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A study is made of whether there can exist quasicrystals described by continuous 
multidimensional structures. The conditions necessary for the existence of such quasicrystals are 
derived. A model is proposed for the case of icosahedral symmetry. It is shown also that two- 
dimensional quasicrystals with the symmetry of a rectangle cannot be described by a continuous 
structure. 

1. INTRODUCTION x=a(n+y)+f~(o(n+y)) , (1.8) 

Quasicrystals, like other incommensurate phases, can 
be described by periodic structures in a space with dimen- 
sions exceeding 3 (Refs. 1-4). These structures may be con- 
tinuous or discontinuous. Both cases are encountered in, for 
example, the Frenkel-Kontorova model.5 The Hamiltonian 
of this model is 

Here x, are the coordinates of the atoms, w > 1 is an irra- 
tional number describing the quasiperiodicity, and A is a co- 
efficient which governs the coupling constant. The ground 
state in this model is periodic if A = 0: 

whereas for small values ofA there is a small perturbation of 
the state: 

On the other hand, in the limit A - w the particles are con- 
centrated at minima of the periodic potential: 

(here [x]  denotes an integral part of x).  The two limiting 
cases are described by 

where f, is a periodic function with the period 1. At low 
values of A this function is continuous (and, moreover, 
smooth) : 

hno 
f&(x) = -sin (2nx) +O (A2), 

a 

whereas at high values of A it is discontinuous: 

(where {x) describes a fractional part of x ) .  Therefore, Eq. 
( 1.5) represents the ground state of H" for different values 
ofA if we select& (x)  in an appropriate manner. 

We shall now find the same state somewhat differently. 
An equation 

in which n is an integer, describes a family of curves on a 
(x,y) plane. Selection of this family by a straight line y = c 
gives the positions of the atoms which are the same as in Eq. 
( 1.5). On the other hand, such a family of curves transforms 
into itself as a result of translation by vectors ( a / w ,  l/w) 
and (0, 1) .  Therefore, the plane (x,y) can be factored in 
terms of these translations, ;he result of which is that Eq. 
( 1.8) describes a curve on a two-dimensional torus T2. This 
curve is continuous for small values of A and discontinuous 
for large values. There is a critical value of A corresponding 
to the loss of smoothness, investigated by Aubry et aL6.' 

In general, quasicrystals differ from the above model 
only by a special symmetry (icosahedral or pentagonal), 
which determines the incommensurability. Therefore, qua- 
sicrystals could still be described by periodic structures in a 
space of higher dimensions. In all the models proposed so far 
such structures resemble that shown in Fig. lb, i.e., they are 
discontinuous. It is reasonable to ask whether a model with a 
continuous structure similar to that shown in Fig. la can be 
constructed. It has been suggested that this is impossible 
because of the special symmetry restrictions which forbid 
continuous structures.' However, we shall show that a con- 
tinuous model of a quasicrystal does exist and we shall find 
the conditions for the existence of such a model. 

2. OVERALL PROBLEM 

We consider a given quasiperiodic structure in d-di- 
mensional space with d ' incommensurate frequencies. This 
structure is described by a family of d '-dimensional surfaces 
{s,) which are distributed periodically in a D-dimensional 
space R D, where D = d + d '. The positions of atoms in a real 
space are given by the points of intersection of the surfaces 

FIG. 1. a )  Continuous model of a one-dimensional quasicrystal; b)  model 
of a one-dimensional quasicrystal with discontinuous "atomic surfaces." 
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i s , )  and a d-dimensional subspace R  which is called the 
physical space. The dimensionality of d can be arbitrary 
(and not only 1, 2, or 3 ) ,  because this does not affect the 
results of the present section. 

Let us find more details of the proposed structure. We 
assume that L is a lattice of periods of a periodic structure in 
R  D. Since L contains all the translations conserving this 
structure, its dimensionality is D. The space R  is a direct 
sum of the two subspaces Vand V': R  = VB V'. The "di- 
rection" of the d-dimensional space V determines the em- 
bedding of the physical space, whereas the d '-dimensional 
space V' describes the phason degrees of freedom, like they 
axis in Fig. 1. We introduce coordinates in R  "in the form of 
a pair (x,y ), where XEV and y€Vf. 

