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We calculate the gravitational radiation emitted by a freely moving object in the field of a 
rectilinear, infinitely thin cosmic string. Expressions are derived for the total energy radiated as a 
point mass passes near a string, and for the radia~idn due to a cosmic test string moving parallel to 
the string responsible for shaping the spacetime background. 

1. INTRODUCTION 

The theory of cosmic strings (which may be produced 
in cosmological phase transitions') has of late been the cen- 
ter of a great deal of attention. The cosmic string hypothesis 
holds out the intriguing possibility of deducing for the origin 
of structure in the universe a stochastic theory that lacks the 
usual difficulties associated with the theory of condensations 
at inhomogeneitie~.~ String theory provides a good descrip- 
tion of the observed relationship between the scale and dis- 
tribution of structures, and the structure correlation func- 
tion that it yields contains absolutely no free parameters. 
Furthermore, using a single parameter-the phase-transi- 
tion energy-it is possible to describe a number of the finer 
details of the structure correlation function. This energy is of 
order 10'5-1016 GeV, which is quite consistent with our 
present understanding of the cosmological phase transition 
associated with the breaking of grand unified ~ymrne t ry .~  

Cosmic strings are described by topologically nontri- 
vial solutions of the equations of gauge theories with sponta- 
neous symmetry breaking, and such solutions exist if the 
manifold of spatial coordinates in which the Higgs potential 
has a true minimum is multiply ~ o n n e c t e d . ~  Far from a 
string, the vacuum expectation value (@) of the Higgs field 
is nonzero-i.e., (@) - 7; on the other hand, at the very core 
of the string (@) = &the interior of the string "remem- 
bers" the state of unbroken symmetry. 

String solutions show up even in the simplest model 
with the gauge group U( 1 ) (scalar electrodynamics) .5 One 
realistic grand unified theory permitting of string solutions 
is the model based on S 0 ( 1 0 ) ,  which is spontaneously 
broken to SU(5)  XZ,, with the subsequent phase transition 
S U ( 5 )  -SU(3) x S U ( 2 )  x U ( l ) ,  preserving Z, (Ref. 6).  

Topologically stable strings have no ends, so they are 
either closed or infinite. The linear mass density of a string 
turns out to be of the order of the square of the vacuum 
expectation value of the Higgs field far from the string, i.e., 
p -7'; under these circumstances, the tension in the string is 
negative, and is equal in absolute magnitude to the linear 
mass density ,u (taking c = 1, which we shall do for the re- 
mainder of the paper). The characteristic radius of the string 
is of order 6-A -1'217-1 =: cm, where A is the self-ac- 
tion constant of the Higgs field. 

A cosmological scenario taking advantage of strings 
can be divided into several stages. First, a system of strings is 
formed that consists of rectilinear string segments whose 
length is of the order of the radius of the horizon, and which 
move at relativistic speeds. When these segments collide, 
they give rise to closed oscillating loops, which slowly relax 

by radiating gravitational waves. As the universe,expands, 
the repetition of this stochastic process leads to a hierarchy 
of closed loops over a range of scale sizes. These loops then 
serve as seeds for the gravitational condensation of matter, 
which finally results in a structural hierarchy of galaxies, 
clusters of galaxies, and superclusters.' 

It is just possible that some primordial cosmic strings 
are still in existence, making the study of physical effects due 
to strings an intriguing topic. One effect by which a string 
would divulge its presence is the focusing of light passing 
nearby.7 A string could give rise to double images separated 
by a large angular distance (of the order of arc minutes). 
Moreover, a cosmic string located within a system of gravi- 
tating bodies should induce periastron advance, precession 
of the plane of motion, and other kinematic anomalies, if it is 
encompassed by the corresponding orbits.' 

