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A quantum ballistic point contact in the form of a bridge connecting expanding horn-shaped 
banks is analyzed. In this model the conducting channel and the reservoirs to which the external 
potentials are applied can be treated as a single unit. This model allows a meaningful 
interpretation of effects associated with the transition of electrons from a reservoir to the 
conducting channel. An equation which determines the potential distribution in the contact and 
an expression for the conductivity which incorporates electron diffraction at the junction between 
a reservoir and the conducting channel are derived. A previous analysis of resistance 
measurements by the four-probe method is reexamined. 

1. INTRODUCTION 

The discovery of quantization of the conductance of a 
channel in a two-dimensional electron gas (2DEG) was 
followed by a sharp increase in interest in quantum ballistic 
point contacts, i.e., entities in which the width of the con- 
ducting channel, d, is comparable to the characteristic wave- 
length A and in which the channel length L is shorter than 
the momentum mean free path I (we are assuming L 2 d, as 
is usually the case). Entities of this type ("short channels") 
actually figured in experiments even before the discovery of 
the quantization of conductance.'-5 

The flow of a current through a quantum ballistic point 
contact has several distinguishing features (waveguide and 
nonlocal properties). All of these features stem from the cir- 
cumstance that the resistance of an entity of this sort is deter- 
mined not by the scattering of electrons by random inhomo- 
geneities but by diffraction of the electron wave at a 
constriction, i.e., at the entrance to and exit from the chan- 
nel. 

In the present paper we analyze a model of a ballistic 
point contact in the form of an electron gas in a sample which 
has a bridge-the constriction-and expanding horn- 
shaped banks (Fig. 1). The current density falls off with 
distance into the banks, so it can be assumed that the poten- 
tial p ( r )  approaches a constant value deep in the banks. The 
bank is thus a "reservoir" to which the given external poten- 
tial is applied. This model makes it possible to describe the 
conducting channel and the reservoir as a single unit and 
thus to find a valid description of effects which occur as 
electrons go from the reservoir into the channel. 

We will derive an equation for the potential distribution 
p ( r )  which arises in the point contact when a given potential 
difference Vis applied to its banks, and a current proportion- 
al to V flows through the contact. We will also calculate the 
conductance of the point contact, which explicitly incorpo- 
rates the diffraction of electrons as they pass from the bank 
(reservoir) into the channel and vice versa. 

We assume that both dimensions d and L, as well as the 
electron wavelength A, are large in comparison with the lat- 
tice constant (a  semiconductor or a semimetal), so we can 
use the effective-mass method in describing the electrons. 

The conductance of a quantum ballistic point contact 
has also been calculated previously, for more-restricted 

models: for an aperture in a screen,' for an adiabatically ex- 
panding channel,' and for a long channel between two 
screens.' The potential distribution is a topic which has been 
discussed qualitatively by Landauerg repeatedly. There are 
qualitative discussions in papers by BiittikerIo but they refer 
to one-dimensional channels without banks. 

The ideas regarding the potential distribution which de- 
veloped in the course of the present study led us to reexamine 
Engquist and Anderson's analysis'' of the results of the 
four-probe method for measuring resistance. 

2. CLASSICAL POINT CONTACT 

Under the conditions A <d 5 L a point contact is "clas- 
sical." A theory for a point contact of this sort was derived 
by Kulik, Shekhter, et a l . 1 2 . ' W e  will present this theory 
below in a slightly altered form, more convenient for com- 
parison with the theory of a quantum point contact, and we 
will focus on the potential distribution. 

In equilibrium at V = 0, the state of the electron gas is 
described by a spatially uniform (within the sample) distri- 
bution functionAf;,(k) = fT ( E ~  ), where fT is the Fermi func- 
tion. The electron charge density is neutralized by the ion 
charge density. Under the condition V f 0, a nonequilibrium 
and nonuniform distribution f(r,k) is established, the elec- 
tron charge is redistributed in space, and a net electron 
charge density arises: 

(the factor of 2 results from the summation over spin orien- 
tations). This density screens out the external field which is 
the source of the potential difference V, with the result that 

FIG. 1. 
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some potential distribution p ( r )  is established in the point 
contact. This distribution satisfies the Poisson equation 

where E is the dielectric constant if free electrons are ignored, 
and it satisfies the boundary condition 

To close the system of equations ( 1 ), (2) ,  we use a ki- 
netic equation for the distribution function in the electric 
field E = - Vp 

af f - f o  -=-v,Vf+eVrp-- -= 0, 
d t ilk r 

where T is the relaxation time of the nonequilibrium electron 
distribution. 

