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A study is reported of the zero-temperature phase diagram of a single step on the boundary 
separating a quantum crystal from vacuum. It is shown that an increase in the ratio of the 
amplitude ofjumps of atoms along the step to the energy of a kink induces a phase transition of the 
step to the superfluid state. In this case the superfluidity does not imply phase coherence: the 
spatial correlations of the phase decay exponentially, exactly as in the normal state. At finite 
temperatures this zero-temperature superfluidity is destroyed, but in a wide range of parameters 
the linear friction coefficient (which depends on temperature in accordance with a power law) is 
exponentially small. 

1. INTRODUCTION 

Single steps on the free surface of a quantum crystal 
considered in the solid-on-solid (SOS) approximation can 
be described by the following Hamiltonian 

where ii, = - id /apj is the distance of this step from some 
fixed position, expressed in terms of the lattice constants 
(Fig. 1 ) . The first term in Eq. ( 1 ) is the energy of the kinks 
on the step and the second represents quantum-tunneling 
jumps of atoms from the step (when nj increases by unity 
and n,- , decreases by unity and vice versaIs2) which occur 
with an amplitude Y/2 independent of n. The phase vari- 
ables pj associated with nj determine the local fluxes of the 
mass q along the step: q, = Y sin(p, - pj - , . 

The Hamiltonian of Eq. ( 1 ) has two independent sym- 
metry groups, one of which is discrete and the other contin- 
uous. They represent a simultaneous shift of all the values of 
n (n, =+n, + An, where An is an integer), and simultaneous 
rotation of all the phases pi associated with conservation of 
the number of atoms. Consequently, two phase transitions 
can occur in the adopted model: from an atomically rough to 
an atomically smooth state and from the normal to the su- 
perfluid state. The atomically smooth state is distinguished 
from the rough state by the finite amplitude of the fluctu- 
ationsofn: ((Sn)') = ( ( n  - (n)) ' )  < cc (whichin theone- 
dimensional case may be attributed to the finite free energy 
of a kink" and the superfluid state is understood in the usual 
way to mean that nondissipative mass transfer is possible (at  
least in the linear approximation). In the two-dimensional 
analog of the model of Eq. ( 1 ), which is used to describe the 
basal plane of a free surface of a quantum crystal, these two 
transitions may occur during cooling in a different order, 
which depends on the ratio of the parameters of the model.* 
In the one-dimensional model of Eq. ( 1 ) we would expect 
these phase transitions to occur at T =  0 as a result of a 
change in the parameters. 

Bradley and Doniach4 used the model of Eq. ( 1 ) mak- 
ing an erroneous assumption that this can be used to describe 
a chain of series-connected tunnel junctions [in fact, an ar- 
ray of inverse capacitances with which the first term in Eq. 
( 1 ) can be identified, should not contain negative compo- 
nents5]. In terms of a step the conclusion of these authors 

(nonsuperfluid) state irrespective of the ratio of the param- 
eters. We shall show that this is not true and that an increase 
of the parameter 7t = Y /J in  the model of Eq. ( 1 ) results in a 
transition from the normal to the superfluid state, whereas a 
transition to the atomically rough state does not occur when 
x is varied. For comparison, we recall that the step on a 
quantum interface, which permits exchange of matter be- 
tween the phases [when the Hamiltonian differs from Eq. 
( 1 ) by the replacement of cos(p, - pj - , ) with cos pj 1, un- 
dergoes a transition to the atomically rough state when x 
increases in (Ref. 3 ) .  

It should be stressed that the use of the SOS approxima- 
tion for the description of such a step implies that the free 
surface of a crystal (with a step on i t)  is in the atomically 
smooth superfluid state. The spectrum of excited states is 
then separated from the ground state by a gap2so that at zero 
or near-zero temperatures we can ignore any other fluctu- 
ations of the surface, apart from changes in the configuration 
of the step. 

2. TRANSITION OF A STEP TO THE SUPERFLUID STATE 

Elimination of nj allows us to go over from the Hamilto- 
nian ( 1 ) to the Lagrangian 

FIG. 1. Schematic representation of a step on the basal plane of a crystal 
with the simple cubic lattice. The SOS approximation is used and it is 
assumed that the step configuration can be described by specifying vari- 
ables n,  which are integers and which represent the distances of various 

would imply that even at T = 0 the step is in the normal segments of the step from a certain straight line. 

