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We have measured ferromagnetic resonance ( FMR) in the quasi-two-dimensional easy-plane 
ferromagnets (CH,NH,),CuCl, and K2CuF4 for the frequency range 100 to 4500 MHz and 
temperature range 1.2 to 20 K in various directions of the magnetic field, and have determined 
H-Tphase diagrams for both materials when the magnetic field is perpendicular to the easy- 
magnetization plane. The results we have obtained can be quantitatively explained in terms of the 
theory of Berezinskii, Kosterlitz and Thouless, which includes contributions of spin waves and 
vortices to the destruction of magnetic order. 

INTRODUCTION 

In the ground-breaking papers of Berezinskii' and Kos- 
terlitz and Thouless2 the existence of an unusual phase tran- 
sition (the BKT transition) was predicted in two-dimen- 
sional degenerate systems (i.e., theXY-model). At the BKT 
transition point a new qualitative feature appears in these 
magnetic systems-rigidity of the in-plane spins relative to 
rotations. At this point the spin correlation radius goes to 
infinity; however, long-range order cannot arise in an ideal 
2D magnet, and the spontaneous moment equals zero down 
to T = 0 K.,,' This unusual transition is related to the exis- 
tence of a new type of excitation in planar 2D magnets- 
magnetic v~rtices.~. '  At low temperatures the vortices are 
bound in pairs with opposite circulations; below a certain 
temperature TBKT dissociation of a portion of the vortex 
pairs occurs, and a phase transition takes place in the system. 

The BKT theory in its general form applies to any 2D 
system with a two-component order ~ a r a m e t e r . ~ - ~  The pres- 
ence of vortex excitations and the appearance of BKT transi- 
tions has been experimentally confirmed in various systems: 
in films of superfluid h e l i ~ m , ' ~ - ' ~  in superconducting metal- 
lic films,'"-'9 and also in computer  experiment^.^'-^^ In real 
quasi-two-dimensional magnets there are always interac- 
tions between the layers (although sometimes very small 
ones), and also some uniaxial in-plane anisotropy (which 
lowers the degeneracy in the plane). Both these interactions 
strongly suppress the vortex spin excitations; the character 
of the BKT transition changes near TBKT, and long-range 
order develops in the system with (M) # O  (Refs. 7,9). 
Therefore, in quasi-two-dimensional magnets the BKT tran- 
sition in its "pure" form is difficult to observe. Nevertheless, 
many characteristic indications of the existence of the BKT 
transition have been observed in magnetic 2D systems as 

A system of this type whose magnetic properties have 
been most thoroughly studied is the quasi-two-dimensional 
easy-plane ferromagnet ( F M )  K,CuF,. The measurements 
given in Ref. 25 of the field dependence of the magnetization 
in a magnetic field parallel to the easy magnetization plane 
and the temperature dependence of the paramagnetic sus- 
ceptibility for K2CuF, showed that the experimental data 
obtained there could be described quite well within the 
framework of the BKT theory if the temperature T,,, was 
taken to be 5.5 K, which was somewhat smaller than the 

actual transition temperature T, = 6.25 K. In previous pa- 
pers2',27 it was assumed that the phase transition which oc- 
curs in K2CuF4 is a BKT transition, although the transition 
is masked by the appearance of spontaneous magnetization 
because of the weak interlayer interaction. Later neutron- 
diffraction investigations of K,CuF, (Refs. 26-28) have 
confirmed this hypothesis. 

In experiments based on quasielectric neutron scatter- 
ing in K2CuF, (Ref. 26), determination of the temperature 
dependence of the in-plane spin correlation radius is based 
on the width of the magnetic diffraction peaks. In the tem- 
perature range T >  6.6 K this dependence agrees with the 
BKT theory with TBKT = 5.5 K. For T ~ 6 . 6  K correlations 
appear not only in the plane but also in the third dimension 
(i.e., between layers), leading to the appearance of 3D long- 
range order. 

Investigations of the spin dynamics of K,CuF, by in- 
elastic neutron scattering methodsZX attest to the presence in 
this system of the most interesting characteristic of the BKT 
transition-the sharp reduction of the frequency of small- 
wave vector spin waves to zero at the phase transition point. 
The theory of planar 2D ferromagnets predictsX that the ef- 
fective exchange constant J,, ( a  measure of the "rigidity" 
relative to transverse spin fluctuations, which in turn deter- 
mines the frequency of the spin waves) should decrease 
slowly as the temperature increases up to T,,, and then fall 
sharply to zero at T = TBKT . Of course, this does not imply 
that there is any change in the microscopic exchange con- 
stant. Only the effective spin interaction undergoes a discon- 
tinuity, i.e., the gradient energy associated with the mutual 
orientation of spins at large separations. 

Behavior characteristic of a vortex transition in a 2D 
system with a two-component order parameter was first ob- 
served experimentally in planar superfluid helium by Bishop 
and Reppy,"' who observed a sharp decrease of the super- 
fluid density (which plays the role of "rigidity" in this sys- 
tem) to zero near the superfluid transition temperature. 

The phase transition scenarios for two-dimensional 
XY-magnets postulated in the BKT theory are also well con- 
firmed in another class of materials, the isomorphic com- 
pounds with the general formula BaM,(XO,), ( M  = Co, 
Ni;X = P,As)."-" This class of antiferromagnets possesses 
strong XY anisotropy, which confines the spins to planes. 
For this reason, these 2D antiferromagnets are much closer 
to the 2D XY model described by the BKT theory than the 
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Heisenberg 2D ferromagnet K2CuF,, in which the easy- 
plane anisotropy is weak. 

In Ref. 32, it was shown theoretically that in a 2D ferro- 
magnet a magnetic field perpendicular to the easy plane does 
not immediately destroy the BKT transition, in contrast to 
the case where the external field lies in the plane. The pri- 
mary characteristic of the BKT phase transition is the ap- 
pearance of order with respect to the in-plane spin projection 
SII ; in this geometry the external field induces a normal com- 
ponent of the magnetic moment M, , and this moment has no 
obvious singularities in its field dependence at the transition 
point. As the field increases, the projection of the spin on the 
S plane decreases, and the transition temperature decreases 
with it so that T,,, a Si . Hence, the H-Tphase diagram of 
a 2D ferromagnet in a magnetic field perpendicular to the 
easy plane exhibits an entire curve of BKT  transition^.^^ In 
Refs. 25,33 the portion of the phase diagram in the immedi- 
ate vicinity of T, = 6.25 was determined from magnetic 
measurements for the compound K2CuF, in this geometry; 
however, the authors did not present a detailed quantitative 
description of the data. 

In this paper we have used the FMR spectra of the 2D 
ferromagnets K2CuF, and (CH,NH, ) ,CuCl,, whose mag- 
netic properties are similar, to determine their phase dia- 
grams over the entire region where in-plane magnetic order 
exists. We have also been successful in arriving at a quantita- 
tive description of our experimental results within the 
framework of the BKT theory by taking into account the 
contribution to the destruction of magnetic order from spin 
waves and vortices (see Sec. IV below). 

Tne plan of this article is as follows: in Sec. I we review 
the magnetic properties of the compounds K2CuF, and 
(CH,NH,) ,CuCl,, and give a description of our experimen- 
tal setup. In Sec. I1 we present the results of our investiga- 
tions of FMR in an external field perpendicular to the easy- 
magnetization plane, and determine the phase diagrams of 
both compounds. In Sec. I11 we present the results of FMR 
experiments in which the magnetic field is parallel to the 
easy-magnetization plane. In Sec. IV the phase diagrams for 
these FM compounds in a magnetic field perpendicular to 
the easy-magnetization plane are analyzed within the frame- 
work of the BKT theory, taking into account the effect of 
spin waves. In Sec. V the temperature dependence of various 
magnetic properties which can be extracted from the FMR 
spectrum (magnetic moment, FMR frequency in zero field, 
and in-plane anisotropy) is described using considerations 
of scale invariance in 2D ferromagnets (theory of similar- 
ity). 