Consider an arbitrary vector a€ V'. A hyperplane V,, 
obtained by a shift of Vby a vector a, can also be regarded as 
the physical space because embedding of V in R " is com- 
pletely incommensurate. The positions of the atoms are still 
given by the points of intersection of the system of surfaces 
i s , )  with V,. Moreover, real atoms cannot approach each 
other without any restrictions, so that the system {s , )  must 
obey an additional condition that in any section of V, there 
should be no points belonging to { s , )  or located near a cer- 
tain value of h (which is the diameter of a "hard core"). 

This condition is well satisfied by both continuous and 
discontinuous { s , )  surfaces. We assume, however, that these 
surfaces are continuous, i.e., that they resemble that shown 
in Fig. la. This condition imposes more serious restrictions 
on i s ,  1. In fact, since continuous variation of a now corre- 
sponds to a continuous motion of atoms in the section Va, it 
is possible to bring in correspondence only one sheet of the V' 
family with a given atom. The one-to-one nature of this cor- 
respondence is ensured by the fact that V' is singly connect- 
ed. Moreover, this sheet must be projected on V' in one-to- 
one manner without folds. This means that for each atom 
there is a corresponding function f,: V'+ V, for which this 
sheet is the graph. The "hard core" condition means in this 
language that for any value ye V' and any atoms i and j, we 
have 

It should be noted that these restrictions correspond to the 
conditions 0, 1, 2, 3, and 4 in Ref. 8. Later we show that 
nontrivial consequences follow from these conditions and a 
study of these consequences is the aim of the present paper. 

Considerjust one sheet from the family {s , )  and denote 
this sheet by s. We can show (see Ref. 8) that the translation 
from L which conserves s creates a d  '-dimensional sublattice 
L which we denote by I [ s ] .  Then, the d '-dimensional sub- 
space r [ s ]  spanned by the I [ s ]  lattice represents the "aver- 
age slope" of the sheet s. More precisely, this means that 
there is a positive S such that any point on the surface s is 
separated from r [ s ]  by no more than S (which is a direct 
consequence of the condition on continuity). Naturally, in 
the case of two parallel sheets s ,  and s, the sublattices I [ s , ]  
and I[s, ] coincide in the same way as the subspaces r [ s ,  ] and 
4 ~ 2 1 .  

These structures can be understood better by consider- 
ing an example from the Introduction. The family of the 
curves described by ( 1.8) is labeled by an index n. Transla- 
tion from the lattice L acts on n as follows: 

Hence, we can see that the translations (a/w, l/w) form a 
one-dimensional sublattice I [ s ] ,  where s denotes any of the 
curves described by Eq. ( 1.8). The subspace r [ s ]  is the 
straight line x = ay. 

3. CONDITIONS FOR A NONTRANSVERSE STRUCTURE 
(d= 6) 

The conclusions reached in the preceding section apply 
to all incommensurate structures. We concentrate our atten- 
tion on the case when the dimensionality of the phason space 
d ' is identical with the dimensionality of the physical space d 
(as is true of all real quasicrystals). We shall show that con- 
tinuous atomic surfaces introduced in the preceding section 
exist only if the subspaces r [ s ]  are nontransverse. 

Consider two atomic surfaces s ,  and s, and find their 
sublattices I ,  = l [ s , ]  and I ,  = I[s,] .  We assume that these 
sublattices do not share any translations except for the ze- 
roth. Then, their sum I ,  + I ,  is a lattice of dimensionality 
2d' = D. For this reason the sum of the subspaces 
r [ s ,  ] cs r [s,] also has the dimensionality D. Consequently, 
r [ s I ]  and r[s,] are transverse and they intersect at just one 
point. 

