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The differential cross section for backward scattering (6- n) of spinless particles with nonzero 
rest mass on the background of a Schwarzschild geometry is calculated by quantum-mechanical 
methods. It is shown that a glory exists if the gravitational radius exceeds the particle wavelength. 

1. One of the remarkable results from the theory of scat- 
tering by black holes is the prediction in Ref. 1 of a glory 
effect in the backward scattering of light rays. In the frame- 
work of geometrical optics, Ford and Wheeler' showed that 
the differential scattering cross section in a Schwarzchild 
field grows like (T - 8) -' as 8-n. Later, an analogous re- 
sult was obtained for massive probe particles as well.' Glory 
scattering by a black hole (BH) is due to the fact that parti- 
cles with impact parameters slightly greater than the radius 
of stability of a circular orbit can execute one or considerably 
more than one (half)-revolutions about the black hole be- 
fore moving away to infinity. 

However, it is known from quantum mechanics that 
backward (forward) scattering may not be classical if the 
classical angle of deviation tends to n (or 0)  at certain finite 
values of the impact parameter. In this case it is necessary to 
take account of interference phenomena associated with the 
finiteness of the particle wavelength. Thus, a quantum-me- 
chanical investigation of the problem of the scattering of . 
particles by a black hole is of interest. The long-wavelength 
case (A > R ,  ) has been considered in sufficient detail for 
waves and particles with various spins, both in the approxi- 
mation of a weak scattering field and in a more rigorous 
approach (see, e.g., Ref. 4 and the citations contained there- 
in). In Ref. 5, the opposite case of short-wavelength scatter- 
ing of electromagnetic waves by a Schwarzschild BH was 
considered. It was noted that when polarization properties 
are taken into account the glory effect may be absent-the 
strictly backward differential scattering cross section for 
photons is equal to zero, this being true for both the short- 
wavelength and the long-wavelength case. A more exact 
analysis of the glory for massless waves was carried out in 
Refs. 6 and 7. 

In the present paper we consider, on the basis of the 
Klein-Gordon equation, the scattering of massive spinless 
particles by a nonrotating (Schwarzschild) BH in the short- 
wavelength case: 

With the assumption ( 1 ), everywhere up to the event hori- 
zon R ,  = 2GM /c2 the particle wavelength is short in com- 
parison with the characteristic length scale of the non- 
uniformity of the gravitational field, and, therefore, it is 
convenient to use the phase-shift theory of scattering and the 
quasiclassical approximation. In this connection, we note 
Ref. 8, in which it was shown that an exact analysis of glory 
scattering on the basis of path integrals in flat space leads to a 
result coinciding with the quasiclassical result. 

2. Writing the Klein-Gordon equation in the Schwarzs- 
child metric and performing a separation of variables, we 

obtain the wave function of a particle with energy o ,  orbital 
angular momentum I, and angular-momementum compo- 
nent m along the z axis ( 6  = 0 )  (see Ref. 4): 

where the Y are spherical harmonics. (Here and below, we 
use a system of units with c = fi  = G = 1.) The radial part 
satisfies the equation 

dr' 2M -' z+ dr" w , ( ~ . ) R = u ,  - - -=(1L7)  d r  , 

with 

Choosing at r-+ co (w > p)  a solution of the form 

and, near the horizon (r* - - ), a solution satisfying the 
capture condition R a exp(ior*), it is not difficult to show 
that the phase shift 6 ,  is complex,with 

1-lSIlL 
2 sh (2 Im 6,)  = = T ,  csp ( 2  Im b , ) ,  

l S l l  
( 6 )  

where S,  = exp(2i8, ), and TI is the coefficient of absorption 
of an incident partial wave. Expanding the wave function of 
a stationary scattering state in the partial waves (2), we ob- 
tain the standard expression for the elastic-scattering ampli- 
tude. For angles 8 # 0 it has the form 

%. 