Our objective in the present paper is to demonstrate 
that the interaction of a rectilinear cosmic string with mat- 
ter, as well as the interaction among a number of strings, 
should result in the generation of gravitational radiation. 
What makes this effect nontrivial is that a rectilinear cosmic 
string does not create a Newtonian gravitational field. How- 
ever, although the spacetime of the cosmic string is locally 
pseudoeuclidean, the global conical aspect of space changes 
the behavior of the retarded potentials induced by the mov- 
ing bodies in such a way that a portion of the field is "de- 
tached" from the source in the form of radiation. Gravita- 
tional radiation associated with string oscillations was 
heretofore an active topic of discussion in cosmic string the- 
ory.' We must emphasize, however, that there is a significant 
difference between these two types of radiation. While the 
latter conforms to the usual dynamics and is due to the accel- 
erated motion of different parts of the string relative to each 
other, the former arises as a result of distortion of the field of 
a uniformly moving source by virtue of the global conical 
structure of three-dimensional space around a string. As an 
indication of the magnitude of this effect, we point out that 
when a rectilinear cosmic string passes with relativistic ve- 
locity ( - 0 . 5 ~ )  near a black hole at the center of a galaxy 
whose mass is 1 09Ma, an energy of order 1 OW2 Ma is liber- 
ated in the form of gravitational waves over a period of 1O4- 
lo5 sec. 

2. THE SPACETIME OF A RECTILINEAR COSMIC STRING 

In gauge models that permit the existence of string solu- 
tions, the energy-momentum tensor of a system of matter 
fields comprising a rectilinear string has a particular feature 
that is reflected in the equality of the mixed components, 
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(the z-axis is directed along the string). What this means 
physically is that the tension in the string is negative, and is 
equal to the linear energy density. The energy density falls 
off exponentially with distancep in any plane orthogonal to 
the z-axis. Furthermore, the nonzero tension terms Tz  and 
T ;  also rapidly tend to zero with increasingp. This behavior 
is typical of a so-called local string, which occurs in models 
with spontaneous breaking of local (gauge) symmetry. In 
principle, string solutions exist in models like the Goldstone 
model with spontaneously broken global symmetry. For 
these solutions, the string energy density in the spacetime 
plane falls off asp-2, so that the total energy per unit length 
turns out to be infinite. 

Negative string tension is a source of "antigravity," 
which completely nullifies the contribution of the positive 
energy density in the Newtonian approximation. Indeed, the 
Einstein equations imply that the static Newtonian potential 
\V satisfies the equation 

whereupon we obtain the above result ( G  is the gravitational 
constant). 

Moreover, the Newtonian potential vanishes even when 
other components of the energy-momentum tensor are taken 
into consideration, given their rapid falloff with distance."' 
It can be shown rigorously in the model based on the U( 1) 
gauge group that at large distances, the gravitational field 
contains no long-range component, and is local." 

However, even in the simplest U(1) model, it has not 
been possible to obtain an exact solution for a self-gravitat- 
ing string. Straight-strjng models have therefore been pro- 
posed in which the energy-momentum tensor is chosen phe- 
nomenologically so as to satisfy Eq. (2.1 ) . Thus, one can 
obtain an exact solution of the Einstein equations by choos- 
ing 

P TIt=T,' = - 0 (po-p), 
"PO" (2.3) 

and setting all other components of the energy-momentum 
tensor to zero; 8 = (p,, - p )  is the Heaviside step function. 

The corresponding solution of the Einstein equationsI2 
is the spacetime R ' X M, where R ' is the pseudoeuclidean 
plane defined by the variables (t,z), and M is the manifold 
defined by the variables (p,#) and is the union of two parts: 

where M,, takes care of radial values p<p,, and M,,, is re- 
sponsible for p > p,,. 

The manifold Mi, can be represented as part of a spheri- 
cal surface of radius 

in three-dimensional Euclidean space, and the manifold 
M,,,, as part of a conical surface with vertex angle q in this 
same space. The two surfaces join smoothly at p = po. We 
may write the resulting metric in four-space in the form 

where x = X, at p = p,, and 

~ o = ( n / 2 - q ) R ,  p,=R ctg q, sin q=b; (2.7) 

we also have 

In the limit p,,-0, which yields a delta-function distri- 
bution for the matter, 

the exterior solution is valid over all space (this is the model 
of an infinitely thin string). 