The atomic surfaces s ,  and s, are close to the subspaces 
r [ s , ]  and r[s,] (in the sense defined in Sec. 2 ) .  For this 
reason the surfaces s ,  and s, can be derived by a continuous 
uniformly confined deformation r [ s ,  ] and r [s,  ] (homo- 
topy). Since intersection of two transverse submanifolds is 
topologically irremovable (see Ref. 9, Part 2, p. 522), we can 
see that the surfaces s ,  and s, must intersect. However, the 
existence of such an intersection is in conflict with the "hard 
core" condition. In fact, if a assumes the value of the phason 
coordinate of the point of intersection, the separation 
between two atoms in the section Va vanishes. Hence we can 
conclude that the assumption about the absence of nonzero 
general translations of the sublattices I [ s , ]  and I[s,] is in 
conflict with the conditions of continuity of the atomic sur- 
faces. 

This yields the necessary conditions for the existence of 
continuous nonintersecting atomic surfaces: for any two 
atomic surfaces s, and s, an intersection of the corresponding 
sublattices I[s,]and I[s,] contains a nonzero sublattice. Since 
this condition is very important in the subsequent treatment, 
we consider it in greater detail and show that if it is satisfied, 
there are no topological reasons why atomic surfaces should 
intersect. 

Denote the common vector of the sublattices I [ s ,  ] and 
I[s,] by the letter z. Since the spaces r [ s , ]  and r[s,]  also 
contain the vector z, their sum r [ s ,  ] a r[s,]  has the dimen- 
sionality less than 2d = D. Therefore, there is a vector ~ E R  " 
which does not belong to r [ s , ]  and r[s ,] .  Let 6 be the maxi- 
mum distance from the surfaces s ,  and s, to the correspond- 
ing subspaces r [ s , ]  and r[s,] (see Sec. 2). Since displace- 
ment of the subspace r [ s ,  ] by g converts it into a hyperplane 
which does not intersect with r[s,]  , there is a minimum dis- 
tance between this hyperplane and r[s ,] .  If the vector g is 
increased the required number of times, we can make this 
distance greater than 26. We can easily see that after such 
translation the surfaces, does not intersect s,. 

We can see that, in general, the condition of nontrans- 
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versality is not only necessary, but also sufficient for exis- 
tence of nonintersecting continuous atomic surfaces. How- 
ever, the additional symmetry of these surfaces may prevent 
suppression of intersections. We should consider this obsta- 
cle separately, because the symmetry group of real quasi- 
crystals is very "rich." 

We shall assume that our periodic system of surfaces 
{s;) is invariant relative to a D-dimensional space symmetry 
group H acting on R D: 

where G is a given point symmetry group R ". Since a trans- 
lation by L leaves is,) unaffected, the vector a, is defined 
only modulo L. In particular, the vector a, corresponding to 
a unit element E from the group G is contained by L. 

The transformation of Eq. (3.1 ) applies also to atomic 
surfaces. We shall select for two given sheets s, and s, an 
element h of Eq. (3.1 ) so that 

Then, in the case of sublattices I, = I[s,] and I, = l[s,], we 
have 

Thus, the action of the space group H on atomic surfaces 
creates the action of the point Gon the corresponding sublat- 
tices. This may be useful later because the set of sublattices 
I[s, ] looks much simpler than {s,). First of all, we have a 
finite number of sublattices. This is due to the fact that two 
surfaces which transform into one another as a result of 
translation from L are characterized by the same sublattice. 
Therefore, we need consider only the surfaces intersecting a 
given unit cell; we shall find a finite number of these because 
of the "hard core" condition. 

We have therefore to answer the following question: can 
there be finite sets of sublattices I [si ] which are invariant 
under the action G and such that any pair of sublattices con- 
tains a shared nonzero translation? We shall tackle this ques- 
tion in Sec. 4 in the case of two point symmetry groups of 
quasicrystals (icosahedral and pentagonal). We shall show 
that in the case of the icosahedral group the required sublat- 
tice sets do exist, but not in the case of the pentagonal group. 
In Sec. 5 we shall use these sets to derive a model of an 
icosahedral quasicrystal with continuous atomic surfaces. 

