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An analysis is made of the motion of the Abrikosov vortices in anisotropic superconductors in the 
presence of a transport current. An expression is obtained for the viscosity tensor. The anisotropy 
affects the relaxation and ohmic losses differently. It is shown that a vortex moves along a 
direction which is not generally perpendicular to the transport current. The resistance in the case 
of viscous flow of the flux depends strongly on the mutual orientation of the magnetic field and the 
anisotropy axis. 

A new class of type I1 superconductors in the form of 
high-temperature Y-Ba-Cu-0 materials is now attracting 
much attention. One of the characteristic properties of these 
superconductors is a strong anisotropy of the normal and 
superconducting parameters. This can be allowed for using 
the Ginzburg-Landau theory if we assume that the effective 
mass is a tensor. The free energy density is then 

where the mass tensor & is of the form m,, = m,, 
(6 ,  + pv, v, ) in the case of uniaxial anisotropy case ( v  is a 
unit vector along the anisotropy axis) and q5 is the order 
parameter. 

Magnetic properties of such a superconductor, particu- 
larly the structure of an Abrikosov vortex and the features of 
a vortex lattice, were considered in Refs. 1-3. The Ginz- 
burg-Landau phenomenological approach can be used also 
to describe the transport properties of anisotropic supercon- 
ductors. The present paper deals with this subject. 

In the presence of a transport current the vortex lines 
are subject to the Lorentz force. Then, in the absence of pin- 
ning, the vortices move and give rise to a resistance. The 
energy dissipation is then associated with two different pro- 
cesses (see, for example, Ref. 4) :  1 ) the losses due to relaxa- 
tion of the order parameter; 2 )  the ohmic losses associated 
with the flow of the normal currents and the appearance of 
an electric field. The anisotropy should affect these two ener- 
gy dissipation processes and, as shown below, the influence 
of the anisotropy is different for these two processes. In the 
isotropic case the equation of motion of a vortex line is 

where 11 is the viscosity; V, is the vortex velocity; j,, is the 
transport current; n is the vector directed along the vortex 
axis; 4,) is a quantum of the flux. If we allow for the anisotro- 
py, we find that the viscosity should naturally depend on the 
direction of motion and, consequently, it should be a tensor. 
The equations of motion of a vortex will be obtained for the 
anisotropic case using an approach developed in Ref. 4 and 
based on the time-dependent Ginzburg-Landau equation. 
Strictly speaking, this equation applies only to zero-gap su- 
perconductors with a high concentration of paramagnetic 
impurities. A detailed study of the validity of this method 

can be found in Ref. 4. We shall consider only the case of 
sufficiently weak magnetic fields B<H,,  when the distance 
between the Abrikosov vortices in a lattice is large, and we 
shall discuss the motion of a single vortex with a transport 
current j,, flowing around it. We shall also assume that the 
Ginzburg-Landau parameter satisfies x 1 and, conse- 
quently, the potential A can be ignored in the region where 
the distance to the center of a vortex obeys r<S ( 6  is the 
depth of penetration of the magnetic field). 

We assume these approximations in writing down the 
following form of the Ginzburg-Landau equations: 

where y is the relaxation parameter; p and 6 are the ampli- 
tude and phase of the order parameter $ = @ is the 
scalar potential. The expression for the total current is 

where 6, is the tensor of the normal conductivity such that 
the anisotropy axis of &, clearly coincides with v [anij = uno 
(au  - Pvi v, 1. In the case of high-temperature superconduc- 
tors we havep>  0. Using the condition div j = 0, we readily 
find from Eqs. (4 )  and (5 )  that 

We use a system of coordinates x ,  y, and z such that the z axis 
is directed along the vector v and the vector along the vortex 
axis n lies in the xz plane. We substitute the variables in 
accordance with 2 = x, j = y,  Z = z(  1 + p )  "'. Then, Eq. 
( 3 )  expressed in terms of the new variables is exactly the 
same as in the isotropic case. 

However, this is not true of the expression for the cur- 
rent (5 )  or the equation for the scalar potential @ given by 
Eq. (6 ) .  These equations transform as follows: 
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Still ignoring the ohmic losses, i.e., assuming that 
a,, = 0, we can reduce the solution to the familiar isotropic 
case. It is convenient to introduce a current j, which is ex- 
pressed in terms of j as follows: 

- 
j=(ix, i,, ( 1 + ~ ) " ~ j ~ ) .  

If (T,~ = 0, we find that 3 = 2efi,02V0. Having found the value 
o f j  obtained in this way and allowing for the fact that at large 
distances from a vortex the value of the current is 
3, = (j,,,, , j , , ,  , ( 1 + p )  "'j ,,, ), we can see that the system 
of equations describing the motion of a vortex in a current 3 
in no way differs from the equations for the isotropic case. 
Consequently, the equation of motion of a vortex is similar 
to Eq. (2 ) :  

0 0  - 
~ P O V L  = -[ j,n]. 