A solution of Eq. (4)  by the method of characteristics 
yields 

0 

This integral has the following meaning: For given (r,k) we 
find the path traced out in the field E (elastic reflections 
from the boundaries of the sample are taken into account) by 
an electron which starts from infinity and arrives at the point 
r, where it has a momentum k. The law of motion along this 
path is r ( t )  ., ; the time t = - oo corresponds to the infinite- 
ly remote point, and t = 0 to the point r. 

Linearizing (5)  in terms of p ,  we find Sf = f - fo in the 
form 

The path can be taken at E = 0 here. If I = VT is sufficiently 
large, the average in (7)  is dominated by remote points on 
the path, at which p ( r )  differs only slightly from one of the 
asymptotic values p ( z+  + co ). We can thus write 

Here 8 A = 1 ifthe path arrives at point r with momentum k 
from the right bank (z = + w ), while if the path arrives 
from the left bank (z = - co ) we have 8 = 0. There is a 
corresponding definition for 8 6. We obviously have 

It can be seen from (6)  that at the banks (as z+  +_ w ) the 
momentum distribution is an equilibrium distribution, as it 
should be in the region in which a potential whose value is 
constant over space is given. From ( 1 ) and (6)  we find 

6p ( r )  =6p, (r) +6pe (r) , (10) 

where the second term depends locally on the potential, 

while the first term depends on only the asymptotic values of 
the potential, 

Here g ,  is the effective density of states which are active in 
transport processes, and w ' ( r )  are the probabilities that 
the path arrives at point r from the right and left banks. 
According to (9)  we have 

It can be seen from the latter equations that if we have 
p ( r )  -const then we have Sp(r) =0, as we should. With 
increasing distance into the banks, the functions w * ( r )  be- 
come equal to zero and unity. Far inside the banks we thus 
have Sp = 0. 

Breaking Sp up into two terms as in ( lo),  we can re- 
write the Poisson equation (2)  in the following form: 

Here a is the screening length (Debye or Thomas-Fermi ) . 
In the region occupied by the electron gas, Eq. ( 16) should 
be supplemented with the Poisson equation in the surround- 
ing medium and with the appropriate conditions on the po- 
tential at the boundary of the electron gas. 

Characteristic distances for the variation of the func- 
tion Sp, ( r )  are d and L. For Izl %d, L, the density Sp, 
approaches the asymptotic value e2g,p( + w ). In the case 
of strong screening, with a<d ,  L, we can thus ignore the 
term V2p in ( 16); we find 

This result corresponds to the "quasineutrality approxima- 
tion," in which we can adopt Sp = 0 as a condition for deter- 
mining p ( r ) .  In this approximation, the potential difference 
V decreases in a region &-L, d, as can be seen from ( 17). 

In the opposite limit, of weak screening, a%L, d, we 
cannot discard the term p /a2 (as can be verified), so the 
resulting equation has no solution which satisfies boundary 
condition ( 3 ) .  In the case of weak screening the potential 
difference V decreases over a region Az-a (it can be verified 
that this assertion is valid not only for the model of a point 
contact in the form of an aperture13 but also for a model in 
the form of a constriction). 

The validity of (8 )  requires that the quantity I = v r  be 
greater than the region over which the potential decreases. 
In the case of strong screening, the condition under which 
the point contact is of a ballistic nature is therefore I$d, L, 
while in the case of weak screening the corresponding condi- 
tion is I s a .  

3. BASIC EQUATIONS FOR A QUANTUM POINT CONTACT 

We describe the behavior of the electrons in the quan- 
tum point contact in the self-consistent-field approxima- 
tion. In equilibrium for V = 0, each electron is in a potential 
U(r) which is the sum of the potential created by the ions 
and the self-consistent potential of the electrons. The poten- 
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tial U determines the electron states $, ( r  ) and their energies 
E ,  . States n are filled in accordance with the Fermi distribu- 
tion f, ( E ,  ). The electron charge density is 

Near the constriction, with d 5 A ,  the states $, are quite 
different from plane waves e'"', and the densityp is spatially 
nonuniform. In the banks, this nonuniformity prevails only 
over distances on the order of A from the boundaries of the 
sample. 