This approximation will suffice for our purposes. As a 
background field, then, we shall take the gravitational field 
due to an infinitely thin string having the characteristic ener- 
gy-momentum tensor (2.9) and generating a locally flat spa- 
cetime having the m e t r i ~ ' ~ . ' ~  

If we represent the stretching of the azimuthal angle in 
the form e, = b#, Eq. ( 10) reduces to the interval measured 
in cylindrical coordinates in a locally flat spacetime: 

as2=at2-az?-apZ-pzacp2, (2.11) 

although the domain over which the angle q, varies is not the 
usual one: 

For a string with a positive energy density, it is clear 
from Eq. (2.8) that b is less than unity (in a typical realistic 
case, 1 = b< lop5) .  The length of the unit circle in a plane of 
constant z will then be less than 2 ~ .  

Let us now imagine that a cosmic string encircles some 
agglomeration of matter whose gravitational field in the vi- 
cinity of the string may be assumed to be weak. The resultant 
gravitational field is then most conveniently described using 
a perturbation approach in the rest frame of the string. Ac- 
cordingly, we must now deal with the problem of gravita- 
tional perturbations of a conical spacetime; in particular, 
such perturbations include a wave component that may be 
interpreted as gravitational radiation emitted by the system. 

3. SMALL PERTURBATIONS OF THE METRIC IN A CONICAL 
SPACETIME 

We wish to represent the total gravitational field of a 
cosmic string and some system of matter described by an 
energy-momentum tensor 6T,, in the form 

where g:: is the metric of the conical spacetime (2.11 ) in 
coordinates t, z,p, p, and the h,,,, are small perturbations. As 
we noted above, since in terms of the azimuthal variable q, 
the metric (2.11 ) is locally flat, we are concerned here with 
the description of the linearized gravitational perturbations 
in cylindrical coordinates. The fact that the limits on p 
change will lead to the appearance of terms proportional to 
6 (p)  in the equations for the perturbations, but for our pur- 
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poses, we may restrict our considerations to perturbations 
wi thpf0 .  

Working in the deDonder-Fock gauge, 

and representing the covariant derivative in the metric 
(2 .11  ) by a semicolon, we have 

The calculation of the covariant second derivative of 
the tensor Y,, leads to a system of equations that is diagonal 
in the subscripts t and z. The components $,, , $, , $, satisfy 
the "scalar" d'Alembertian equation 

where the operator is 

The trace of the tensor satisfies an analogous equation: 

The components $ ,  and $,,, ($, and $=, ) satisfy a set 
of coupled equations, which when diagonalized in terms of 
the quantities 

leads to the separated equations 
is 

O.$.,=-G., r . . = = l 6 n ~ ( 6 ~ . ,  + - b ~ . , ) .  ( 3 . 7 )  
P 

Finally, diagonalizing the system for 

in the ( p , p )  sector yields 
1 is 

~ s g d = - - ~  ., r . = 1 6 n ~ (  6~~~ - - 8 ~ ,  + - 6 ~ ~ )  
fJ2 P ( 3 . 8 )  

The operator O,, in Eqs. ( 3 . 7 )  and ( 3 . 8 )  is given by 
2is 

D,=U + - d/dq-sZ/pZ=A,-at2, s=* 1, *2. ( 3 . 9 )  
P 

Let us now construct the Green's function for this operator: 

OsG1 ( x ,  x ' )  =-6"(x1 5 ' )  ( 3 . 1 0 )  

where on the right-hand side we have the invariant delta 
function 

6 ' ( x ,  2 ' )  = (ppr)-lh6(t-t ')  6  (2 -2 ' )  6  (p-p') 6 (cp-cp') . (3 .11  ) 

In order to be able to solve the radiation problem, we require 
the retarded and advanced Green's functions, which satisfy 

G,"* ( t c t ' )  =o, G? (t>t l )  =o, ( 3 . 1 2 )  

as well as the radiation Green's function 

which satisfies the homogeneous equation 

We first construct a complete set of eigenfunctions for 
the following three commuting operators: the generalized 
Laplacian A,, as degned by ( 3 . 9 ) ,  the z-component of the 
angular momentum LZA= - id / a p ,  and thez-component of 
the linear momentum P, = - id /az: 