4. ICOSAHEDRAL AND PENTAGONAL SYMMETRIES 

We first consider the case of an icosahedral quasicrys- 
tal. The corresponding D-dimensional (D  = 6) structure 
with a d-dimensional embedding of the physical space 
(d  = 3 )  has been discussed on many occasions (see, for ex- 
ample, Refs. 2-4). We recall that the fundamental vectors of 
the lattice ofL translations in R are selected in the structure 
so that when projected on the physical space they form vec- 
tors directed from the center to the vertices of a regular ico- 
sahedron. We determine explicitly the set of three-dimen- 
sional sublattices of the lattice L, which will be shown to 
satisfy the condition of transversality formulated in Sec. 3. 

We assume that the ,vector triplet [e,, e,, e,] (a, P, 

face of the icosahedron. We can easily show that sets of such 
triplets are invariant under the action of the symmetry group 
Yof the icosahedron or on the vectors e,, e,, and e,. There- 
fore, the set of sublattices of the lattice L spanned by these 
triplets 

I [a, P, y 1 =zle,+z2e~+z~eT, z i ~ z ,  (4.1) 

is invariant under the action Y. It remains to show that any 
pair of such sublattices contains a nonzero shared transla- 
tion. However, a simple examination of all the variants 
shows that if two triplets [e,, e,, e,] and [e,, el,, e,] are 
related by a symmetry transformation from Y, they include 
two vectors which are identical apart from the sign (Fig. 2). 
These vectors obviously belong to [[a, D, y] and 1[A, p, v], 
i.e., these two sublattices have a shared nonzero vector. 

Our results thus show that the icosahedral symmetry 
does not prevent satisfaction of the necessary condition from 
Sec. 3. However, it does not guarantee that the resultant 
sublattices have any nonintersecting atomic planes. A more 
detailed analysis shows that this depends on the space sym- 
metry group of the structure in R '. However, we shall con- 
sider the example of nonintersecting atomic planes only for 
the case of symmorphic space groups without inversion. 

We now consider the symmetry of a pentagon (D  = 4 
and d = 2) and show that in this case the nontransversality 
condition cannot be satisfied. The symmetry group of a pen- 
tagon is generated by one element A and one relationship 
A = E (Eis aunit element). The four-dimensional space R 
separates into a direct sum of two-dimensional subspaces V 
and V': R = VGI V'. The action of the symmetry group on 
them is as follows: a )  Vand V' are invariant; b)  A acts on V 
by rotation through an angle 2 ~ / 5  and on V' by rotation by 
an angle 4n-/5. 

We assume that there is a symmetric system of atomic 
planes {s,) such that the I [s,]  lattices are nontransverse. 
We shall consider the corresponding subspaces r[si] dis- 
cussed in Sec. 2. This will be done by introducing coordi- 
nates in R in the form of a pair (x,y), where x ~ V a n d  ~ E V ' .  
Sincesf are projected in a one-to-one manner on V ', it follows 
that r[s,] are also projected on V'  in the same manner. 
Therefore, the coordinates of a set of points r[si]  can be 

= 1"'6) from the basis of is such that their prolections FIG. 2. Vertices and edges of an icosahedron shown in the form of a plane 
(possibly with reversal ofthe sign for some of them) onto the ~icture. The end of a fundamental vector e. from a lattice L is aroiected 

& - 
physical space form vectors directed to the vertices of one bnto the vertex i, whereas the end of - e, is projected onto the vertex?. 
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written as follows: 

where B, is a linear operator for conversion of V' to V. In 
other words, r[s, ] is a graph of the equation x = B, (y ) ,  
which relates the vectors x and y. 

We now consider a sheets,. The corresponding matrix 
Bl  can be written in terms of the orthogonal coordinates V 
and V': 

The subspace r [A (s, ) ] obtained from r[s, ] by the transfor- 
mation of A is described by 

x=Bl' ( y ) ,  Blf=C-'BID. (4.4) 

Here, Cis the matrix representing rotation in the Vspace by 
the angle 2 ~ / 5 ,  and D is the matrix describing rotation in V' 
by the angle 4 ~ / 5 .  