I. MAGNETIC PROPERTIES OF THE QUASI-TWO- 
DIMENSIONAL FERROMAGNETS K2CuF4AND 
(CH3NH3)2C~CII AND MEASUREMENT METHODS 

The divalent copper compounds (CH,NH, ) ,CuCl, 
(here and in what follows we will always refer to this com- 
pound as CuCl1) and K2CuF, are good examples of com- 
pounds that can be considered 2D ferromagnets with high 
a c c ~ r a c y . ~ ~ - ' ~  The compound K,CuF, is a typical 2D ferro- 
magnet with anisotropy of the easy-plane type.'7 The mag- 
netic structure of CuCll is more complicated, and is dis- 
cussed in detail in Ref. 39. However, the ordering of the spins 
in each individual layer of CuCll can also be studied by 
treating the compound as an easy-plane 2D ferromagnet. At 

room temperature the compound CuC11 has a face-centered 
orthorhombic unit cell with parameters a, = 7.38 A, 
b, = 7.28 A, and c, = 18.66 A.4".41 The structure of K2CuF, 
is also o r t h ~ r h o m b i c ~ ~ ;  however, its unit cell can be treated 
as approximately tetragonal with a, = b, = 4.155 A and 
c, = 12.74 A."z4, 

The magnetic properties of CuCl1 and K,CuF, are sim- 
ilar. For both compounds the ferromagnetic exchange inter- 
action J, (and the effective exchange interaction field HE ) 
between magnetic Cu+ ions (S = 1/2) within the layers is 
almost Heisenberg in character. The weak anisotropy A 
( z 1% of the exchange interaction J,) tends to "stack" the 
spins in the basal plane; this anisotropy has a corresponding 
easy-plane anisotropy field HA. This easy-plane anisotropy 
makes these compounds behave at low temperatures like 
two-dimensional XY ferromagnets of the sort investigated 
by BKT. However, the very weak exchange interaction Jh 
between planes (with effective field He ) and the rather small 
anisotropy in the plane a (Ha ) change the character of the 
BKT transition for CuCll, so that real crystals exhibit ferro- 
magnetic order below the temperature T,. By using magne- 
tooptic techniques, the authors of Refs. 44,45 observed do- 
main structures in both CuCll and K,CuF,. The values of 
the g-factor for K2CuF, and CuCll determined from EPR 
experiments in magnetic fields parallel (gll ) and perpendic- 
ular (g, ) to the layers are slightly different, i.e., gll  fg , .  
These magnetic parameters are well known from a multitude 
of e ~ ~ e r i m e n t s ~ ~ - ~ ~ ~ ~ ' - ~ ~  and are collected in Table I. 

It should be noted that the easy-plane anisotropy A is 
made up of two parts: A,,, , caused by the exchange interac- 
tion (between different ions), and A, , , ,  caused by the di- 
pole-dipole interaction: A =A, , ,  + A , , ,  (Refs. 37, 50, 54, 
57). The contribution of the dipole forces to the easy-plane 
anisotropy constant can be calculated rather accurately once 
the unit-cell parameters are known (see, e.g., Refs. 37, 57). 
The value of the anisotropy caused by the exchange interac- 
tion can be roughly estimated from the anisotropy of the g- 
factor: 

The values of the anisotropy field presented in Table I 
caused by the exchange interaction HA,,,, are found from 

In the continuum limit the magnetic properties of the 
compounds under discussion can be described by the Hamil- 
tonian 

where m is a unit vector along the direction of the spins S ( r )  
at the point r; 1 m 1 = 1, h = gp,S H; bo, cO are the lattice 
parameters. Here and in what follows the macroscopic ex- 
change interaction constant is J = izS2J, = 0.5J0 (for a 
square lattice the number of nearest neighbors in the plane is 
z = 4) .  

In a previous paper, the authors of Ref. 39 studied the 
field dependence of the FMR frequency in CuCl1 at the low 
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TABLE I. Fundamental magnetic characteristics of the easy-plane 2 D  ferromagnets K,CuF4 and (CH,NH,) ,CuCl,. 

Joy K HA = (HA,,,' J '/J 
( H , , o ,  ) + HA,,,, ) kOe He,  Oe H,,  Oe T,, K M,,, gauss g,, gz 

"Measurements of the paramagnetic susceptibility for K,CuF4 in Ref. 37, for (CH,NH,),CuCI, in Refs. 49, 41. 
'Data from neutron diffra~tion~'.~' and heat capacity.4K 
'Data from inelastic neutron scattering in K,CuF, (Ref. 28). 
*FMR in K,CuF, (Refs. 50-52) and (CH,NH,),CuCI, (Ref. 54).  
'Results of present work and Ref. 39. 
'Heat capacity data for K2CuF, (Ref. 37) and (CH,NH,),CuCl, (Ref. 55), and also susceptibilities (Ref. 38). 
gCalculation from Refs. 37, 57. 
hParamagnetic resonance in K,CuF4 (Refs. 37,43,50-52) and (CH,NH,),CuCl, (Refs. 54, 56). 

temperature T = 1.2 K <  T,, where fluctuation effects can 
be neglected. Under these conditions the FMR spectrum is 
determined only by the magnetic structure of the compound 
under study and the direction of the field. In order to explain 
the angular dependence of the FMR spectrum, an unusual 
ferromagnetic structure was proposed for CuCl1 in Ref. 39, 
in which the difficult-magnetization axes of the magnetic 
anisotropy in neighboring planes are directed at an angle to 
one another. 

In this article we present results of an experimental in- 
vestigation of the temperature dependence of the FMR spec- 
trum for various directions of the magnetic field in CuCll 
and K,CuF,. Measurements of the dependence of the FMR 
frequency on the external field were carried out in the band 
of frequencies 100 to 4500 MHz and the temperatures 1.2 to 
20 K. The basic topic of discussion in this paper is the inves- 
tigation of fluctuation-induced features in the FMR spec- 
trum. With this in mind, our experiments were carried out at 
exceptionally low frequencies and in correspondingly weak 
magnetic fields, because the application of even a relatively 
small magnetic field strongly suppresses such short-range 
fluctuations as vortices and spin waves; this in turn causes 
the features connected with the two-dimensional character 
of the system to be much less noticeable or even to disappear 
entirely. The FMR was measured via absorption of high- 
frequency power by crystals placed either in a stripline or a 
helix (i.e., without using a resonator). This enabled us to 
carry out our measurements over a wide frequency interval 
( 100 to 4500 MHz) within a single experiment. The amount 
of power fed into the crystals came to less than one mW, 
while the absorption at resonance was at most 10%. At these 
levels of microwave power we observed no overheating of the 
samples at resonance for any temperature. The horizontal 
magnetic field was produced by an electromagnet into whose 
gap we placed a helium dewar. By rotating the magnet rela- 
tive to the vertical axis through an arbitrary angle and rock- 
ing it by + 4 degrees relative to the horizontal axis, we were 
able to apply the field in the required direction with an accu- 
racy of better than 0.5 degrees. The magnetic field was mea- 
sured with a Hall apparatus. We installed a system for tem- 
perature measurement and stabilization which allowed us to 
establish and maintain the required temperature within th 

experimental volume to an accuracy of 0.1 K. The samples 
were prepared in the form of thin disks with planes perpen- 
dicular to the c, axis, with the following dimensions: for 
CuCl1 4 2.1 X 0.15 mm, for K,CuF, 4 2.25 X 0.25 mm, from 
which the demagnetization coefficients of the samples 
equalled N, = 4.rr.0.89, N = 4a.5.3.10W' and 
N, = 4 ~ 0 . 8 5 ,  N I I  = 4n-. loW2, respectively. 

The width of the FMR line in the field is rather narrow, 
amounting to several oersteds in K,CuF, and less than 1 Oe 
for CuCl1 at T = 1.2 K. This attests to the good quality of 
our samples. As the temperature increased the resonance 
line broadened. 

In order to determine the corrections connected with 
the demagnetization fields, we carried out measurements of 
the static magnetization of the samples with a vibrating mag- 
netometer at various temperatures and directions of the 
magnetic field, both in the plane of the samples and perpen- 
dicular to the films. 