Here the imaginary part of the phase shift determines the 
total absorption cross section: - e+ 

3. Restricting ourselves next by the condition ( 1 ), we 
note that in this case the function W, ( r )  takes the form 

Here, for 1% 1 we have made the replacement 

1 ( l + l )  -+ (l+L/z)2=L2. (10) 

The function U, ( r )  coincides with the effective potential 
energy of a classical probe particle in a Schwarzschild field 
(see, e.g., Ref. 9).  In the classical limit, when 

where L. = ( 1 - p ' / ~ ~ ) " ~ ,  the particles fall into the black 
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hole, and a state with L = L C  corresponds to an unstable 
circular orbit. 

For ( L  - LC 1 4 LC the function Wl (r)  can be represent- 
ed in the form 

w, (r) = wte ( r )  + ~ W L  (r) 3 (12) 

where 
2 M 

SWL ( r )  = - - 
r  ' 

(13) 
Using the approximation ( 12), ( 13) and the WKB method, 
one can calculate the transmission coefficient TI for orbital 
angular momenta close to the critical value (i.e., near the top 
of the potential barrier) : 

where the coefficient 0 depends only on the velocity of the 
particle at infinity: 

5 + 44u2 + 32u4 - 3 ( 1  + 8 ~ ~ ) ~ ' ~  
= [  8 ( 1  - u 2 )  1 .  (15)  
It varies slowly from 0.5 at u = 0 to 1 at v = 1. The same 

result is obtained if one uses a parabolic approximation of 
the potential near the top of the barrier. It follows from ( 14) 
that for L - LC > 1 the transmission coefficient is exponen- 
tially small, while for LC - L( 1 it is practically equal to 1. 
The quasiclassical total absorption cross section takes the 
form 

nMZ (1+8u2)"+8v'+20v2-1 
o * = - -  

v- 2 vZ ( 1 ) .  (16) 
The factor in front of the bracket is the exact expression for 
the classical cross section for capture of probe particles in a 
Schwarzschild field, with well known nonrelativistic and ul- 
trarelativistic limits. The additional term in the brackets is of 
order (R,w)-' and is a quantum correction. It should be 
noted that in the first of Refs. 10 an attempt was made, for 
the first time, to calculate the glory for spinless particles of 
nonzero mass. 

4. The relation ( 14) implies that for L > L C  we can use 
the usual WKB formula to calculate the real part of the scat- 
tering phase shifts: 

r r 

Re 6, = lim{ j [ W ,  (r) 1% dr' - ( k 2 - L Z )  d }  . ( 17) 
I-00 L/k 

The imaginary part of the phase shift here is small. The sec- 
ond integral in (17) gives the phases of the free motion, 
while the first contains the divergent part typical of long- 
range potentials. The exact form of this part is 

The first integral in ( 17) reduces to an elliptic integral, and 
analytical calculations are possible only in the limiting cases 
L > LC and 0 < L - LC g LC.  However, in these particular 
cases it is possible to use a perturbation method from the 
outset to estimate the contribution of the small terms in the 
potential (9) .  

In the first of these cases ( L  $ LC ) the term proportional 

to r -3  in the effective potential can be treated as a perturba- 
tion'': 

where 

2MLa w:" ( r )  = 

Without dwelling on the details of the calculation, we write 
out the result, omitting the logarithmically divergent part: 

Re 6 i s - v  In(L'ir. ' /k2)"' + --- arcain 11 [ jL2+,z/kz)s k 2 
'rl + arcain - 

It is easy to convince oneself that in the nonrelativistic limit 
( k$p ) ,  with the replacementpM- - eQ, the formula (22) 
goes over into the expression for the WKB phase shifts in a 
Coulomb field. In the relativistic case (k$p )  this same for- 
mula gives the partial phase shifts, calculated in Ref. 12, for 
scalar massless waves in a Schwarzschild metric. 