We now write down the condition of nontransversality 
with the aid of the matrices B,  and B ;. The nontransverse 
nature of r [A(s , ) ]  and r [s , ]  means that there is a vector 
y#Oin V'such that thepoints [B , (y ) ,  y]  and [ B ;  (y ) ,  y ]  
coincide, i.e., 

This can be written in the form of the condition on the matri- 
ces: 

det (B,-B,')  =O. (4.6) 

Bearing in mind that in terms of the orthogonal coordinates 
D = C', we obtain 

det (B,-C-iB,C2) =O, (4.7) 

where B,  is given by Eq. (4.3) and Cis the matrix of rotation 
by 2n/5. We shall introduce a new basis ( 1  + i, 1 - i )  in 
which the matrix C is diagonal: 

where 

E = exp( 2 ~ i / 5  ), and the bar represents complex conjugates. 
Equation (4.6) becomes 

By analogy with the transformation A ,  an element A creates 
a subspace 

where B ;' = C -2B,C4. The conditions of nontransversality 
of the subspace and of the subspaces x = B, ( y )  can also be 
written in the form of Eq. (4.10): 

We shall now compare Eqs. (4.10) and (4.12) bearing in 
mind that E~ = E ,  E - ~  = c2 and E- '  = 2. Since 
1c2 - 1 I # I E  - 1 I ,p  and q vanish in Eq. (4.8). It then follows 
from Eq. (4.8) that a, b, c, and d all vanish, i.e., that the 
subspace r[s,]  coincides with V'. It follows that the sublat- 
tice l [ s , ]  belongs to the subspace V'. However, this lattice 
must transform into itself as a result of rotation by 72" (as an 
intersection of L and V' conserved under the action of the 
symmetry group of the pentagon). This is clearly impossible 
because the symmetry group of the pentagon is not crystallo- 
graphic. 

We have thus shown that quasicrystals with pentagonal 
symmetry cannot be described by continuous atomic sur- 
faces. 

5. EXAMPLE OF CONTINUOUS ATOMIC PLANES 

In this section we use the nontransverse subspaces con- 
structed above to derive an example of continuous atomic 
planes satisfying the "hard core" condition in the icosahe- 
dral symmetry. We first determine the spatial symmetry 
group. It will be assumed to be symmorphic with the simple 
cubic six-dimensional Bravais lattice (SC) and a point sym- 
metry group of the icosahedron without inversion ( Y) . l o  

Therefore, the system of atomic surfaces which we construct 
should be invariant under transformations of the type 

In other words, in Eq. (3.1) we have a, = 0 mod L. 
A set of sublattices [[a,  8, y]  of the lattice L, transform- 

ing into itself under the interaction of the group Y and satis- 
fying the nontransversality condition from Sec. 2, is derived 
in Sec. 4. The corresponding three-dimensional subspaces 
r [ a ,  8, y]  intersect in pairs along straight lines or along 
planes. Our aim is to deform the subspaces r [ a ,  8, y]  in such 
a way as to remove all the intersections and obtain a system 
of atomic surfaces that retains the symmetry under the ac- 
tion of the group Y and the periodicity. We carry out this 
deformation in two stages. We first try to remove mutual 
intersections r i a ,  8, y] by parallel translation. We shall see 
that this can remove a considerable proportion, but not all 
the intersections. The remaining small fraction be removed 
during the second stage by slight bending of the surfaces 
obtained in the first stage. 

First stage 

We note first of all that the family of subspaces r [ a ,  8, 
y]  consists ofjust 10 elements, whereas the symmetry group 
of the icosahedron consists of 60 elements. This is a conse- 
quence of the circumstance that each of these subspaces is 
transformed into itself by a subgroup of the group Yand this 
subgroup consists of six elements. In general, this symmetry 
is disturbed by translations and the number of surfaces 
linked by the group Y transformation increases ( to  20,30, or 
60). All these surfaces can be obtained by the action of the 
group Yon any one of them. We therefore initially consider 
only one surface obtained by translation from r [ a ,  8, y ] .  