In the case V #O, a change occurs in the electron den- 
sity, Sp(r),  and a change occurs in the self-consistent poten- 
tial, SU(r).  If we write SU(r) = ep( r ) ,  then p ( r )  is that 
electrostatic potential which arises from the applied poten- 
tial difference V. Obviously, p and 6p are related by the Pois- 
son equation (2).  

In the quantum-mechanical case, the kinetic equation 
(4)  should be replaced by an equation for a one-electron 
( spin-zero ) density matrix) 

f - f o  -= 
7 

0, 

where 

1 
H=Ho+ecp, Ho = -- V2+U,  fo=f, (H,). (20) 

2m 

Calculating Sf = f - fo for a given p from ( 19), we find the 
change in the electron charge density, 

as a functional of the potential: Sp{p). Substituting this 
functional into the right side of the Poisson equation (2) ,  we 
find an equation for seeking p .  

A solution of ( 19) is 
0 

where for any operator we have, by definition, 

and in particular we have 

Substituting (24) into (22), we find 

in complete analogy with the classical expression ( 5 ) . 
We now linearize f in (25) with respect to p. First lin- 

earizingA,(t), we find 

We introduce a convergence factor e''", where 17- + 0, 
within the integral (we recall that we are interested in t < 0).  
We can then use the representation 

We define the superoperator 9 by 
c., 

9u=-i  Jds e-ns[fo, G(-s) 1 ,  q + + ~ .  (28) 
0 

Now using the replacement s-  - s in the first of integrals 
(27), and s-s + t in  the second, we find 

6fo( t )=9[eq( t ) -eql .  

Using (22) and (29), we finally find 

Gf=Y[<erp)-ecpl, 

where we are using the operator 

The last two expressions constitute the quantum-mechani- 
cal generalization of (6 )  and (7) .  The replacement 
of @ by @ corresponds to a calculation of the path without 
consideration of the field E = - Vp. The superoperator 9 
is the quantum-mechanical analog of multiplication by 
( - dfT/d&). 

The meaning of the representation of the correction Sf 
to the density matrix in the form (30) can be explained as 
follows: If, after the potential ep is turned on, the electron 
system remained at equilibrium (i.e., if no current flowed), 
the correction to fwould have been - P e p .  That this is true 
can be seen quite clearly from the classical expression (6) .  It 
can also be seen from this expression that the corresponding 
term in Sf does not give rise to a current. This result can also 
be verified in the quantum-mechanical case. A current arises 
only by virtue of the term 9 (ep ). 

The correction to the charge density is broken up simi- 
larly. From (21 ) we find 

6p (r)  4 ~ -  ( r )  ( r ) ,  
(32 

6p, (r)=2eZ(r19<cp)lr), Gp,(r)=-2eZ(r19'q/r). 

4. ELECTRON CHARGE DENSITY INDUCED BY THE 
POTENTIAL FIELD 

In this section we express the density components (32) 
in terms of quantities associated with the retarded Green's 
function of Hamiltonian H,. To keep the calculations free of 
the complexities which stem from the continuous spectrum, 
we restrict the size of the banks to some large value R such 
that R%UT (it can be assumed that over this distance the 
current flowing through the constriction has been complete- 
ly "absorbed" by the reservoir, i.e., the banks). Since H, 
does not contain the magnetic field, all of its eigenfunctions 
$, can be chosen to be real. 

The retarded Green's function is 

G (r, t 1 r') =0 (t) e-ieJ$,, (r) (rf  ) =0 (t) (r  1 1 r') . 

Its Fourier transform 
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satisfies the equation 

The function G, can be calculated by removing the boundar- 
ies of the banks (i.e., by setting R - w ), if we require that as 
z+ + w the transform G, contain only outgoing waves. 

Below we will use the quantity 

(36) 

The following orthogonality relation holds here: 

Using the system of functions $, , we can find a repre- 
sentation for the superoperator 9. From its definition, 
(28), we have 

(r1 I pv I r2) 

Switching to Green's functions, we find 

It is then an easy matter to find the second term in the den- 
sity (32): 

tip, (r) =-e2 J dr' II (r, rr) cp (r') , (40) 

where 

(41 

We turn now to the first term in (32). We first calculate 
(q, ) . Using the definition ( 3 1 ), we find 

(r l  <cp)lr')=J dTcp(3 (rlK(;) lr'), (42) 

where 
0 

Using (33) to express the matrix elements in terms of 
Green's functions, we find 

rn 

In the integration over t, values t-T are important. If T is 
large, then the functions G and also the function K are essen- 
tially zero everywhere except at points F far from the source, 

where the potential p(F)  takes on one of its asymptotic val- 
ues p( +_ w ). As T+ w we thus find from (42),  by analogy 
with (8 ) ,  