In the second case (0  < L - LC g L c ) ,  when the impact 
parameters of the particles are close to the critical values, we 
make use of the representation of the function W, ( r )  in the 
form ( 12), ( 13), regarding S W, as a perturbation. Then 

where 

Here Cis a function that depends only on the velocity of the 
particles at infinity: 

It varies slowly in the range from 32 at v = 0 to 15.5 at u = 
1 [see ( 15) 1. In Eqs. (23)-(25), as above, we have omitted 
logarithmically divergent terms. 

5. The subsequent calculation of the scattering ampli- 
tude does not differ fundamentally from that in the case of 
flat space, and this is also true for the glory. However, before 
giving the results we remark that in our case the calcula- 
tional method is applicable only for the condition LC 2 lo2 
(or, correspondingly, for wR, 2 lo2).  In the opposite case 
the phase shift 6;'' can be of the order of 1, and the angle of 
deviation changes sharply. In this case it would be necessary 
to take account of interference of waves with I - I , .  Such 
interference phenomena have been analyzed numerically for 
scalar waves with A - R, in Ref. 13. 
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Since the phase shifts (23)-(25) give a nonunique rela- 
tionship between the angle of deviation and the impact pa- 
rameter (the angle of deviation tends to infinity as L - LC ), 
introducing the number n of revolutions of the particle we 
find that the scattering angle is equal to 

For L > LC the angle of deviation is a one-to-one function of 
the orbital angular momentum, and for relativistic particles 
the phase shifts (22)  always correspond to small angles of 
deviation: 

At the same time, for nonrelativistic particles with angular 
momenta LC 9 L < z / k  the angle of deviation can be large 
( 1 5; 8  < P ) .  For this it is necessary that the condition v <  11'4 
be fulfilled. 

Expanding the phase shift 6, in a series about the value 
L,, ( 8 )  determined from (27) ,  we represent the scattering 
amplitude ( 7 )  in the form of a sum over n and go over from 
the summation to integration over the continuous parameter 
L: 

-0 (L-L") - ( L - L n ) 2 ] } ~ ,  (,,, 0) dL. 
2L7,'(8) 

In order of magnitude, the maximum number N of revolu- 
tions is equal to ( I d ,  )/2afl ' I 2 .  The moment L,(8) is deter- 
mined from (27)  and (22)  for small angles. But if 8-a, or 
n> 1 ,  then L, ( 8 )  can be determined directly from (27):  

The value of the phase shift S,,, ( 8 )  is then equal to 

First we shall consider scattering through small angles. 
Using the asymptotic representation of the Legendre poly- 
nomials in terms of Bessel functions J,(LO) and taking into 
account that, by virtue of (28) ,  OLz2q~% 1, we find 

Whenf, ( 8 )  with n % 1 is integrated over a range of angles 
8-4 IL, ( 8 )  1 - ' I 2  one can take the Bessel function outside the 
integral. We obtain 

It can be seen that with increase of n the amplitudes f, ( 8 )  
decrease exponentially rapidly. Therefore, the small-angle 
scattering is classical and is determined by the amplitude 
(33 ), which has a Rutherford character: 

We remark that if one calculates the phase shifts using the 
scheme ( 19)-(21), keeping terms -- L f /L ,  differs from the 
Rutherford cross section by a term of order L : /k  28 "Ref. 
1 1 ) . In the nonrelativistic case the angular distribution of 
the scattering will be of the Rutherford form up to rather 
large angles. 