We number fundamental vectors of the lattice L as 
shown in Fig. 2. We consider a subspace r [ l ,  2, 31 and a 
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hyperplane s[ l ,2 ,  31 derived from the subspace by transla- 
tion: 

s [I ,  2, 3]=r [I, 2, 31 +a. (5.2) 

Henceforth the hyperplane parallel to r [a ,  0 ,  y] will be de- 
noted by s [a ,  0 ,  y], but because generally the number of 
such hyperplanes is larger than that the number of the corre- 
sponding subspaces, the order of the indices is important. 
We shall also use +, which will represent the vector - e,. 
We can easily see that the addition to the vector a of any 
vector belonging tor[  1,2,3] does not alters[ 1,2,3], so that 
we can assume that a is orthogonal to r[ l ,2,  31 : 

We can show that no matter what are the values of {,7, and 
<, there is a surface which is generated from s[  l ,2 ,3]  by the 
Ygroup and which intersects s [  1,2,3]. In fact let us consid- 
er a surfaces[Z, 5, 1 ] obtained froms[ 1,2,3] by the action of 
an element of Y corresponding to rotation by 72" about the 
axis 4 in the space V. We can easily see that the straight line 
(x, <, - 7, {, 7, <) belongs to both surfaces. Therefore, 
simple translations do not remove completely the intesec- 
tions of atomic planes. 

However, we note that the number of intersections can 
be minimized by this method. In fact, we can easily show 
that ifnoneofthequantities I{ - 71,177 - 6 I and 16- f I are 
identical, all the other intersections are close to those already 
described. Namely, the hyperplane s [ l ,  2, 31 intersects the 
other hyperplanes along the following straight lines: 

intersecting with s[6, 5, I ]  along (x, c, -9, E, rl, 5),  
intersecting with s[5, 4, 21 along (E, x, -q, E, q, c ) ,  
intersecting with s[2, $, 61 along ( -  X, , , q ) (5.4) 
intersecting with ~ 1 3 ,  6, 51 (-5, q, X, E, q, 5) ,  
intersecting with s[4, 3, 51 along (q, --E, X, 8, q, c) ,  
intersecting with s[6, 1,4] along (x, -E, c, E, q, 5) 

(X is an arbitrary number). This completes the list of all the 
s [a ,p ,  y], hyperplanes intersecting s [  1,2,3].  We now con- 
sider triple intersections of the surfaces. We can readily 
show that such intersections occur because the hyperplanes 
of Eq. (5.4) intersect in pairs: 

s[6, 5, 11 intersecting with1s[5, 4, 211along (E, E, -q, E, s, 5) ,  
S[ 2 , 4 ,  61 intersecting with, S[ 3, 6, 5]JaIong (-%, q, E, E, 11, z)  , 
~ ( 4 ,  3, 51 intersecting with s[6, 1, 4]lalong (q, --E, %, x, 11, %). 

(5.5) 

We thus find that 60 s[a ,  P, y] hyperplanes intersect one 
another along 180 straight lines. We can readily show that 
the same straight lines can be divided into 60 triplets such 
that the lines belonging to one triplet pass through the same 
point and the lines from three points do not intersect. Since 
the 60 triplets form one orbit of the Ygroup, none of the two 
lines in any triplet are related by a symmetry transformation. 
We shall need this in the next stage of our procedure. 

Second stage 

Our task is now to deform slightly the hyperlines s [ a ,  8, 
y] in the vicinity of the straight lines where they intersect 
and to remove these intersections. Since, as shown above, 
these straight lines are grouped in 60 triplets linked by the 
symmetry transformation, it is sufficient to remove only the 

intersections in one triplet. Let us assume that this triplet is 
formed by the straight lines [see Eqs. (5.4) and (5.5)] 

which intersects at the point (6, f,  - v,{ ,  7, f ) .  If we con- 
sider a region E in the vicinity of the straight lines described 
by Eq. (5.6) and assume that this region is so small that it 
does not contain any other intersections with their own re- 
gions E, we find that there are no limitations on the deforma- 
tion of hyperplanes within the region E. Therefore, the pro- 
belm of removal of intersections again becomes topological 
and can be solved, as in Sec. 3, by parallel translation (but in 
this case it applies only to the part of the surface within the 
region E )  , for example: 

~ 1 6 ,  5, 11 isshiftedby~'(1,1,1,1,1,1), 
s[5, 4, 21 is shifted by - ~'(1,1,1,1,1,1) (5.7) 
s [ I, 2, 31 remains in place 

(E' must be selected to be much smaller than E) .  Then, at the 
edge of the region E we have to match smoothly the inner and 
outer parts of the atomic surfaces and retain their transver- 
sality to the direction of the physical space. If this deforma- 
tion of atomic planes is replicated by symmetry transforma- 
tions, all the other intersections are removed. 