(rl(cp)Ir1)-cp(+w) (rlO+Irf)+cp(-w) (rlO-Irl), (45) 

where 

The + on the integral means that the integration is over the 
half-space z > 0 or z < 0. Substituting the Green's functions 
in the form of expansions (33) into (44), we find 

( r 1 ~ 6 )  / r ' ) =  J J d e  de' I gs (r,;) gc- (r'yr) . (47) 
I+i (e-e') t 

To find Sp, ( r ) ,  we must calculate 98 '  . Using (39) and 
(47) and the orthogonality condition (37),  we find 

It follows from the discussion above that remote values of F 
are important in this integral. We thus write the Green's 
function in terms of the radiation amplitude: 

- - e x p ( i k 3 )  
G* (r, r) =Ae (r, n) 7- , k,= (2me) '". (49) 

r 

Here ii is a unit vector in the F direction (Fig. 1 ). Using this 
representation, we write 

Here the prime means that the quantity refers to the energy 
E'. As we will see below, small values of E - E'=. 1 / r  are im- 
portant in the integral over the energies. We thus need retain 
only the slowly oscillating terms in product (50):  

1 1  
gegcv + --- - I A  1 ? [ e l ( h - k  ' - +  ) r  c .c . ] .  

4n2 TY 
(51) 

Furthermore, we can use the replacement 

fT(&) -fT(er) d f T ( ~ )  
--t ------ 

E-E O E 
(52) 

Writing k - k ' = ( E  - &')/us, and setting E - E' = w, we 
can put the integral (48) in the form 

Here the + on the integral over the solid angle dt5 near the 
direction ii shows that the integration is carried out along 
those directions ii which go off to the right or left bank. The 
integration over 7 and w is rendered dimensionless by means 
of the quantities u, r and 1 / ~ ;  our assumptions that 7 is large 
and w small are thus justified. As a result we find 
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The integral over angles multiplied by v, in (54) is the 
flux of particles of energy E which is emitted into the right or 
left bank by a point source at the point r. If the source is in an 
unbounded space, the total flux in all directions is m2u,/n-. 
The ratio of these fluxes is by definition the emissivity of 
point r for emission into the right or left bank: 

n 
( r )  - ~ d 3 1 ~ , ( r . k )  1'. 

m2 * 
(55) 

Using this concept, we find the final expression 

6 ~ -  (r)=eZ[qf(r)cp(+ m ) + q - ( r ) c p ( - ~ ) I ,  (56) 

Here we have introduced the state density in the banks: 

Using (48), and using orthogonality condition (37), we can 
easily verify the following equation: 

q+ (r) +q- (r) = d~ - - g, (r, r) -g, (r) . ( 
This quantity is the effective density of kinetically active 
states at point r. On the other hand, from (41) and (37) we 
easily find 

1 drr n ( r ,  r f )  =gr  (r).  (60) 

We now see that if we have p ( r )  rconst  then we have 
Sp(r) SO, as we should. 

5. POISSON'S EQUATION 

Before we consider the Poisson equation, let us take a 
more detailed look at the components of the induced charge 
density. We begin with the component Sp, , which is asso- 
ciated with the flow of a current through the point contact. 
The quantities q * ( r )  in (56) show the extent to which the 
point r is coupled with the banks. With a reciprocity princi- 
ple in mind, we can say that q * ( r )  is the "probability" that 
the electron waves emitted by the right or left bank (reser- 
voir) reach point r. In this sense, q * ( r )  is a quantum-me- 
chanical analog of the quantity g, w * ( r )  in ( 13 ). There is, 
however, an important distinction between the classical and 
quantum quantities. It follows from ( 15) that in a classical 
point contact the total coupling with the two banks is identi- 
cal for all points r. In a quantum point contact, this is not the 
case, as we see from (59). Those points at which I $, ( r )  1' is 
small for actual states are coupled only poorly with the 
banks. One could thus say that the density Sp, ( r ) ,  which is 
associated with the current flow, is large in places into which 
the electron waves arriving from the banks can easily pene- 
trate. 