In the range of intermediate angles (8 ,  a - 8 )  % L ; ' 
the amplitudes f, ( 8 )  corresponding to the phase shifts 
(23)-(25) are integrated with the aid of the corresponding 
representation of the Legendre polynomials: 

We stress that in the case n = 0 this formula is valid only for 
sufficiently large angles, such that the expression (31) is 
small in comparison with 1. The corresponding cross section 
is determined by the amplitude f, and coincides, to within a 
factor approximately equal to 1.4, with the classical cross 
section calculated in Ref. 2: 

However, for angles close to n, the expressions (36) 
and (37)  are not valid. Using the representation of the Le- 
gendre polynomials in the form ( - 1 ) 'J,  [ L ( n  - 8 )  1, we 
find that for angles ?r - 8.4 ( L  :, ( n )  ( - ' I 2  the amplitudes f, 
( 8 )  have the form 

(38) 
With increase of n the amplitudes f, decrease exponentially 
fast, and so the principal contribution to the backward scat- 
tering will be given by the amplitude fo (8) .  Restoring the 
dimensions of the constants c, 4, and G, we write the differ- 
ential cross section for backward scattering in the form 

where f  and A are dimensionless functions of the velocity of 
the particles at infinity. The function f ( v )  is defined in ( 1 1  ), 
and A ( v  ) has the form 

A=f3C!3 esp(-2np") = 
4 f3  (6p) 'I)"2 exp (-2x3 ) 

(2-8) [ (:3p) '+ (2p-1) I *  (40) 

The limiting values of this function are equal to 17 at 
v  = 0 and 4.06 at u = 1 ,  in agreement with the result of Ref. 
7. 
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Unlike the classical cross section, determined by formu- 
la ( 3 7 ) ,  the quantum cross section is finite when 6 -  a. Nev- 
ertheless, the total number of particles scattered backward 
(more precisely, in the range of angles O < a  - B<aL, where 
L  ; : g a  g  1 ) is, by formula (39 ), twice as large as in the 
classical case. By virtue of well known properties of Bessel 
functions, the angular distribution ( 3 9 )  possesses a series of 
peaks at a - 6  = 0 ,  3.83/LC, 7 .01/LC,  etc., alternating with 
minima. The ratios of the intensities at the maxima are 
1 :O. 161:0.090:0.062, etc. We note also that the differential 
cross section ( 3 9 )  obtained in the case of relativistic parti- 
cles exceeds the Rutherford cross section in order of magni- 
tude by a factor of R ,  /A.  In the range of angles L  ; ' 
<T - 6 g L  [I the amplitudes ( 3 6 )  and ( 3 8 )  go over into 
each other [as, correspondingly, do the cross sections ( 3 7 )  
and ( 3 9 ) ] ,  and the angular distribution of the scattering 
becomes classical. 

Thus, the scattering of spinless particles by a black hole, 
like the scattering of massless waves, possesses a glory. In 
forward scattering the glory effect is masked by the Ruther- 
ford scattering, and so the wave and spin properties of the 
particles are manifested only in the the backward scattering. 

The orbital angular momentum value Lo correspond- 
ing to the first ring of the glory is determined from formula 
( 2 7 ) :  

96P3 e x p  (-2nP1") [ + ( 2 - p ) ( P 5 + [ ( 2 p - f ) j 3 ] " ! ) i  1. k B p  

and coincides with the value obtained by Ford and Wheeler' 
and DarwinI4 in the ultrarelativistic limit w $,u(P-+ 1 ). We 
shall consider more carefully the nonrelativistic limit w +,u, 

P-+ 1. In this case, in view of the small value of the exponent 
the expression ( 3  1 ) becomes large ( ~ 0 . 3 8 ) ,  and the for- 
mula (41 ) yields a rough estimate for Lo ( - 5.5) .  Develop- 
ing an iterative scheme on the basis of the original formula 
( 2 7 ) ,  we find after a few steps that Lo = 4.65,uM. The glory 
cross section for nonrelativistic particles is inversely propor- 
tional to the square of the momentum and to the Compton 
wavelength of the particles: r o ( 6  - T )  I2z 103,uM3/u2. 
From this we easily obtain the result that the glory for parti- 
cles of nonzero rest mass is observable against the back- 
ground oftheRutherford scattering for u> ( A c  / R  , ) '/'. 
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