In the procedure described above we have ignored the 
periodicity of the system of atomic planes. However, all the 
steps can be repeated if we replace the space R with a torus 
T h  = R "/Land the subspace r[a,D, y] with the correspond- 
ing three-dimensional tori. Then, if the values off, 7, <, and 
E are selected to be much smaller than the lattice constant, 
there is no need to change the above procedure. We have 
thus derived a periodic system of continuous nonintersect- 
ing atomic surfaces with the symmetry of the icosahedron. 

6. CONCLUSIONS 

We have constructed above an example of an icosahe- 
dral quasicrystal with continuous atomic planes. We now 
ask the question: how are the atoms distributed in this mod- 
el? We consider first all the surfaces linked by translation 
from L to any one of the surfaces s[a ,  fl, y].  If in the con- 
struction of s[a ,  0 ,  y] we had remained in the first stage, the 
resultant system of parallel hyperplanes would have given a 
rhombohedral lattice in the section formed by the physical 
space. However, deformation of the atomic surfaces results 
in a weak distortion of the lattice in which the atoms are 
shifted by finite distances. Since there is a total of 60 s[a ,  p, 
y] surfaces, the real space contains 60 nesting slightly dis- 
torted rhombohedral lattices and the distance between any 
two atoms is limited from below by the value of h (when the 
"hard core" condition is obeyed). It should also be noted 
that because of the complete icosahedral symmetry of the 
structure, its deformation properties are the same as that of 
the standard and discontinuous model. 

The main difference between quasicrystals with contin- 
uous and discontinuous atomic surfaces is the nature of the 
additional phason modes. An inhomogeneous phason shift 
in quasicrystals, described by continuous surfaces, relaxes to 
zero (naturally, if the quasicrystalline state is stable). How- 
ever, in the case of discontinuous surfaces such relaxation 
would require finite atomic jumps. Therefore, frozen phason 
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deformations should exist in such substances. 
It should also be pointed out that the above procedure 

still leaves some unanswered questions such as the possibil- 
ity of existence of sets of nontransverse sublattices I [s, 1. We 
can show that the example given above does not exhaust all 
the possibilities. We need to consider also the question of 
existence of quasicrystals described by continuous atomic 
surfaces in the case of other space symmetry groups. Clearly, 
such crystals are not possible for every space group. In par- 
ticular, an important factor is the nonsymmorphic nature of 
a group and the occurrence of inversion. 

We conclude with some comments about the validity of 
our results. An analysis carried out for the icosahedral sym- 
metry case simply demonstrates the absence of purely geo- 
metric obstacles for the existence of quasicrystals described 
by continuous atomic surfaces. However, we can say nothing 
on whether the value of h, representing the lower limit of the 
interatomic distance in the structure obtained, corresponds 
to real interatomic distances. Moreover, the Aubry transi- 
tion mentioned in the Introduction demonstrates how the 
interaction between incommensurate subsystems may des- 
troy the initial continuity. Therefore, the question of the in- 
fluence of the interatomic interaction on the continuity of 
atomic surfaces requires additional study. 

In the case of the symmetry of the pentagon we have to 

remember that our discussion applies only to the purely two- 
dimensional case. However, in the three-dimensional prob- 
lem the condition d = d '  is not satisfied and continuous 
atomic surfaces are not forbidden. The example is a stack of 
slightly distorted two-dimensional crystals i n  which each 
layer is rotated by 72" relative to the preceding one. The 
phason shift then corresponds to a glide of layers relative to 
one another. 

The authors are grateful to A. Yu. Kitaev for valuable 
discussions. 
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