We turn now to the density Sp, in (40), which corre- 
sponds to a redistribution of the charges in the field eq, under 
equilibrium conditions, as we have already stated. To 
strengthen this interpretation, we consider the result of the 
conversion of the kernel rI in the banks far from the constric- 
tion and far from the boundaries of the sample, where the 
system can be assumed spatially homogeneous, and where 
the functions $, can be assumed to be plane waves. The 
kernel rI (r ,rl)  then depends only on the difference r - r', 

and we can write the Fourier transform as follows: 

(61) 
We thus have 

where n, is a polarization loop of the screening of the Cou- 
lomb interaction. We thus see in particular that our self- 
consistent-field approximation corresponds somewhat to 
the random phase approximation, since the total potential, 
rather than the potential of external sources, appears in (62) 
(Ref. 14). 

Far from the constriction, n, = , (which is g, ( r )  ac- 
cording to (60) ) is the same as g,- from ( 12). 

In the coordinate representation, r I (r)  = II(r,O) is a 
kernel with a range A, as can be seen from, for example, the 
known expression for a degenerate gas at T = 0: 

mkFz 1 
II(r)=-- j ,  (2kFr), j 1  (x)  =xM2 sin x-z-'  cos x.  

Gx2 r2 
(63) 

The kernel rI ( r )  has a singularity r- ' in the limit r- 0. This 
singularity is integrable. In the limit r -+ W ,  we find 
rI ( r )  - r-'cos2kFr. We thus see that the range of kernel 
n ( r )  isAF and that the characteristic value of n is -gFkF3. 

It is clear from these properties of kernel n that deep in 
the banks, where the potential p ( r )  takes on its asymptotic 
values, we have 

On the other hand, as we go off into (for example) the right 
bank we find vt-. 1 and 7--0 and thus g f  -.gl and 
g- -0. We thus have 

i.e., the total density change is Sp = 0 in the banks far from 
the constriction. 

There is another important distinction between Sp, 
and Sp, , which is manifested in the case of a degenerate gas. 
Only the kinetically active states near the Fermi surface par- 
ticipate in the formation of Sp, , as can be seen from (57). 
For the density 6p,, on the other hand, the kernel II which 
determines this density is formed by all states, as can be seen 
from (41) and (61). 

The potential distribution in a quantum point contact is 
determined by the integrodifferential equation 

4n 4ne2 
dr' n (r, rr) cp (r') = - p. (r) VZcp ('1 - - 

E E 
(66) 

with a given right side. This equation should be supplement- 
ed with Poisson's equation in the region around the point 
contact, along with the corresponding boundary conditions 
at the boundary of the point contact. 

The estimate for the kernel n far from the constriction 
which we presented above obviously continues to hold near 
the constriction if d ?A. Accordingly, the order-of-magni- 
tude estimate of the integral term on the left side of (66) is 
the same as in the classical equation (16), i.e., q, /a2.  This 
result means that the considerations expressed at the end of 
Sec. 2 regarding the region over which the applied potential 
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difference decreases are also valid for a quantum point con- 
tact if the condition d 2 A holds. The condition under which 
the point contact can be regarded as ballistic, also stated at 
the end of Sec. 2, also continue to hold. 

There are some obvious generalizations here. The po- 
tential Ucan include external fields which bound the region 
in which the electrons move (e.g., the field of a gate in the 
experiments of Refs. 1 and 2 ) .  It may also include the poten- 
tial of elastic scatterers in the vicinity of the constriction, 
I z I  5 L (e.g., individual impurities). 

If the point contact is multipolar rather than a two- 
pole, i.e., if there are many massive banks, the right side of 
Poisson's equation (66) takes the form 

where p ,  is the value of the potential specified in bank s, and 
q, ( r )  is constructed by analogy with (57) with the help of 
the emissivity 7: ( r )  corresponding to the emission into 
bank s. 

Equation (66) can be compared with Eq. (45) of Ref. 
10 for the potential in a one-dimensional channel. In Eq. 
(45) of Ref. 10, the screening was local, while in (66) it is 
nonlocal over distances on the order of A,. More important 
is the circumstance that the term which is nonuniform in p 
in Eq. (45 ) of Ref. 10 contains instead of the emissivities q' 
in (56) the wave functions / $, 1' for electrons arriving from 
the right and left reservoirs. For this reason, as was pointed 
out in Ref. 10, the potential in the channel does not go over 
smoothly to the reservoir potential. A smooth transition 
does occur in the case of Eq. (66). 