II. FMR IN A MAGNETIC FIELD PERPENDICULAR TO THE 
EASY PLANE 

In normal easy-plane 3D ferromagnets subjected to a 
magnetic field directed along the difficult-magnetization 
axis (Hllz) a spin-reorientation phase transition should be 
observed: in an external field H, = H A  the magnetic mo- 
ment is rotated until it is perpendicular to the easy-magneti- 
zation plane (along HIJz) and the FMR frequency in this 
field vanishes. The field dependence of the FMR spectrum in 
this case is well-described by the following well-known for- 
mulae (see, e.g., Ref. 58): 

H 2 '12 

~ ( H ) = ~ ( H . ' H ~ ' ) " ~ [ ~ - ( ~ ) ]  HA for HcH,', (2a) 

v (H)=y[ (H-HAT) (H-HA'+H~)]"a for H>HA1, (2b) 

where 

for 

Here y is the gyromagnetic ratio. Hence, for easy-plane 3D 
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ferromagnets in a magnetic field perpendicular to the easy 
plane, when H >  H, = HA (this region of fields also will be 
of fundamental interest to us in what follows) the FMR fre- 
quency should follow a simple linear relation when we take 
into account the anisotropy of theg-factor (see Table I )  and 
the fact that H, <HA : 

where 

Figure 1 shows the FMR spectra as a function of the 
internal magnetic field Hi,, in CuCll and K,CuF,for Hllz. 
In converting the external magnetic field of the electromag- 
net into the internal field of the sample according to Eq. 

u, GHz 
5 r 

Hc H~ H,,, , kOe v,  GHz 

5 r 

{C H~ H,,, , kOe 

FIG. 1. FMR spectra in a magnetic field perpendicular to the easy axis 
HIIz for (CH,NH,),CuCl, (a)  and K2CuF4 (b)  at several temperatures: 
A-1.2 K, @--4.2 K, 0-9 K on (a)  and 6.5 K on (b).  The curves of 
v(H) were plotted using Eq. (2),  with values of HA ( T )  chosen for best fit 
in the region v>3 GHz. H, is the phase transition field while HA is the 
easy-plane anisotropy field at T =  4.2 K. 

(3b), we used values of the demagnetization field which we 
obtained from a measurement of M, (H,T) on these same 
samples. It should be pointed out that based on the magnetic 
structure of CuCl1 proposed in Ref. 39, the difficult-magnet- 
ization axes (and correspondingly the easy-magnetization 
planes) in neighboring layers should be separated by an an- 
gle of - 10" from one another. Therefore, if the magnetic 
field H is directed pprallel to the difficult-magnetization axis 
for one system of layers, then it will make an angle =. 10" to 
the difficult-magnetization axes of the neighboring layers.39 
This implies that a FMR measurement will record two reso- 
nance peaks. However, in using the Hllz geometry we are 
reporting in this paper only resonances associated with those 
layers for which the external field was directed strictly along 
the difficult-magnetization axis, which for this case is also 
taken to define the direction of the z axis. 

The orientation of the field of the electromagnet along 
the direction of the difficult-magnetization axis in the crys- 
tals was carried out in two stages at T = 1.2 K. Initially, for 
H > HA and a fixed frequency of z 3 GHz an external field 
was applied so that the resonance field was a maximum.39 
Then, at lower frequencies down to 100 MHz the field HJJz 
was successively oriented more and more precisely so that 
the FMR frequency was maximally softened in the largest 
field (which also corresponds to HA ). This procedure al- 
lowed us to orient the external field perpendicular to the 
easy-magnetization plane to an accuracy of better than 0.5". 
We note that we did not succeed in reducing the FMR fre- 
quency precisely to zero in the critical field H = HA ; a gap 
remained in the resonance spectra corresponding to 100-200 
MHz in both the compounds under discussion for Hllz. The 
value of this gap decreased as the temperature rose. The 
meaning of this gap is unclear to us. 

The FMR spectrum for both materials at the low tem- 
perature T = 1.2 K is well-described by the usual functions 
(2 ) ,  (3)  for easy-plane FM (the solid lines in Fig. 1) .  The 
different behavior of the resonance spectra of our samples in 
fields H ( H c  is connected with the influence of the weak 
intraplanar anisotropy H a .  Because the compound CuCll 
has the orthorhombic structure with H,  # O  (see Table), we 
observe a gap in the FMR spectrum which at zero field is 
given by v, = y ( H A  H 2 ) ' I 2 ,  and which is a minimum at a 
field H = H , .  In the tetragonal compound K,CuF, H, Z O  
(Ref. 53) and the frequency of uniform oscillations should 
vanish for HGH,.  In this region of fields, apparently only 
those magnetostatic modes with frequencies v#O are excit- 
ed in crystals of K,CuF,; the frequency of these modes also 
decreases as the field approaches the phase transition field 
H = H c .  In Fig. 1 (b)  we show only the FMR spectra of the 
uniform resonance in K,CuF,. 

As the temperature increases the FMR spectrum of 
both compounds is well-described by the linear dependence 
(3)  with an anisotropy field HA (T )  which depends on tem- 
perature in the range of fields H Z  HA ( T  = 0)  (and in the 
corresponding range of frequencies v 2 3.5 GHz). However, 
in smaller fields (and corresponding frequencies v < 3 GHz) 
the function v ( H )  deviates from the linear relation (3)  and 
the FMR frequency reaches a minimum in a field 
H = Hc (T)  smaller than the easy-plane anisotropy field 
HA (T )  obtained from extrapolation of the high-frequency 
part of the spectrum according to Eqs. ( 3 ) . 

Thus, in contrast to the usual 3D-ferromagnets, for the 

1280 Sov. Phys. JETP 68 (6), June 1989 Demokritov et a/. 1280 



2D ferromagnets under study here the critical field Hc (T)  
and the anisotropy field HA (T)  differ significantly at finite 
temperatures. 

The temperature dependences HA ( T) and H, ( T), in- 
cluding the contributions from demagnetization, are shown 
in Fig. 2 for both the compounds under discussion. We sug- 
gest that the following picture can describe their behavior in 
a magnetic field perpendicular to the easy-magnetization 
plane. Assume that H, (T) is a curve of phase transitions. 
Then the value of H, vanishes at T = T,, and in fields 
H>H, (T)  the order in the plane is destroyed. The order 
parameter of this transition is the projection of the magnetic 
moment on the easy-magnetization plane M I I :  for 
HgHc ( T) we have MI, #O, while for H > H, ( T) we have 
MlI = 0. A second component of the magnetic moment M, 
is induced by the external field perpendicular to the plane; in 

FIG. 2. Temperature dependence of the phase transition field H, ( T) (0 )  
and easy-plane anisotropy field HA (T)  (0) for (CH,NH,),CuCl, ( a )  
and K2CuF4 (b) ,  obtained from FMR measurements with Hllz: the 
dashed curves are the theoretical functions H A  ( T) [Eq. ( 13) 1, the dot- 
dashed curves are BKT phase transition curves (Eq. 11). and the solid 
curves are calculated for real phase transitions (see Sec. IV) .  

small fields we should have M, = M,( T) H /H :, ( T) . At the 
field H = H, (T)  the spins have a rather large component 
SII ( r )  at each point r; however, at large spacings these com- 
ponents are disordered and the value of the average projec- 
tion of the magnetic moment MII reduces to zero in the criti- 
cal field. The field dependence M, (H) has no marked 
features at the transition point. For H>Hc (T)  (where 
MII = 0)  the spins continue to swing toward the direction of 
the external field, and the increase in the normal component 
M, is practically linear up to a field HzHA (T),  at which 
point it slows sharply. In the range of fields H > HA ( T) the 
magnetic moment M, of the sample incr~ases slowly with 
field, so that it is possible to observe a significant change in 
the quantity M, only in the (admittedly wide) interval of 
fields HA z 2-3 kOe < H < kBT/g,uBSz 100 kOe. The be- 
havior of these two components of the magnetic moment in 
an external field H perpendicular to the easy-magnetization 
plane is illustrated in Fig. 3; in this figure M, (H)  is the 
component of the magnetization along the field H measured 
by us for K,CuF, at T = 4.2 K, while Mll (H) is the hypo- 
thetical field dependence of the projection of the magnetiza- 
tion in the plane. 