1250 Sov. Phys. JETP 68 (6), June 1989 0038-5646/89/061250-04$04.00 @ 1989 American Institute of Physics 1250 



which is written in the Euclidean form. The first two terms in 
Eq. (2 )  represent a positive definite quadratic form. In the 
semiclassical approximation ( Y> J) the dominant role in 
the functional integral, which specifies the zero-temperature 
partition function of the model of Eq. (2) ,  is played by in- 
stantons representing extremal paths of the Euclidean action 

s = 1 ~ T L { T ) ,  

on which one or the other of the variables Bj =pj - p, -, 
overcomes the maximum of the period potential. In going 
around a saddle point along a distant closed path in two- 
dimensional space-time, we find that the circulation p is 
+ 2 7 ~  (Ref. 4 )  and the sign of the circulation can be regard- 

ed as the sign of the topological charge of an instanton. 
In the model of Eq. (2 )  the effect of a single instanton is 

dispersed and it is finite only for a combination of instantons 
with zero net charge. For example, in the case of a pair of 
instantons of opposite sign, we have 

nA ( Y / J )  '"R, R2>Q 1 z  1 
Q l z l > R 2 ,  I 

Q2--YI/A2, (3 )  

where R and .rare their distances in space and in imaginary 
time, respectively. The pair interaction of Eq. (3 )  can be 
described by the Green's function 

and if Y/J> 1, instantons of different signs can form small 
pairs. Bradley and Doniach4 assumed that since the pair in- 
teraction is stronger than logarithmic, dissociation of instan- 
ton pairs is altogether impossible. 

A more consistent approach would require allowance 
for renormalization of the interaction of instantons by neu- 
tral pairs the concentration of which is finite for any ratio of 
the parameters. The correction to the Green's function 
G, '(k,w) of the principal (first) order in respect of the 
concentration of neutral pairs is6 

Zl ( k ,  w )  = 2 z 2 Z  5 dr [ l - -cos  ( k R - w r )  ] 

where z is the chemical activity of a single instanton, which 
in the case of low values of k and w is 

Z, ( k ,  a )  -yo2+uk2.  ( 6 )  

The first term in Eq. (6 )  represents only a slight quantitative 
renormalization of Y, given by 

whereas the second alters the nature of the interaction of 
instantons at large distances so that the interaction becomes 
logarithmic: 

Such a renormalization of the interaction of instantons is 
analogous to the renormalization of the interaction of dis- 
clinations by free dislocations in a two-dimensional smec- 
tic.' 

If ~ $ 1  the value of u is exponentially small in and 
the logarithmic interaction of instantons is sufficiently 
strong to ensure that they are still bound to form neutral 
pairs. This remains valid also if the Green's function 
G,,(k,w) of Eq. (5 )  is replaced self-consistently by 

G ( k ,  o ) = [ G o - ' ( k ,  o ) + Z f { G )  I- ' ,  ( 7 )  

which simply reduces K somewhat. If we include I,, a pole 
of G(k,w) corresponds to a linear spectrum of long-wave- 
length excitations which is typical of the superfluid state. 

Reduction of ?c reduces also K and when K,,, = 2 is 
reached, instanton pairs dissociate (compare with Ref. 3) ,  
which corresponds to a transition of the investigated step 
from the superfluid to the normal state. At lower values of x, 
Eq. ( 7 )  no longer has a self-consistent solution and the long- 
range interaction of instantons is screened. The critical be- 
havior in the vicinity of a phase transition point should then 
remain the same as in the usual Berezinskiy-Kosterlitz- 
Thoules transition because the origin of the logarithmic in- 
teraction of instantons over large distances is of no impor- 
tance. 

Additional evidence that an increase in x induces a 
phase transition of the investigated step is provided if we 
note that for Y< J the excited states of the step are separated 
from the ground state by a gap of width 2 ( J  - Y) + O( Y 2 /  
J ) ,  whereas in the opposite limiting case there is no gap in the 
spectrum. 