6. POTENTIAL VARIATION IN A QUANTUM CHANNEL 

As an example we consider a point contact in the form 
of a long channel ( L B d )  with expanding banks (Fig. 2).  
For simplicity we assume that the point contact is symmetric 
with respect to thez = Oplane, and weset p( f w ) = + V /  
2. We begin with a discussion of the potential distribution in 
the classical picture, with d$-A,. It is easy to see from geo- 
metric considerations that in the case of specular reflection 
from the boundaries of the sample the following relation 
holds for points inside the channel (at distances greater than 
d from the ends of the channel): 

e,:k=e ( ~ k , )  , (68) 

where B(x) is the unit step function. It then follows from 
(14) that inside the channel we have w *  ( r )  = 1/2, and 
from ( 13) we find 6p, ( r )  = 0. In the quasineutrality ap- 
proximation, ( 17), this result means that we have p ( r )  = 0 
inside the channel. If we abandon the quasineutrality ap- 

FIG. 2. 

proximation but assume L > a ,  we find from (16) that we 
have p ( r )  = 0 at points in the channel at distances greater 
than a from the ends of the channel. We thus find 
p ( r )  = const inside a sufficiently long channel in the classi- 
cal description. 

In the quantum-mechanical case, with dzA, ,  this situ- 
ation is different. To demonstrate the point, we first examine 
the right side of Eq. (66):  

where g and 77 * are calculated for E = E,. We assume a 
single-mode channel; i.e., we assume that below E ,  there is 
only a single transverse-quantization level E , .  For points far 
from the ends of the channel, the emissivities 7' ( r )  are 
determined by this mode exclusively and can be calculated 
quite easily. As a result we find 

l 6 n  (1-rL)r 
q* (r) -q- (r) = (x, y)  j ~ p r - e ~ ~ a  

I - 

X s i n a  s in(2k,z) .  (70) 

Here $, (x,y) is the wave function of the transverse motion 
for level E, , 

where R is the coefficient of the reflection of the waveguide 
mode from the boundary planes z t  and z- (the phase a is 
independent of the way in which these planes are chosen). 

With regard to the kernel r1 (r ,r l) ,  we note that even for 
a single-mode channel it is a complicated matter to evaluate 
this kernel, since it receives contributions from all modes, 
including nonpropagating modes, i.e., modes which corre- 
spond to transverse-quantization levels E,, E,, ..., which lie 
below E, . It can be verified, however, that for points r and r' 
which are farther than A, from the ends of the channel the 
kernel IT does not sense these ends and depends on the differ- 
ence between z and z'. This is due to interference between 
states with different energies, which arises during the inte- 
gration in (41 ), even at T = 0. The dependence of 11 on x, y 
and x', y' is extremely complicated. 

We thus see that the kernel lI is a function of the differ- 
ence between z and z' in Eq. (66) for the potential inside a 
channel and far from the ends of the channel, while the right 
side has a z dependence sin2kIz. Obviously, a solution with 
p ( r )  = const inside the channel would be impossible in this 
case. Also impossible would be a solution in which p ( r )  
depends only on x, y. We thus see that in a quantum channel 
at T = 0 the reflections from the ends of the channel unavoi- 
dably lead to a variation of the potential along the channel. 

We turn now to the case T $0. It can be seen from (57) 
that in this case the difference in (70), which appears in 
(69),  should be "averaged over E," in an interval AE, -- T. 
In this case we have Ak,  =: T / v , ,  and if L 9 v,  / T  then (70) 
vanishes after the averaging. Consequently, if T # O  the var- 
iations in the potential penetrate a distance v ,  / T  from the 
ends of the channel into the channel. 

7. CONDUCTANCE OF A POINT CONTACT 

The current density in a point contact is 

j (r) = Jdr' dr"(rr 1 j (1,) 1 r") (rf' 1 r ' ) ,  
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where the matrix element of the current density operator is 
ie 

(r' 1 j (r) 1 r") = - [ 6  (r-r") V 6  (r-r') -6 (r-r') V 6  (r-r") 1.  
2m 

Substituting the density-matrix correction Sf from (30) 
into (72) and writing the superoperator 9 as in (38), we 
can show that the real nature of the functions $, has the 
consequence that the term - 9 e p  in (30) does not contrib- 
ute to j ( r ) .  In other words, the term in 6fwhich is responsi- 
ble for the "equilibrium" screening charge Sp, does not give 
rise to a current. This point was brought out by L a n d a ~ e r . ~  
The only contribution to the current density comes from the 
term 9 (ep ), which is completely determined by the asymp- 
totic value of the potential in the banks, according to (45).  
The current density in the point contact can thus be calculat- 
ed without knowledge of the potential distribution in it. 