Let us emphasize again that in easy-plane 2D ferromag- 
nets the phase transition field Hc ( T) at which M 1 I  ( T) goes 
to zero is smaller than the anisotropy field HA ( T), at which 
the component M, ( T) is close to saturation (Fig. 3 ) . This 
leads to the circumstance that in 2D-ferromagnets the total 
value of the magnetic moment is not preserved as it rotates 
toward the direction of the difficult-magnetization axis with 
increasing field, i.e., [MI fconst. Therefore the phase transi- 
tion in a magnetic field perpendicular to the easy-magnetiza- 
tion plane takes place not by spin reorientation (which is 
characteristic ofthe usual 3D ferromagnets), but rather is an 
order-disorder transition in the plane. 

In contrast to 2D ferromagnets, in 3D ferromagnets the 
difference between H, and HA is small and almost unobser- 
vable. It is clear from Fig. 2 that in a 2D ferromagnet the 
difference between H, and HA grows as the temperature 
increases, and consequently is a fluctuation effect. In addi- 
tion, we should note that significant departures of the FMR 
measured spectra of CuCl1 and K,CuF, from the standard 
behavior (2) ,  (3)  is observed only in the region of relatively 
small fields H 5 HA (0)  (and at the corresponding frequen- 
cies Y 5 3.5 GHz). The fields required to study FMR at high- 
er frequencies are too large, since a field H >  HA (0)  will 

M, gauss 

FIG. 3. Field dependence of the two components of the magnetic moment 
M, ( T )  and M I  ( T )  (in the plane) for K2CuF, with Hllz at T =  4.2 K. 
The solid curve is the experimental function M, ( T ) .  The dashed curve is 
the assumed behavior of the projection of the magnetic moment in the 
plane; the point M,,(4.2 K ) ,  denoted by 0, is the experimental value of the 
magnetic moment for H = 0 and T = 4.2 K.  
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cause the fluctuation features of the two-dimensional behav- 
ior to disappear. 

The easy-plane anisotropy field HA ( T) (see Fig. 2 )  has 
no singularity of any kind at T = T,, so that the curve 
HA ( T )  shown in Fig. 2 does not correspond to any real 
phase transition in the 2D compounds under study. The ef- 
fective anisotropy field HA ( T )  at which the spins are con- 
fined to the plane corresponds to a field in which a reorienta- 
tion transition should be observable in ordinar) 3D 
ferromagnets. For T >  T, (for which MI, = 0 for any field in 
the given geometry) the FMR spectra in 2D ferromagnets 
preserve their nonlinear form up to those temperatures 
where HA becomes insignificant. The anisotropy of the 
FMR spectra relative to the direction of the magnetic field is 
preserved up to a temperature of 16 K in CuC11 and 12 K for 
K,CuF4, which is significantly higher than the correspond- 
ing ferromagnetic transition temperatures Tc = 8.9 K and 
6.25 K. At these temperatures anisotropy appears in the sus- 
ceptibility of these corn pound^^'.^^; in addition, there is a 
broad maximum in the temperature dependence of the heat 
capacity.".37 In neutron experiments on K2CuF4 the au- 
thors of Refs. 27,28, 59 observed that short-range spin cor- 
relations with a radius on the order of a few lattice spacings 
are preserved up to 12 K; these authors also observed inelas- 
tic neutron scattering by short-wavelength spin waves for 
T >  T,. The existence of a wide temperature range (9-16 K 
for CuCl1 and 6.3-12 K for K2CuF4) in which short-range 
order exists is undoubtedly a consequence of magnetic 2D 
interactions in these materials. In 2D magnets the transition 
to an ordered state often occurs at a temperature significant- 
ly smaller than J, ( 19.2 K for CuCll and 12 K for K,CuF4), 
whereas the short-range order begins to appear at T z J , .  
This explains the preservation of anisotropy of the magnetic 
properties in 2D ferromagnets at temperatures which signif- 
icantly exc'eed the phase transition temperature T,. 

The temperature dependence of the easy-plane anisot- 
ropy field HA ( T )  has also been determined previously from 
the FMR spectrum for CuCll (Ref. 54) and for K,CuF4 
(Refs. 50,52). However these experiments were carried out 
in a range of frequencies above 9 GHz, requiring magnetic 
fields H%HA. In our low-frequency experiments we used 
weaker fields H3; HA ; therefore we cannot make any de- 
tailed quantitative comparisons, even with respect to overall 
qualitative agreement, between our results and these earlier 
investigations involving high-field FMR. Nevertheless it is 
noteworthy that when extrapolated to T =  0 K both the 
functions HA and H, (Fig. 2) reduce to one and the same 
value HA (0) = H, (0) ,  which equals 1480 + 20 Oe for 
CuCll and 2430 ,30 Oe for K2CuF4, and the values are 
close to the data obtained in Refs. 50, 52, 54. 

In Ref. 25 (see also Ref. 33) that part of the phase dia- 
gram near T, = 6.25 K was determined for K,CuF4 from 
measurements of the temperature dependences of the nor- 
mal component of the magnetization M, ( T )  in a constant 
field applied along the difficult axis z. The authors of Ref. 25 
(see Fig. 4)  observed a temperature Tc (H) beyond the 
phase transition point at which the derivative (dMz/dT)Hz 
has a maximum value (the dashed line on Fig. 4 ) .  This point 
on the H-T diagram corresponds to the maximum in the 
longitudinal susceptibility x, = (dM, /dH, ) as the mag- 
netic field varies. For comparison, we also show results ob- 
tained from our FMR measurements (the solid curve in Fig. 

M, , gauss 

50 i 

FIG. 4. Temperature dependence of the magnetization component 
M, ( T) for a constant internal field H,,, llz for K2CuF, (Fig. 6 from Ref. 
25). The dashed curve passes through the maximum values of (dM,/ 
dT), and corresponds, according to Ref. 25, to a curve of phase transi- 
tions H, ( T).  The solid curve corresponds to values of the critical field 
H, ( T) obtained from FMR experiments in this paper. 

4) .  It is clear that with regard to qualitative agreement there 
are certain quantitative discrepancies: the value of the criti- 
cal temperature T, ( H )  found in our experiments is some- 
what larger and corresponds in Fig. 4 to the maximum in the 
quantity M, ( T) itself rather than its derivative. We do not 
have an unequivocal explanation of this lack of agreement; 
nevertheless, we must mention the following facts. As point- 
ed out above, the order parameter for this transition is the 
projection of the magnetic moment MI, in the plane. Conse- 
quently, according to the theory of phase transitions5 (and 
in particular, the BKT t h e ~ r ~ ~ . ~ ~ ) ,  at the phase transition 
point the susceptibility ,yII = (dM ,, /ah) diverges relative to 
an infinitesimal field h parallel to the plane. The authors of 
~ e f s .  25, 33 measured only the normal component of the 
magnetic moment M,, which does not characterize the 
phase transition in the present case. Therefore the determin- 
ation of the phase transition temperature in a magnetic field 
parallel to the difficult-magnetization axis z is indirect with 
respect to M, (T,H) and should involve some indetermin- 
acy. Unfortunately, we know of no detailed theoretical in- 
vestigation of the behavior of the induced field of the mag- 
netic moment component M, at the phase transition point in 
a planar 2D ferromagnet. 

The theoretical description of the phase diagrams (Fig. 
2) will be presented in Sec. IV. 