Since the azimuthal angle p  varies within the limits set 
down by ( 2 . 1 2 ) ,  the requirement that ( 3 . 1 5 )  have a unique 
solution yields a condition on the eigenvalues: 

The eigenfunctions u,,,,, satisfying ( 3 . 1 5 ) - ( 3 . 1 7 )  and 
the normalization condition 

j d z z r  dv j dp pu~mrk~pru.,k,=6..~6 ( k - k ' )  6 (p -PI ) ,  
-m 0 0 

( 3 . 1 9 )  

then take the form 

where J is a Bessel function. 
The eigenmodes u,,,, so constructed form a complete 

set in three-dimensional conical space, a condition which 
may be expressed in terms of the completeness relation 

Furthermore, following the usual procedure for construct- 
ing Green's functions by integrating over the complex fre- 
quency plane, we find 
G;:(od.) 

(z, x' )  

where E > 0  is an infinitesimal that determines the direction 
in which the integration contour goes around the pole. The 
radiation Green's function may be obtained by substituting 
( 3 . 2 2 )  into ( 3 . 1 3 )  and integrating over w :  

G:Od (x ,  x ' )  

n,=-u -a. 0 

- sin apA(t - t ' )  , ( 3 . 2 3 )  
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where w,, = (P2 + k ') ' I2 .  

The simplest approach calculating the gravitational ra- 
diation emitted by a source ST,, in the field of a cosmic 
string is to calculate the work done by the radiative damping 
force. In the linearized theory and with the present curved 
background, this is given 

1 
rod 

68. = --j 6Tkv(r) dh!Jv (-g)l/*d&x, 
2 a t  

where the sign has been chosen so that the expression yields 
the total energy (over all space and time) emitted in the form 
of gravitational radiation. 

Transforming from h z d ( x )  to IC,zd(x) and making use 
of the results derived in the preceding section, this can be 
represented in the following computationally convenient 
form: 

where 

7 (x) =16nG(6T,,+p-26Tm), (3.26) 

the subscripts (a,b) = (t,z) are summed over, and the in- 
dices are raised and lowered in accordance with the metric 
(2.11). 

4. GRAVITATIONAL RADIATION FROM A POINT MASS 

Let a test mass M move along a geodesic of the space- 
time (2.10) in a plane orthogonal to the z-axis (by virtue of 
the symmetry of the background under Lorentz transforma- 
tions along the z-axis, this does not restrict the generality of 
our discussion). The laws of motion in cylindrical coordi- 
nates may be written as 

1 vt 
p2 (t) =d?+v2t2, @ = - arctg- 

d 

where Y is the constant velocity of the body in the rest frame 
of the string, and d is its impact parameter. 

The corresponding components of the energy-momen- 
tum tensor are given by 

where ul' = dxp/ds is the body's velocity. Transforming to 
variables rob, T,,, T,, r, ? and substituting these into Eq. 
(3.25), a rather involved series of calculations yields the 
expression for the total gravitational energy radiated: 

= 0 

dp p e-2xd 
6 8 =  ( n b ) - ' ~ [ 2 ~ u % i n  (nib) l 2 S  dw w j - 

(02-p2)'b x Z  
,I 0 

X 
cth (alb) 

ch (2alb) - cos (2nlb) +u2sh[2a(2 - f ) ]}  ('.'I 

where 

This expression is valid for any value of the parameter b. 
We see from Eq. (4.3) that as might be expected, 6%' goes to 
zero when b = 1 (i.e., in Minkowski space). Likewise, there 
is no radiation when b = l/n, where n is an integer. In a 
realistic case, the parameter f i  = ( 1 - b)/b is much less 
than unity, and Eq. (4.3) can be simplified somewhat. If we 
takep = yw, we obtain for the radiation spectrum 

1 

Clearly, then, the frequencies present in the spectrum are 
those that satisfy 

With increasing particle energy, the maximum frequency is 
directly proportional to the Lorentz factor y = ( 1 - v2) 'I2. 