To calculate j ( r ) ,  we should substitute the following 
into (72): 

(r" 16f lr') =rp(+m) (r" 190+lr1)  +rp(-m) (r" 1.90-lr'). (74) 

The off-diagonal matrix elements ( r  1 Y 6+ / r ' )  are given by 
the expression found from (48) by replacing r by r' in g,'. 
Since we are interested in only the total current through the 
point contact, we find it convenient to evaluate j ( r )  far in- 
side the banks. For implicity we set p( + cc ) = 0, and we 
evaluate j ( r )  in the right bank as z- + cc . The points r' and 
r" in the matrix element of 9 6 - are then far away within the 
right bank, and the point of integration in (48) is far away 
within the left bank. Clearly, a Green's function G, ( r , r l ) ,  in 
which the points r and r' go off to infinity, r in the left bank 
and r' in the right, arises in the course of the calculation. A 
Green's function of this sort has the asymptotic representa- 
tion 

where n and n' are unit vectors which are in the directions 
along which r and r' go off to infinity. A calculation similar 
to that which resulted in (54) leads to the following result 
for the conductance of the point contact: 

The integration over do and do' here is carried out along 
directions which go off into the left and right banks, respec- 
tively; the factor of 2 stems from the summation over the 
spin orientations; and IT, (n,nl) l 2  is the probability that a 
plane wave arriving from the left bank along the - n direc- 
tion goes off into the right bank along the n' direction. 

If the point contact is multipolar, by which we mean 
that it has more than two banks, then the currents J ,  enter- 
ing banks s = 1, 2, ... are related linearly to the potentials 
( p ,  ) in these banks": 

It  can be shown that the off-diagonal conductance matrix 
elements G,,' (s+s1) are given by (76) again, if the integra- 

FIG. 3 .  

tion over do and do' is carried out along directions going off 
into banks s and sf. 

We now consider a multipole point contact of a configu- 
ration such that each horn goes over to a long waveguide 
channel (Fig. 3) .  For a configuration of this sort, the off- 
diagonal conductances G,, ' can be expressed in terms of a 
scattering matrix for a waveguide joint with truncated horns 
(between cross sections C, in Fig. 3) and the reflection coef- 
ficients for waves going from the waveguide into the horn. 
To avoid an overload of indices, we assume that the wave- 
guide channels are single-mode channels. We can then de- 
rive the following expression: 

ez  
G,;=2 -Av( h (1- I R, 1 "  (1- I I?,, 1 ') 1 (Q-IS) s 8 r  1 '1. (78) 

Here S is the scattering matrix of the waveguide joint; i.e., 

where a ,  and b, are the amplitudes of respectively the in- 
coming and outgoing waves in channel s, and the origin for 
the phase scale is in the cross section C,.  If the amplitudes 
are normalized so that the particle fluxes in channel s are 
equal to la, 1' and lb, 12, the matrix S becomes unitary and 
symmetric. The quantity R, is the reflection coefficient for a 
wave which is coming out of waveguide s and going into the 
horn, with the origin for the phase scale again in the cross 
section C , .  In addition, Q is a matrix with the elements 

The matrix elements S,,5 ' and the reflection coefficients R, 
depend on the energy E over which the averaging is carried 
out: 

For a two-pole we find from (78) the comparatively simple 
expression 

The cross section C, ,  which is the origin for the phase scale, 
can be chosen in such a way that we have Det S = 1. In the 
particular case in which the waveguide expands in an adia- 
batically smooth fashion into the horns (R, = 0 )  we find 
from (78) 

An expression of this sort (for a temperature T = 0 )  was 
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derived by Pines14 under the assumption that the potential 
approaches a constant value as we go off to infinity in the 
waveguide channel. It follows from the results of Secs. 5 and 
6 that the potential does in fact approach a constant value 
only far within a massive bank. An explicit analysis of the 
banks reveals why for a channel without scatterers 
( ISl2 1 * = 1 ), even in the case of an adiabatically smooth ex- 
pansion into banks ( R ,  = R2 = 0 ) ,  the result GI, = 2 
(e2/h) # cc follows from (82).  The reason is that an adiabat- 
ically smooth transition from the waveguide to the horn is a 
nonreflecting transition only for a wave incident from the 
waveguide; a wave incident from the horn is reflected if it is 
an "adiabatic continuation" of a waveguide mode. 