I l l .  FMR SPECTRUM IN A MAGNETIC FIELD PARALLEL TO 
THE PLANES 

(a) (CH,NH,),CuCI, 

In the compound CuCl1 there is a preferred direction of 
the magnetic moment along an easy-magnetization axis a,, in 
every one of the easy-magnetization planes, due to the pres- 
ence of a weak intralayer anisotropy H, = 84 Oe (see Table 
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I ) .  If the magnetic field is directed along the easy-magneti- 
zation plane perpendicular to the axis a,(Hllb,), a reorienta- 
tion transition is observed in CuCll: as the magnetic field 
increases the magnetic moment M turns from the axis a, to 
the axis b, and in fields H>H, it lies strictly along the field 
H. In this case the FMR frequency should reduce to zero at 
the field H = H, . The FMR spectrum of an easy-magnetiza- 
tion FM in the form of a thin disk (N, = N, $ 1  ) for the two 
directions of the external field in the plane looks as fol- 
~ O W s s u , ~ .  . for H)Ja, 

and for Hllb,, 

where H 2 was determined earlier from Eq. 2(c) .  
The measured FMR spectra in CuCl1 for two directions 

of the in-plane magnetic field Hlla,, and Hllb, are presented 
in Fig. 5 for several temperatures. At T = 1.2 K the solid 
curves calculated using Eqs. ( 4 )  give a good description of 
the measured resonance spectrum. In the case of H((b, we 
actually observed a reorientation spin transition at the field 
H = H, , at which the maximum frequency softens. By using 
this feature of the field dependence of the FMR spectrum for 
Hllb, we can determine the temperature dependence of the 
easy-axis anisotropy H, ( T) in the plane. In Fig. 6 we pres- 
ent the results of these measurements of H, ( T ) .  On this 
same figure we also show the results of the temperature de- 
pendence of the FMR frequency v,, measured at H = 0 in 
CuCll. In our samples the demagnetization coefficients 
along the plane are small, i.e., N, = N, 1; therefore we can 
neglect the contribution of the demagnetizing field [see 
2(c) 1.  We note that for H = H, the resonance frequency 
does not reduce strictly to zero in this geometry (see Sec. 11), 
i.e., H))b,. The remaining gap is estimated to be -- 500 MHz 
at T = 1.2 K; as the temperature increases it decreases. 

At a temperature T = T, the anisotropy field H, in the 
plane reduces to zero. However, the dependence of the FMR 

FIG. 5. FMR spectra for (CH,NH,),CuCI, at tem- 
peratures T =  1.2 K (a) ,  4.2 K (b) ,  and 10 K ( c )  for 
two directions of magnetic field H in the easy magneti- 
zation plane (qbo) :  0-Hlla,, where a, is the easy- 
magnetization axis; 0-Hllb,. The solid curves were 
obtained using Eq. (4),  where H, is the intraplanar 
anisotropy field. 

frequency on the direction of the field in the plane is pre- 
served within a certain region above T, (see Fig. 5 ) roughly 
up to a temperature of 11 K. In this temperature region the 
anisotropy of the susceptibility within the easy plane is also 
preservedS4' On the other hand, the nonlinear character of 
the dependence of the resonance frequency on magnetic field 
is preserved up to a temperature of 16 K. This also confirms 
the presence of an easy-plane anisotropy HA #O in this tem- 
perature region [see ( 4 )  I ,  in full agreement with the results 
of Sec. 11. 

In the tetragonal crystal K,CuF, (whose magnetic lay- 
ers form a square lattice) there is no uniaxial (quadratic in 
M )  in-plane anisotropy. With respect to the angular depend- 
ence of the FMR we observed only a weak biquadratic (biax- 
ial) in-plane anisotropy in K,CuF, equal to ~5 Oe at 
T = 1.3 K (Ref. 53). For the case of H, = 0 the resonance 
frequency does not depend on the direction of the magnetic 
field in the plane, and Eq. (4 )  reduces to 

FIG. 6. Temperature dependence of the intraplanar anisotropy field 
H, ( T )  (0) and FMR frequency at H = 0 v0(T) (0)  for 
(CH,NH,)2CuC14 in arbitrary units. The solid curves are the result of a 
calculation using Eqs. (24) and (22) with H,, (0) = 86 Oe and 
vO(0) = 1240 MHz. 
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v, GHz 

FIG. 7. ( a )  FMR spectra for KZCuF, for Hlz (i.e., in the plane) for 
several temperatures: A-1.2 K, 0-4.2 K, 0-7 K. The dashed curvves 
are paramagnetic resonance curves for T> 12 K. The solid curves were 
obtained from Eq. (5b).  (b )  FMR spectra for K2CuF, with Hlz  at 1.2 K 
( A )  and 4. 2 K.  ( 0 ) .  The straight line is from Eq. (5b). 

The measured FMR spectra in K,CuF, in a magnetic 
field parallel to the plane are shown in Fig. 7(a)  for several 
temperatures. Our experiments showed that to the limits of 
our accuracy the position of the resonance line does not 
change as the external field rotates in the easy-magnetization 
plane, i.e., there is no preferred direction in the plane. How- 
ever, we did not arrive at a satisfactory description of the 
measured FMR spectra v(H) using the simple function 
(5a): there is a significant disagreement in the field region 
H >  500 Oe. The experimental data can be brought into good 
agreement with theory if we admit the possibility of a gap v, 
being present in the FMR spectrum. The curves in Fig. 7(a),  
which portray the field dependences of the resonance fre- 
quency for this geometry, were calculated using the expres- 
sion 

The only quantity which we chose on the basis of a best fit 
between (5b) and the experimental data was v,; the quantity 
HA in this case was taken from the experiments with Hllz 
(Fig. 2(b) ). Using this procedure, we found that the gap in 
the FMR spectrum came to v, = 1370 MHz at 1.2 K and 830 
MHz at 4.2 K. 

In Fig. 7 (b) we present the experimental data for v ( H )  
in terms of the coordinates v2 and H ( H  + g , H L / g l  ). In 

these coordinates the resonance spectra [see (5b)l for var- 
ious temperatures are parallel lines, which intersect on the 
ordinate axis at a value of the squared FMR frequency vi  at 
H = 0. We associate the small deviations from the experi- 
mental points on Fig. 7 in the region of fields H  5 90 Oe with 
the appearance of a domain structure in the K,CuF4 sample. 
Possible reasons for the observed gap in the FMR spectrum 
of K2CuF4 might be either the magnetoelastic intera~tion,~' 
or the hyperfine interaction between electrons and the nu- 
clear spins of the Cu2+ ions." 

For T >  T, a nonlinear dependence of the FMR fre- 
quency on external field (which indicates that HA + O )  is 
observed at a temperature of - 12 K. In the temperature 
region T >  12 K the resonance spectrum deviates from the 
paramagnetic law, which also agrees with the results of Ref. 
1 1 .  

There is still oneother interesting feature of FMR in the 
compound K,CuF4 for the geometry in which the external 
constant field H is directed along planes parallel to the mi- 
crowave field h, i.e., H((h1z. As we have already noted, for 
fields H < N  M,( T) the sample is found in a multidomain 
state. When it passes into the single-domain state at 
H  = N I I  M,( T) the microwave properties of the crystal, e.g., 
its longitudinal susceptibility, change sharply. For the case 
of a microwave signal transmitted along a strip line (in 
which a crystal of K2CuF, is placed) this results in a feature 
which appears in the detected microwave power either as a 
resonance or as a step [Fig. 8 (a )  1. This feature is most clear- 
ly seen in the frequency region 200-600 MHz, where its posi- 
tion with respect to field (corresponding to H = Nil  M,( T) ) 
is practically independent of frequency. Hence, the presence 
of this feature in the absorption spectrum for the geometry 
Hllh allowed us to determine the temperature dependence of 
the field H  = N  M,( T )  at which the sample passes into the 
one-domain state. Once we know the demagnetization coef- 
ficient N l l  of the sample, we can directly find the tempera- 

Q roa MHz 
D 

m 

45u 
2517 

u0, gauss 50 NI;M~lo'' H, Oe 

FIG. 8. (a )  Microwave absorption curve of K2CuF, in the Hlz  and H(lz 
geometries, where h is the microwave field at T = 1.2 K. N ,  M,, is the 
transition field in the single-domain state in the sample. (b)  Temperature 
dependence of the spontaneous magnetic moment M,,(T) for K,CuF,. 
.-result of measurements of the field Nil M,,( T) using FMR; 0-data 
from neutron diffraction." 
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ture dependence of the spontaneous magnetic moment 
M,,(T) at zero internal field for K,CuF4. In Fig. 8(b)  we 
show our measurements of the function M,(T), along with 
data obtained in experiments using neutron diffra~tion.~' 

IV. A DESCRIPTION OF THE PHASE DIAGRAMS OF 20- 
FERROMAGNETS IN A FIELD PERPENDICULAR TO THE 
PLANES 

Let us turn to a theoretical description of the phase dia- 
grams (Fig. 2) shown in Sec. 11. Following the approach 
used in Refs. 63-65, it is convenient to investigate the behav- 
ior of the spin system at different scales. 