The superfluidity is destroyed at finite temperatures. 
According to Ref. 3, the appearance of dissipation in one- 
dimensional models similar to that described by Eq. ( 2 )  con- 
sidered in the semiclassical approximation may be associat- 
ed with a nonzero probability of phase slip, i.e., the 
probability of incoherent tunneling of any of the variables 
8. , = p, - p, _ , to a neighboring minimum of the periodic 
potential. In the case of the logarithmic interaction of zero- 
temperature instantons the probability of quantum-fluctu- 
ation phase slip vanishes at low temperatures in accordance 
with a power law,3 which in the problem under considera- 
tion implies a power-law temperature dependence of the lin- 
ear friction coefficient y:y oc ( T / f i O )  2 K -  2. Therefore, for 
the parameters corresponding at T =  0 to the superfluid 
state of the step, which is not too close to the transition point 
the dissipation associated with mass transfer is exponential- 
ly small in terms of K if K>1 .  On the other hand, as demon- 
strated earlier, if % > 1 the value of K is exponentially large in 
x ,  so that in this case y is characterized by a double exponen- 
tial smallness. If T = 0 the friction coefficient y vanishes, 
which demonstration of the superfluid properties of the state 
of the step. 

3. ABSENCE OF PHASE COHERENCE IN THE SUPERFLUID 
STATE 

Our analysis shows that if we allow for renormaliza- 
tions due to a low concentration of bound instanton pairs, 
the asymptotic law of interaction of instantons in the model 
of Eq. (2 )  is logarithmic, i.e., it is exactly the same as in the 
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model with a somewhat different kinetic energy 

investigated in Refs. 3 and 4 as a model suitable for the de- 
scription of a regular chain of tunnel junctions coupled by 
capacitances on a conducting substrate. It is worth recalling 
that in the model of Eq. (8)  the superconducting phase 
differs from the normal phase not only because the linear 
friction coefficient vanishes,' but also because the nature of 
the behavior of the one-time correlation function is different: 

For the normal phase the function F ( R  ) decreases exponen- 
tially, whereas in the superconducting state it obeys a power 
law4 (quasilong-range order). On the other hand, in the 
model (2 )  characterized by similar thermodynamic proper- 
ties the correlation function of Eq. (9)  decays exponentially 
in the normal and superfluid phases. This can be demon- 
strated by representing F ( R )  in the form 

which follows from the assumption that fluctuations are 
Gaussian. In general, such a representation is valid only for 
the superfluid phase in which there are no free excitations 
with nonzero topological charges. 

In the semiclassical approximation the correlation 
function can be calculated as a sum of two  term^,^.^ one of 
which 

is related to small oscillations of g, and the other [gin (k,w) 1 
is associated with instanton pairs. If we assume that in the 
case of a single instanton pair at a large distance from it we 
have 

where @(j,r) is the explicit form of an instanton path, 
whereas AR = R, - R ,  and AT = r2 - 7, are the relative 
separations-in space and in imaginary time-of instantons 
forming a pair, averaging over the whole volume ignoring 
correlations of different pairs gives 

Here c is the concentration of instanton pairs and the square 
brackets with the indices k and w represent the Fourier 
transforms of the derivatives @ (a,@ is naturally understood 
to be the lattice derivative). If we use Eq. ( l o ) ,  it is conven- 
ient to expressg,, (k,w) in terms of the derivatives of @( j,r) 
because the function itself is multivalued. 

The divergence of the exponential function in Eq. ( 10) 
is governed by the behavior ofg(k,w) at low values of k and, 
consequently, it is determined by the asymptotic nature of an 
instanton path far from a saddle point. According to Ref. 8, 
this asymptotic form can be found if we replace the cosine 
potential with a harmonic one, so that in the model of Eq. 
( 2 )  when k, w-0 we have 

[ a , @ ] , , x * 2 n ~ ~  
(ik) ' 

02+QZk4 ' 

It should be noted that 

is then equal to + 2 r a n d  not to zero (in contrast to a single- 
valued function), which reflects the appearance of a branch- 
ing point when @( j , ~ )  goes to the continuous limit. 

Substitution of Eq. ( 13) into Eq. ( 12) demonstrates 
that the first term in Eq. (12) ,  like that in Eq. ( l l ) ,  doesnot 
result in unlimited reduction in F ( R )  for R - CC, whereas 
the second term in Eq. ( 12) gives rise to an exponential de- 
cay of F ( R ) .  The correlation radius is then governed by the 
concentration of different-site instanton pairs and for ~ $ 1  it 
is exponentially large in x"'. 