8. RESISTANCE MEASUREMENTS BY THE FOUR-PROBE 
METHOD 

The fact that the potential undergoes oscillations along 
a conducting quantum channel and that the potential varies 
over the cross section of the channel demonstrates that the 
procedure of measuring the resistance as the ratio of a poten- 
tial difference and a current must be approached with some 
caution. We accordingly feel it worthwhile to reexamine the 
analysis carried out some time ago by Engquist and Ander- 
son" of the four-probe method for measuring resistances. 

We consider the four-pole in Fig. 4. All of the conduct- 
ing channels are single-mode channels, and they go over 
adiabatically into massive banks. We assume that the system 
is symmetric about the plane A.  At the middle of the hori- 
zontal channel, along which a current J i s  flowing, there is a 
scatterer, whose resistance is to be measured. The current J 
is induced by the potential difference p, - p, between banks 
3 and 1. The potentials of banks 2 and 4 are chosen in such a 
way that the current in the vertical channels is zero. "By 
definition," the conductance of the scatterer of interest, 
G, is J / ( p 4 - p , ) .  Choosing p,= -p ,  = U/2 and 
p4 = - p, = V/2, for convenience, we easily find from 
(77) 

We evaluate the elements G,,' from (83). We assume that 
the scatterer of interest is characterized by a reflection coef- 
ficient R for reflection from plane A and that the joint of the 

FIG. 4. 

The joint three-pole is assumed to be symmetric about the 
plane B. Here R ' is the reflection coefficient for a wave which 
is incident from bank 1 from plane B, T' is the transmission 
coefficient of this wave beyond plane B, t  is the transmission 
coefficient of the wave from bank 2 into the horizontal chan- 
nel ( to  the right or left), and R " is the reflection coefficient 
of this wave. 

Under ideal conditions, the measurement leads do not 
perturb channels 1-3. We thus assume t ,  R ' -0 and T', 
R "-l.WethenhaveG,,-1 - IR /2,whileGl,,G14,andG,4 
are small. Here G,, is a small quantity of higher order. Mak- 
ing use of these relations, we find 

vertical measurement channel with the horizontal channel is 
characterized by the scattering matrix 

The fraction here is the ratio of two small quantities. In the 
limit It 1-0 we find the following expression for a tempera- 
ture T = 0, making use of the unitary nature of matrix (85):  

R' T' t 
T' R' t 
t t R" 

Here 8 = 2klL is the phase shift as the wave propagates 
from plane B to A and back, and a is the phase of the trans- 
mission coefficient t .  The oscillatory terms in (87) result 
from interference of the wave incident from bank 1 (or 3) 
with the wave reflected from the scatterer. Engquist and An- 
derson" assert that these terms vanish because the reservoir 
is "wide" and has many modes. Our own calculations, how- 
ever, which explicitly incorporate the presence of a horn 
with a large number of modes, do not confirm that conclu- 
sion. 

At a temperature T # 0, according to ( 83), all of the 
G,, ' should be averaged over E near E, in an interval of width 
T. Only the phase B depends strongly on E in this interval, 
because of the relation L $A,. The change in the phase in the 
course of the averaging is AD- Ak,L - ( T / v ,  )L. Under the 
condition AB) 1, the averaging over the energy leads to the 
disappearance of the interference terms, and we find the 
Landauer formula 

. (85 

The assumption that the joint is symmetric about the 
plane B was also used by Engquist and Anderson.'' If we 
forgo that assumption, we find that the "conductance" G 
depends on not only the phase a of the coefficient of trans- 
mission from the vertical channel into the horizontal chan- 
nel but also the degree of right-left asymmetry of this coeffi- 
cient. 

We conclude from all this that the four-probe method 
measures the resistance as described by the Landauer for- 
mula (88) only at a sufficiently high temperature, only if the 
probes are sufficiently far from the scattering object, and 
only if the coupling of the potential probes is sufficiently 
weak. It is clear that the first two of these conditions often do 
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not hold. In a 2DEG with n = 5 X 10" cmP2, for example, 
i.e., with v, = 3 x 10' cm/s, at T = 1 K we would have a 
length f i vF /k t~2pm.  This length is greater than, for exam- 
ple, the distance between the probes in the experiments of 
Refs. 3 and 4. The nonadiabatic nature of the coupling of the 
channels with the banks may also influence the results of 
measurements by the four-probe method. For example, if a 
wave propagating along the horizontal channel is reflected 
from banks 1 and 3, then GI, in (84) will convert not into 
1 - I R l 2  = IS1312 but into an expression like (82). 
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