The measured phase transition curves H, ( T )  and the 
temperature dependence of the easy-axis anisotropy HA ( T) 
(see Fig. 2 )  in 2D ferromagnets can be related to the exis- 
tence of a characteristic scale R ,  =: (J/A)I1' (here and in 
what follows all dimensions are given in units of the in-plane 
lattice constant), over which the behavior of the magnetic 
system varies significantly. At small scales R < R ,  the rather 
small (A <J) easy-plane anisotropy is only weakly reflected 
in the spin fluctuations and need not be taken into account. 
Therefore, over scales R < R , the compounds CuCl 1 and 
K,CuF4 can be described in terms of the 2D Heisenberg 
(2D-H) model, in which the order parameter has three com- 
ponents ( n  = 3 )  (see Fig. 9 ) .  

Let us take spin fluctuations into account at these scales 
by using the renormalization group. In Refs. 63, 64 it was 
shown that when averaging is performed over the rapidly 
varying spin fluctuations at scales smaller than R, tlie Ham- 
iltonian of a Heisenberg FM with the "easy plane" type of 
anisotropy ( 1 ) does not change its form if on a scale R we 
introduce an effective temperature T, , anisotropies A, , a,, 
and an interlayer exchange interaction J k  [in this case we 
say that we have "renormalized" the Hamiltonian ( 1 ) 1 .  The 
effective parameters of the Hamiltonian ( 1 ) on a scale R are 
determined by the equations 

where the renormalization factor is 

Hence, the only effect of including spin waves with wave 
vectors q)R ' on a scale R is the introduction of the effec- 
tive temperature and anisotropy parameters ( 6 ) :  the mag- 

~ D - X Y  I 3D or 2D lsing 
2D Heisenberg, n = 3 1 

I n=Z I 

spin waves I vortices, I magnetic order 

1 sp'n waves I 

FIG. 9. Behavior regimes for an easy-plane 2D ferromagnet at different 
scales R:  R ,  = ( J / A )  th and^:^ =. ( J / J ' )  '/%re thecharacteristicscales in 
the system. 

netic properties of the FM on new scales are described by 
starting not with the original parameters T, A, a, J '  but rath- 
er with the new renormalized T, ,A, , a,, J i. We note that 
according to (6 )  the exchange and dipole parts of the easy- 
plane anisotropy constant A are renormalized different- 
ly."3,5 The contribution from the dipole-dipole interaction 
to the uniaxial anisotropy energy in the easy-magnetization 
plane a is The magnetic field H in the Heisenberg 
model is not renormalized. The magnetic moment of a block 
of spins of size R in a Heisenberg F M  is determined in Refs. 
63, 64: 

More precisely, including further terms in T / 2 r J  the renor- 
malization of the temperature is determined from the equa- 
tion in Ref. 66: 

The Heisenberg renormalization is cut off at a scale 

At scales R >R , the anisotropy energy E, = A, R ' exceeds 
the exchange energy J (or the temperature T, which deter- 
mines the characteristic energy at low temperatures where 
T, < J) and the spins are "stacked" in the plane. On these 
scales the fluctuations of the order parameter become effec- 
tively two-dimensional; they take place only in the plane, so 
that (m, (R)m,  (0)) --,0 and the magnetic system goes over 
into the two-dimensional XY regimeh4 (see Fig. 9) .  Further 
into this regime the system can be described by the BKT 
theory with effective parameters T, and A,, which can be 
foundfrom (6)  ifweset R = R ,  in (6a):  

At low temperatures ( T, < J )  it is necessary to replace J by 
T, in the logarithm appearing in ( 8) .  

On scales R > R ,  there exists a new type of excitation in 
addition to the spin waves, the magnetic vortex. Magnetic 
vortices have a core of size R ,  (Refs. 5, 9 )  and are fully 
analogous to vortices in super fluid^.^ At low temperatures 
vortices with opposite circulations are joined in bound pairs. 
At a temperature T = T,,, the free energy of an isolated 
vortex goes to zero; this results in a phase transition associat- 
ed with the dissociation of a portion of the vortex pairs (i.e., 
the Berezinski-Kosterlitz-Thouless transition1-3), and a fi- 
nite density of free vortices appears in the 2D system. In the 
XY-model, neglecting the interaction of vortex pairs, the 
BKT transition temperature is determined by the simple 
expression 

There is a significant difference between the systems under 
study here, which exhibit easy-plane anisotropy, and the XY 
model. First of all, the Heisenberg renormalization (6) ,  ( 8)  
due to spin waves at scales R <R , must be included. Second- 
ly, in contrast to the case where the external field is directed 
in the easy-magnetization plane, a field perpendicular to this 
plane cannot immediately destroy the BKT transition. In 
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this case the spins turn toward the direction Hllz and the 
projection of the spins Sli decreases; because of this the BKT 
transition is shifted toward the region of lower temperatures 
[see ( 10) 1 .  Hence, an entire curve of BKT transitions ap- 
pears on the H-T phase diagram of a planar 2D ferromag- 
net. " 

This curve of BKT transitions can be found in the fol- 
lowing way. The magnetic field H perpendicular to the spin 
layers decreases the effective component Sl, . Using the re- 
normalized parameters on scales R  > R  ,, we find that 

where 

Only the spin projections in the plane S I  participate in the 
formation of vortex excitations (Fig. 10).  As the field in- 
creases, the vortex excitation energy E,,, - ~ T J S , ~  ' decreases 
along with S ,  , which causes the BKT transition to occur at 
lower temperatures. Taking into account (9 ) ,  ( 10) and also 
( 6 ) ,  ( 8 ) ,  we find the BKT transition takes place at" 

We will use this equation [compare with (9 )  1 to describe 
phase transitions in 2D ferromagnets such as CuCll and 
K2CuF,. 

The contribution of Heisenberg fluctuations to the de- 
struction of magnetic order determines the temperature de- 
pendence of the anisotropy field H, ( T) (Fig. 2, see Sec. 11). 
An external field HzH, (0 )  perpendicular to the planes 
will completely expel the spins from the easy magnetization 
plane and turn them in the direction of the difficult-magneti- 
zation axis, i.e., S,, = 0. In this case the vortex excitations 
disappear (because Sll = 0 at the scale R = R ,), while the 
spin fluctuations with scales R  > R ,  can be neglected. Under 
these conditions the measured temperature dependence 
H, ( T )  (see Sec. 11) is determined only by the Heisenberg 
spin waves on small scales R  < R , . A further increase in the 
field affects the magnetic order only weakly. This is con- 
firmed by the following experimental result: for H > HA ( 0 )  
the dependence of the FMR spectrum on field is close to 
linear (see Fig. 1 ) : 

where the renormalization parameter for the easy-plane ani- 
sotropy A ,  determined from Eqs. (6 ) ,  ( 8 )  leads to 

FIG. 10. Spin vortex in an easy-plane 2D ferromagnet for a magnetic field 
Hl/z:a-H=O;b-O<H<H,.  

In large fields H$HA the Heisenberg characteristic scale 
decreases like R , z ( J / (H - HA ) ) ' I 2 .  As the field in- 
creases, this leads to an unusual enhancement of the value of 
the field anisotropy HA (and also M, ) at fixed temperature; 
however, a significant variation in the magnitude of HA 
should be observed only within a range of fields on the order 
of the exchange fields HE % H A  . 