It therefore follows that the phase coherence (under- 
stood as the existence of long-range quasiorder represented 
by a decay of the correlation function in accordance with a 
power law) is absent not only in the normal but also in the 
superfluid state. Starting from the exponential nature of the 
decay" of F (R  ) at high values of x, Bradley and Doniach 
reached the incorrect conclusion that the model of Eq. (2 )  
predicts that there should be no phase transition to the su- 
perfluid state.4 

In reality the superfluidity (superconductivity) of one- 
dimensional quantum systems, by which is understood the 
vanishing of the linear friction coefficient, is far from identi- 
cal with the power-law decay of the correlation function of 
Eq. (9) .  Attention to this point was first drawn by Matthew 
Fisher, who considered a chain of series-connected noninter- 
acting tunnel junctions with linear ohmic dissipation, the 
Lagrangian of which can be represented as a sum of indepen- 
dent Lagrangians of the individual contacts."n the case of 
high values of the effective viscosity such a chain as a whole 
is in the superfluid state (and phase slip is completely sup- 
pressed), although the correlation of the phase along it de- 
cays strictly in accordance with the exponential law. It fol- 
lows from the above discussion that this applies also to the 
model of Eq. (2 ) ,  which does not allow such splitting into 
noninteracting degrees of freedom. 

4. CONCLUSIONS 

It therefore follows from the model of Eq. ( 1 ) that an 
increase in the ratio of the amplitude of quantum-tunnel 
jumps of atoms along a step to the energy of an elementary 
kink causes a step on a free surface of a quantum crystal to 
undergo a phase transition to the superfluid state. Although 
in this state the one-time correlation function of Eq. ( 9 )  falls 
exponentially, exactly as in the nonsuperfluid state (so that 
we cannot speak of the phase coherence), the linear friction 
coefficient vanishes in the superfluid state. At finite tem- 
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peratures this zero-temperature superfluidity is destroyed, 
but over a wide range of parameters the friction coefficient, 
which exhibits a power-law temperature dependence, is ex- 
ponentially small. We can expect similar properties to be 
exhibited also by distant steps on weakly inclined (vicinal) 
faces. 

The possibility of nondissipative (or  quasinondissipa- 
tive) mass transfer on the free surface of a quantum crystal 
has become important because of the experimental detection 
of superplasticity of para-hydrogen single crystals, l o  which 
can be explained by surface mass transfer." It would there- 
fore be of interest to investigate systematically the dynamic 
properties of the surfaces of para-hydrogen single crystals at 
low temperatures. 

The transition to the superfluid state investigated by us 
is unrelated to the transition to a rough surface. In the semi- 
classical approximation the amplitude of quantum fluctu- 
ations of the position of the step ( (6n)2)1 '2  is finite in the 
model of Eq. (1 )  even if we ignore instantons. Since the 
presence of instantons (in free or bound form) simply re- 
duces (Ref. g ) ,  such a step is in. an atomically 
smooth state at T = 0 irrespective of the ratio of the param- 
eters. It therefore follows that the normal and superfluid 
states are both atomically smooth at zero temperature. At 
any other low temperature the step goes over to an atomical- 
ly rough state because of the appearance of thermally acti- 
vated kinks. 

Kampf and Schon12 discovered a zero-temperature 
phase transition in the model ( 1 ) by a variational approxi- 
mation. However, this method is unreliable (in particular, it 
predicts stability of the superfluid state also for T> 0 and 
yields results known to be incorrect in the case of a zero- 

dimensional system), so that the results obtained by them 
cannot be regarded as other than accidental. 

The author is grateful to S. Doniach for discussing the 
results of the present study. 

' ' I t  should be pointed out that the treatment in Ref. 4 allows only for one- 
site instanton pairs, which-according to our calculations-should not 
result in unlimited decay o f F ( R ) .  However, the authors of Ref. 4 used in 
their calculations the expression for @V,T) which on the T = 0 axis is a 
physically meaningless cut. It follows from the results that these two 
mistakes to some extent cancel one another, so that the dependence 
F ( R )  remains exponential, as expected. 
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