"The discrepancy between the structural anisotropy ({- 10 ' ) and the 
anisotropy of the microwavebackground (AT/T-  10 ' ) is due to the 
contribution to < from regions much larger than the observable part of 
the universe. 
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