The curves in Fig. 2 which describe the functions 
HA ( T )  for both the compounds under study are plotted us- 
ing Eq. (13),  taking (8 )  into account. The values of the 
exchange constants and the anisotropy field H,,d,, are taken- 
from Table I. The field anisotropy HA at T = 0 is determined 
from the extrapolations of HA ( T )  and H, ( T )  (see Fig. 2, 
Sec. 11). 

As we have already noted in Sec. 11, the function 
HA ( T) in Fig. 2 does not correspond to any real phase tran- 
sition in a 2D ferromagnet. The curves HA ( T )  have the fol- 
lowing physical meaning: in a system in which there were no 
vortex excitations (e.g., in 3D ferromagnets or in easy-axis 
2D ferromagnets), only spin waves, the phase transition 
would take place near the curve HA ( T), which also is deter- 
mined by the contribution of spin waves alone to the destruc- 
tion of order in the planes. However, in the easy-plane 2D 
ferromagnets, the dissociation of vortex pairs induces a 
phase transition in a field H, ( T) less than HA ( T). Hence, 
the difference between H, ( T) and HA ( T) in the F M  under 
study is essentially caused by vortex excitations. 

After determining A ,  = HA ( T )  we can calculate the 
BKT transition curveon the H-T diagram by using Eq. ( 1 1 ) 
and taking into account ( 6 ) ,  (8 ) ,  without fitting parameters 
(Fig. 2).  The following values of the BKT temperatures in a 
field H = 0 are obtained within this calculation scheme: 
T,,, = 8.4 K for CuCll and T,,, = 5.7 K for K,CuF4, 
respectively. Our estimate of the BKT temperature in 
K,CuF4 is found to be in good agreement with the results of 
Refs. 25-28, where a value of T,,, = 5.5 K was obtained. 
The BKT curves in Fig. 2 show that a BKT vortex transition 
should occur in the compounds under study in the absence of 
the interplane interaction J '  and intraplane anisotropy a. In 
the real magnetic systems CuCll and K,CuF, the nonzero 
values of J  ' and a (although they are very small; see Table I )  
change the character of the BKT transition, so that long- 
range ferromagnetic order appears in these compounds with 
a spontaneous magnetic moment MI, # O  at a temperature 
T, ( H )  which is somewhat higher than the T,,, ( H )  ob- 
tained from the BKT theory and based on ( 1 1 ) . The phase 
transition temperature shift 

can be estimated as in Ref. 9. 
The interactions J ' ,  a form still another characteristic 

scale on which the magnetic system changes its behavior 

(see Fig. 9 ) .  At scales R  > R, the vortex excitations are sup- 
pressed. As the BKT transition is approached from the high- 
temperature side, the spin correlation radius {(T) in the 
plane increases according to Refs. 4, 9: 

(T) =exp(bt-'"), T> TB,,. , ( 14) 

where 
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As the temperature decreases we eventually reach 
( (T)  z R , ,  at which point the interplanar exchange J '  or  the 
in-plane anisotropy a will bring the system into the 3D or  2D 
Ising regimes, respectively (i.e., a so-called "crossover" 
takes place). In both cases three-dimensional ferromagnetic 
order develops in the system with M I  # 0  at  a value of tem- 
perature T = T, ( H ) ,  where 

Hence, the critical curve for real. phase transitions is deter- 
mined by the equation 

From Eq. ( 16) we can obtain only estimates of the magni- 
tude of the shift of the phase transition temperature: 
T, - T,,, = 0.9 K and 0.8 K for CuCl1 and K,CuF,, re- 
spectively. However, this is already found to be in rather 
good agreement with the measured T, (see Table I ) .  On the 
other hand, from (16) it follows that the critical tempera- 
ture T, ( H )  as a function of field is proportional to the tem- 
perature T,,, (H). Using this fact, we obtained the theo- 
retical curves T, (H) shown in Fig. 2, which describe the 
measured curves of phase transitions, from the BKT curves 
according to (16) such that the value T,. ( 0 )  in zero field 
coincides with the real ferromagnetic transition tempera- 
tures T, = 8.8 K and 6.25 K for CuCll and K,CuF, respec- 
tively (see Table I ) .  

V. DESCRIPTION OF THE TEMPERATURE DEPENDENCE OF 
VARIOUS MAGNETIC CHARACTERISTICS IN TERMS OF 
SIMILARITY THEORY 

Let us now turn to a theoretical description of the tem- 
perature dependence of the magnetic characteristics Mu(  T) ,  
H,  ( T),  and vO( T)  (see Figs. 6,8), determined from the 
FMR spectrum in the case where the external field is parallel 
to the easy axis ( H l z ) .  For H = 0 the density of vortex pairs 
n,,, is small over the entire range of temperatures T 5  T,, so 
that the energy satisfies E,, ,  cc n-J and 

A magnetic field H l z  does not decrease the vortex energy 
(as is the case for Hllz, see Sec. IV) ,  but rather increases it, 
which in turn decreases the vortex density. Therefore, when 
we analyze the temperature dependence of Mo( T) ,  H, ( T),  
and v,,(T) measured in the geometry H l z ,  we can neglect 
entirely the extremely small vortex density over the entire 
range T 5  T, and include only the spin-wave excitations. An 
appreciable vortex density arises only near T,, where the 
free energy of the vortices (by virtues of the increase in their 
anisotropic part) approaches zero.4 Let us examine once 
again that in an external field perpendicular to the easy plane 
the situation is otherwise (see Sec. IV) :  the magnetic field 
decreases the vortex energy at any temperature T<T, (by 
virtue of the decrease in the in-plane spin projection Sll 
which makes up the vortex excitation, Fig. 9 ) ,  so that near 
the BKT curve (Fig. 2)  an appreciable vortex density arises. 

The temperature dependence of any of the magnetic 
characteristics (in particular, M,, ( 7') , H,  ( T) , and v,, ( T) ) is 
easily obtained from considerations of similarity (i.e., scale 

invariance of two-dimensional degenerate systems), follow- 
ing Ref. 67. A t  this point we will continue our investigation 
of the behavior of easy-plane 2D ferromagnets on different 
scales which we started in Sec. IV. "Starting" with the atom- 
ic scales, where the parameters of magnetic systems are 
known and coincide with the T = 0 parameters (see Table 
I ) ,  we pass to successively larger sizes of spin blocks while 
averaging over the short-range fluctuations within the 
blocks until we arrive at macroscopic scales (see the scheme 
in Fig. 9 ) .  The macroscopic magnetic quantities obtained in 
this way will also correspond to the characteristics of 
M, ( T) , H, ( T) , and Y, ( T) measured in FMR experiments. 

In Sec. IV it was shown that up to scales R < R ,  =: (J/ 
A)  "' [for more precision see (7 )  ] the spin fluctuations are 
three-component and these 2D systems are described by the 
Heisenberg model (see the scheme in Fig. 9 ) .  At distances 
R =: R , the easy-plane anisotropy "stacks" the spins in the 
plane, and the spin fluctuations become effectively two-com- 
ponent (we can neglect the fluctuations m, ). Averaging 
over smooth-scaled fluctuations (i.e., with respect to spin 
waves with wave vectors q < R I )  within the framework of 
the renormalization group approach reduces on scales 
R > R ,  to substituting for the original parameters of the 
magnetic Hamiltonian ( 1 ) the effective (renormalized) pa- 
rameters T,, A,, a,, J k ,  and M, ( 6 )  (Refs. 61-63). 

In what follows we will use the results obtained in Refs. 
67 and 5. According to Ref. 67, for the case of planar 2D 
ferromagnets considerations of scale invariance are applica- 
ble in the large-distance regime not only at the transition 
point itself but also for all temperatures T <  T, . Therefore 
the sought-after temperature dependences M,( T)  , H, ( T) , 
and v,(T) in these systems can be found by using scaling 
transformations at distances R>R, .  Thus, e.g., in order to 
find the temperature dependence of the magnetic moment 
M,,(T) we introduce the scaling dimension A, for this 
quantity. This implies that for a scale transformation R - 1R 
the quantity M ( R )  transforms according to the law6' 

Analogously we can introduce scaling dimensions for all of 
the other quantities: A, for magnetic field, A, for the intra- 
planar anisotropy constant, A,, for the interlayer exchange, 
etc.. The scaling dimensions of different quantities were also 
found by the authors of Ref. 67 from general similarity rela- 
tions: 

In contrast to Ref. 67, the scaling exponents we present here 
are for transforming not the anisotropy energy, field, etc., 
but rather the constants for these interactions which enter 
into the Hamiltonian ( 1 ). In  ( 18) the Heisenberg renormal- 
ization (6 ) ,  (8 )  at  small scales is also taken into account. 