Integrating (4.5) first over w and then overy, we obtain 
an expression for the total energy lost to gravitational radi- 
ation: 

6 8  = n(pyM)2 G[V(BOU'-I) +r: (28u2+l) arctg (vy) 1. (4.7) 
1Gd 

In the nonrelativistic limit, this yields 

For ultrarelativistic motion, the t o ~ a l  energy liberated in the 
form of gravitational radiation is proportional to the cube of 
the Lorentz factor: 

A similar energy dependence holds for gravitational 
bremsstrahlung in the collision of two relativistic masses.I7 
but in that case there is an additional factor In y. 

The expressions obtained for the spectral distribution 
and total gravitational energy radiated by a point mass mov- 
ing on a straight line in the field of a cosmic string are qual- 
itatively similar to the corresponding quantities describing 
the electromagnetic radiation due to a charge in flight past a 
string." The ratio of the energy lost to gravitational radi- 
ation when a mass M collides with a cosmic string to the 
energy liberated in the collision of that same body with an- 
other mass m is appr~x imate ly '~  

where r ,  is the gravitational radius of the mass. Note that in 
the present treatment, the field of the string (the conical 
space) is taken to be fixed, and the mass is considered a test 
object. In reality, the string will be deformed by the passage 
of the mass, and the corresponding world line of that mass 
will be distorted. Furthermore, the impact parameter is sub- 
ject to the constraint d>r , ,  where r, is the gravitational 
radius of the mass M. 
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5. GRAVITATIONAL RADIATION FROM THE COLLISION 
OF STRAIGHT COSMIC STRINGS 

As our second interesting example of the generation of 
gravitational waves in the field of a cosmic string (conical 
spacetime), we examine collisions between two strings. As 
we noted above, collisions between straight segments of cos- 
mic strings are important soon after they have been formed 
in a phase transition, and according to the current scenario it 
is precisely these string collisions that result in the hierarchy 
of closed loops required for the subsequent formation of 
structure in the universe. Gravitational radiation exerts a 
critical influence on the further evolution of the loops, being 
the principal energy-loss mechanism, and ultimately leading 
to the disappearance of the loops. This radiation derives 
from oscillations of the loops, and is therefore of the usual 
dynamical variety. On the other hand, the gravitational radi- 
ation resulting from the collision of straight strings moving a 
constant relative velocity is due to the global conical struc- 
ture of the spacetime governed by the cosmic string, and can 
thus be ascribed to the effects of topology. 

Consider now the case of two strings in parallel motion, 
passing one another with some impact parameter d. We shall 
assume that one of these strings is the source of a gravitation- 
al field [described by the conical spacetime metric (2.10) ], 
while the second is a test body-the presumption is that the 
azimuth angle defect 277(1 - b )  is small. Because of the 
translational symmetry along the common direction of mo- 
tion, there can be no mutual deformation of the strings in 
this case, and a model along these same lines should also 
hold merely if the impact parameter is large compared with 
the actual radius of the string. 

One can construct the energy-momentum tensor of a 
moving string either by varying the Nambu action for an 
infinitely thin string or by invoking a Lorentz transforma- 
tion out of the rest frame of the string, in which that tensor 
has the form 

In the rest frame of the test string, the components of 
ST,.,,, of most interest to us are 

where v is the velocity of the test string with linear mass 
density p'. In that event, the projection of the string onto a 
plane orthogonal to its moves in the same way as the point 
test mass in Sec. 4. But in contrast to the point mass (4.2), 
the energy-momentum tensor of the string is independent of 
z, so the total energy emitted in gravitational radiation by an 
infinite, rectilinear string will be infinite. A unit segment of 
the string, however, will radiate a finite amount of energy; 
using Eq. (3.25), we obtain 

in which 
tc' =p/uy,al = ln [ (1  + y-')u-'1. (5.4) 

I fp f /p  @ 1, Eq. (5.3) will hold for any value of angle defect 
2n-( 1 - b), and it is clear from this equation that there will 
be no radiation if b = l/n, where n is an integer. In particu- 
lar as might be expected, a free, straight string in uniform 
motion does not radiate (n = 1 ) .  In the realistic case of a 
small angle defect 2n-( 1 - b) ,  Eq. (5.3) reduces to the sim- 
ple form 

8%'' = 8 G ( ~ p ' f l u ) ~ $  dpp-'exp( - 2pd/vy). 