Here, rlpO = 2rrtiya, la l/b is the viscosity associated with re- 
laxation of the order parameter (a, = 0.279), - 

n=(l+pvZ2) - '  (-v5, 0, vz(l+p)' ). 

is the vector directed along a vortex in the new coordinate 
system, Y, = vn and v: = 1 - v:. 

We can now return to the old variables and find the 
equation for V, . We do this after calculating the total viscos- 
ity allowing for the fact that a,,,, +O. We rotate the axes in 
the coordinate system 2, j, 2 in such a way that the z' axis is 
directed along ii. Following Ref. 4, we seek the equation for 
the order parameter in the form 

$=$o(x'-YL, t, ! / ' - C C L ,  t )+$, .  

Here, $(, = p,,e'81 is the solution of the stationary Ginzburg- 
Landau equation describing a single vortex. We assume that 
a 0  /at = - t, 78 and rewrite Eq. (8 )  as follows: 

Repeating then the procedure described in Ref. 4, which can 
easily be generalized to the anisotropic case, we obtain an 
equation analogous to Eq. (2) ,  except that now i j  is a tensor. 
The total current can then be described by 

because it is in this case that the condition vj = 0 is satisfied. 
The vector rj,, v, of interest to us (ij,,,, is the ohmic viscosity 
tensor), projected along an arbitrary direction d in the x'y' 
plane can be written in the form 

ti 1 
(d, ri.*VL) = j ( - o^.ini a)) i13, ax' dy',  

mo 

where 8, = dV8,). 
The integral in Eq. (9)  can be calculated if we solve Eq. 

(8a). In general, this cannot be done analytically. However, 
the solution can be obtained in some limiting cases. Equation 
(8a) contains two characteristic scales: c is the coherence 
length and 

is the length representing the penetration of an electric field. 
The parameter u = (6 /I, )2 represents the ratio for the two 
different dissipation mechanisms mentioned above. If u g  1, 
which is true of semiconductors with a finite gap, the main 
contribution to the dissipation comes from ohmic losses. 
However, if u $1, then the relaxation of the order parameter 
is the more important contribution. Zero-gap superconduc- 
tors with a high concentration of paramagnetic impurities are 
close to the latter case because they are characterized by 
u = 12. We shall first consider the situation when u g 1. Then, 
in a region where the distance to the center of a vortex r satis- 
fies the condition l<r<l,  we can find the potential from the 
approximate equation 

Using Eq. ( 10) we can readily see that the integral of Eq. ( 9 )  
diverges logarithmically at the upper and lower limits of inte- 
gration. Consequently, the main contribution to this integral 
comes specifically from the region {< rg I, and in the ohmic 
viscosity case we have 

We can see that in this limiting case the ohmic viscosity, like 
the relaxation contribution vpO, is independent of the direc- 
tion of motion of a vortex expressed in terms of the new vari- 
ables. This is not true if u $ 1. We can then find the solution 
using a model function p,(rf)  described by 

Obviously, the assumptions about the nature ofp,,(rf) agree 
with those described by the Bardeen-Stephen model. In we 
ignore Eq. (8a) the left-hand side of the equation for irl >[ 
and obtain @ = (fi/2e)vL ?19~,. We use the condition of conti- 
nuity of the function @ for Ir'l = 6, which leads to the follow- 
ing expression in the case when lr11<l:@=(fi/  
2ec 9 [r'v, ]z& . We now calculate the integral in Eq. (9) :  

Having obtained the expression for the viscosity tensor, asso- 
ciated with the ohmic losses, we can now write down the com- 
plete equation of motion for a vortex line: 

h 

where I is a unit tensor. 
In Eq. ( 14) we return from the coordinates 5, jj, Z to the 

coordinates x,  y, and z. We then carry out rotation in the xz 
plane, so that the new axis z is directed along the vortex axis. 
The equation for V, then becomes 
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The expressions for 7, and 7, are different for different values 
of u .  If u< 1, then 

However, if u > 1, we find that 

Figure 1 shows the dependences of 7, and 7, on the 
angle between the direction of the vortex axis n and the anisot- 
ropy axis v (cos a = vn) for u = 12, p = 9, and f l =  0.9. It 
follows from our results that, in contrast to the isotropic case, 
the direction of motion of vortices is no longer perpendicular 
to the current. Since the average electric field is given by the 
expression 

this field is also not parallel to the current. Consequently, 
there is a Hall field which does not vanish even for Blj, as 
found also in the isotropic case. We can readily obtain an 
expression for the energy dissipated per unit time per unit 
volume: 

FIG. 1. Components of the viscosity tensor versus the angle between the 
direction of the vortex axis and the anisotropy axis: 1) vX/(2mrtylal/b); 2) 
vy/(2mrtylal/b). 

Obviously, the resistance in the case of viscous flow of the flux 
depends strongly on the orientation of the Abrikosov vortices 
relative to the anisotropy axis v. The above expression for the 
viscosity tensor makes it possible to find the resistance anisot- 
ropy and its dependence on the direction of the applied mag- 
netic field. 

Unfortunately, there are as yet no experimental data on 
the flow of the flux in high-temperature superconductors. 
One would hope that later investigations would make it possi- 
ble to check experimentally our results. 
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