As we have already noted briefly in Sec. IV, the interac- 
tion between J '  planes are the in-plane anisotropy a form a 
second characteristic scale 

at  which the systems pass from the 2D - XY to the 3D- or 
2D-Ising regimes (see Fig. 9) .  In both cases the spin fluctu- 
ations are suppressed on scales R>R, and the characteristics 
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of the magnetic systems cease to change. This implies that 
the spin waves with q < R ; ' contribute practically nothing 
to the temperature behavior of the magnetic characteristics 
of these systems. Hence, in order to determine the tempera- 
ture dependence of any quantity it is necessary to pass from 
the scale R = R,, where the effective parameters of the sys- 
tem are determined by Eqs. (6) ,  (8)  (see Sec. IV),  to the 
scale R, at which the spin system "freezes", by means of the 
scale transformation ( 17), ( 18). Thus, e.g., for M ( T )  we 
have 

The second characteristic scale R, we can determine 
more accurately if we take into account the fact that at the 
dimensions of a spin block R, the intraplanar anisotropy 
energy a,, or the interlayer exchange JX? become on the 
order of the temperature T, (or J for D J ) :  

or 

Ex< ( R , )  =J,'R,2(J1) =TR. 

From this, taking ( 18), ( 19) into account, it follows that the 
uniaxial anisotropy a in the plane and the three-dimensional 
exchange J '  define the following characteristic scales: 

where the ratio R,/R, entering into ( 19) is obtained by tak- 
ing (7 )  intoaccount. Then when afOand J ' # O  at thesame 
time, ferromagnetic order is established on the scale 

Now we can determine the sought-after temperature 
dependences M,( T), Ha ( T), and vO( T )  by means of the 
scale transformation ( 17), ( 18) and taking into account 
(20) and (6) :  

In the course of describing the functions v,(T) and 
Ha ( T) determined from experiment (see Sec. 111) it is nec- 
essary to make the following additional observations: 

(1)  At H = 0 the demagnetizing field of the sample 
contributes to the FMR frequency [see (2 )  1 .  Therefore in 
calculating the measured function vo(T) in a CuC11 crystal 
(see Fig. 4)  we used not (21c) but the expression 

(2)  The intraplanar anisotropy field Ha in CuCll was 
determined from the measured field at which the reorienta- 
tion transition occurred in the easy plane and the magnetic 
moment fully rotated in the plane from the easy magnetiza- 
tion axis to the field direction (see Sec. 111). Therefore our 
experiment measured not the intraplane anisotropy constant 
a ( T) itself, but rather the magnetic field H, ( T) which bal- 
ances the effect of the in-plane anisotropy at large scales (on 
the order of R,). Consequently, taking into account the scal- 

ing transformations ( 18), ( 19) for the field constant and 
(21b), Ha ( T )  is determined by the equation 

from which 

As a consequence of the compensation of the intraplanar 
anisotropy in an external field, the characteristic scale R, in 
(24) involves only the interlayer exchange J'. Therefore in 
describing the measured function Ha ( T )  (Fig. 4)  with Eq. 
(24), we set R, = R,(J1)  from (20b) in this expression. 

At lower temperatures T<J,  Eqs. (21a), (21b), and 
(24) found from considerations of scale invariance naturally 
pass over into expressions which can be obtained from stan- 
dard spin-wave calculations (see e.g., Ref. 68): 

The spin-wave relations (25), which include only the terms 
which are linear in T/2n-J, in principle already describe the 
temperature dependences of the magnetic characteristics 
fairly well (i.e., their features at low temperatures 
T50.5Tc ). On the other hand, Eqs. (22),  (24), and (21a), 
which were obtained within the framework of similarity the- 
ory, in fact include subsequent terms in T/2n-Jexactly [un- 
der the conditions that the renormalization of the tempera- 
ture is calculated from (6c) ] .  Therefore, for a more accurate 
description of the experimental results obtained here over 
the wide temperature interval Tu< T,, we use the relations 
(22), (24) and (21a). The theoretical curves which describe 
the experimental data for v,,(T) and Ha ( T )  for CuCll in 
Fig. 6 and M,( T) for K,CuF, in Fig. 8 were calculated using 
Eqs. (22),  (24), and (21a), respectively, in which the renor- 
malization factor Z ,  ( T )  was chosen from (8)  and the val- 
ues of the characteristic scales R ,, R, from (7)  and (20). In 
carrying out the calculations, the in-plane exchange con- 
stant J a n d  the easy-plane anisotropy field HA for both com- 
pounds, and also the value of the interlayer exchange J ' ( H ,  ) 
for K,CuF,, were chosen from Table I. The remaining pa- 
rameters entering into the expressions were chosen for the 
best fit: (1)  Ha = 86 + 2 Oe and H, = 35 + 5 Oe for the 
best description of Ha ( T )  for CuCll (see Fig. 6) ;  (2 )  
v,= 1240f 20 MHz at T = O  for CuCll (Fig. 6 ) ;  (3 )  
M, = 99 + 2 Oe for K,CuF4 (Fig. 8 ) .  The results obtained 
for these constants are found to be in full agreement with the 
data obtained in other papers (see Table I ) .  The theory of 
similarity of 2D ferr~magnets".~ has allowed us to arrive at a 
good description of the measured functions H,  ( T )  and 
v,( T) for CuCl1 and MO( T) for K,CuF4 in the broad tem- 
perature range up to T=: T, (Figs. 6,8) with practically no 
fitting parameters (all values of the constants which were 
chosen in the calculations either coincide completely or ren- 
der somewhat more precise the data given in Table I ) .  We 
note that Eq. (25), which can be obtained from spin-wave 
theory, gives satisfactory agreement with experiment only 
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up to temperatures -- 3 K. Hence, the theory of similarity for 
two-dimensional degenerate systems, in contrast to spin- 
wave theory, gives good agreement with experiment without 
cumbersome calculations not only at low temperatures but 
also over the broad temperature range up to T=: Tc. 

CONCLUSIONS 

In this paper we have obtained the following basic re- 
sults: 

(1)  We have measured the FMR spectrum in the 
quasi-two-dimensional easy-plane ferromagnets 
(CH3NH3),CuC1, and K,CuF4 in the frequency range 100 
to 4500 MHz and temperature range 1.2 to 20 K for various 
directions of the magnetic field. 

(2)  We have observed that, in contrast to the usual 3D 
ferromagnets, when these 2D ferromagnets are subjected to 
a magnetic field perpendicular to the easy-magnetization 
plane, the phase transition field Hc ( T) is found to be smaller 
than the easy-plane anisotropy field HA ( T). We have deter- 
mined the temperature dependence of the fields H, ( T) and 
HA ( T) on the H-T diagram from the FMR spectra in this 
geometry for both compounds. 

( 3 ) The measured H-T phase diagrams can be quanti- 
tatively described using the theory of Berezinski, Kosterlitz 
and Thouless, including the contribution to the destruction 
of magnetic order from spin waves and vortices. 

(4)  From the FMR spectra measured in a magnetic 
field parallel to the easy-magnetization plane, we found the 
temperature dependence of the intraplanar anisotropy field 
and the FMR frequency at H = 0 for (CH3NH3),CuC14, 
and also the spontaneous magnetic moment M,(T) for 
K,CuF4. 

(5 )  From considerations of scale invariance for planar 
2D ferromagnets6' we have obtained a description of the 
measured functions H, ( T), v, ( T) , and M, ( T) over a wide 
region of temperatures T 5 T, . 

(6)  In K,CuF4 we observed the existence of a gap in the 
FMR spectrum, amounting to v, = 1370 MHz at T = 1.2 K. 
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