(5.5) 
The integral on the right-hand side of Eq. (5.5) diverges at 
the lower limit, a behavior that can be traced to the inadmis- 
sibility of treating radiation from the string in an infinite 
conical space. In the real world, the region of space in which 
the metric takes the form (2.10) is bounded by some radius 
R, beyond which the geometry of spacetime depends on the 
distribution of other matter. If we introduce a cutoffpmi, for 
the lower limit of the integral in (5.5) and assume that 
pmi, = R -', then to logarithmic accuracy, 

The total energy lost to gravitational radiation may 
conveniently be characterized by the dimensionless ratio of 
(5.6) to the geometric mean of the linear mass densities of 
the colliding strings. This ratio can be written in a form that 
is symmetric in the parameters describing the two strings: 

where b ' = 1 - 4Gp' is the conical parameter of the second 
string. For large enough y, this quantity will be of order 
unity ("catastrophic" collision). 

CONCLUSION 

Gravitational radiation from a body moving in the field 
of a straight cosmic string provides an example ofa radiation 
process that is a nontrivial consequence of the topology of 
spacetime. The spacetime of an infinitely thin straight string 
is in fact locally flat, and a point mass moving within it expe- 
riences no forces attributable to the string. But the intrinsic 
gravitational field of a test mass, which is nonvanishing over 
all space, will feel the effects of the varying spatial topology, 
and therefore even in uniform rectilinear motion, some part 
of the intrinsic field will become "detached" from the 
source, or in other words the source will radiate. LinetI9 has 
given another example of the nonlocal influence of a cosmic 
string on the intrinsic field of a point source; deformation of 
the Coulomb field of an electric charge in a conical space will 
result in an effective repulsive force between the charge and 
the string that is proportional to the square of the charge. 
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It has been estimated that bodies moving in the field of a 
cosmic string can emit a great deal of gravitational radiation, 
and in principal can therefore serve to indicate the presence 
of the string. At the present epoch, the most likely such pro- 
cess would consist of the passage of a cosmic string through a 
galaxy, cluster of galaxies, or some other gravitating system. 
The resultant gravitational radiation can be estimated using 
the equations derived above. 

Thus, for a string moving relativistically ( - 0 . 5 ~ )  at a 
distance of about five gravitational radii (d=15rg ) from a 
black hole of mass lo9 Ma at the center of a galaxy, we find 
from Eq. (4.8) that the equivalent mass lost in the form of 
gravitational radiation would be lo-* Ma.  Since the dura- 
tion of the encounter would be of order lo5 sec, the mean 
radiated power would be lo4' erg/sec. Naturally, the 
amount of "conventional" gravitational radiation emitted in 
the collision of two such black holes would be much greater, 
as is clear from (4.10) with r,, -d. This underscores the 
distinction between the dynamical and topological radiation 
mechanisms. Nevertheless, the overall energy liberated in 
passing a string is clearly quite large. 

From a general theoretical standpoint, we find it par- 
ticularly interesting that gravitational radiation is emitted in 
a collision between two straight, parallel strings. If we knew 
how to construct an appropriate exact solution of the Ein- 
stein equations, the latter would describe a spacetime with 
varying conical structure. Our calculations indicate that 
such a restructuring of the global characteristics of a mani- 
fold ought to be accompanied by the emission of gravitation- 
al waves. The topological genesis of such radiation is under- 
scored by the fact that Eq. (5.7) for the energy loss depends 
on the product of the conical parameters of the two strings, 

and only weakly (logarithmically) on the impact parameter. 
On the other hand, there is a certain analogy between topo- 
logical radiation stemming from a collision between strings 
and electromagnetic radiation from a medium whose per- 
mittivity varies with time. 
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