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A study is made of how the absence of spatial reflection symmetry in the plane of motion affects 
the superconducting state of two-dimensional electrons. In the absence of an inversion center the 
spectrum of Cooper pairs can have two energy gaps and the order parameter contains not only a 
singlet part, but also an admixture of a triplet state, whereas the zero-temperature spin 
susceptibility is finite. It is shown that a magnetic field induces a condensate phase in an amount 
proportional to [H X  c] r, where c  is one of the inequivalent normals to the two-dimensional layer 
and r is the position vector. 

1. INTRODUCTION 

Some materials exhibiting superconductivity have a 
stratified electron structure. If in addition such a material 
consists of several components, then many other atoms and 
ions may be located between the atomic planes of motion of 
superconducting electrons. Ions surrounding such a con- 
ducting layer are not generally distributed symmetrically 
relative to the plane of the layer. We shall assume that the 
tunnel coupling betwen the conducting layers is negligible 
and discuss just one layer. The loss of symmetry of the imme- 
diate environment results in inequivalence of two normals to 
the layer, i.e., it breaks the "up-down" symmetry giving rise 
to a spin-orbit term in the electron Hamiltonian 

where c  is a unit vector along one of the equivalent normals 
and a are the Pauli matrices. This term has been discussed 
earlier in the specific case of electron layers in semiconduc- 
tor heterojuncti~ns. '~~ One of them lifts the spin degeneracy: 
two spins of an electron with a given momentum p acquire 
different energies because of A?,, . We shall consider some 
characteristic features of the superconducting state due to 
this circumstance. First of all, the presence of Z,, implies 
the absence of spatial parity, which spoils the classification 
of the superconducting order parameter in terms of the total 
spin of a Cooper pair, and which should result in singlet- 
triplet mixing. One can expect also a finite spin susceptibility 
of the superfluid condensate. Moreover, in the absence of an 
inversion center the symmetry of a system subjected to an 
external magnetic field H does not forbid the appearance of 
an additional invariant Q [ c X H ] ,  where Q  is the momen- 
tum of the center of gravity of a pair, in the spectrum of 
Cooper pairs. 

for the E( + ) branch is directed along the p x c  so that a pair 
of particles with opposite momenta has also oppositely di- 
rected spins. However, in the case of states in the E (  - ) 

branch the spin quantization directions are opposite. There- 
fore, all the states of the E( + ) branch have positive helicity, 
opposite to the helicity of the E ,  - , branch states. 

In the interparticle interaction 

which is considered using a weak-coupling theory, we retain 
only the isotropic part 

and the first angular harmonic 

where & = ia,. Below the critical temperature in the range 
T< T, the Gor'kov equations for the Green's functions have 
the standard form 

G = ~ ~ + C , , M ~ ,  

where 

2. BASIC EQUATIONS Bar ( p )  =-T J 2 Va'"Q 
( 2 ~ ) '  

( P ,  k) FP7 ( i e ,  -k), ' 
For simplicity, we shall assume that the spectrum of the 

particles in the absence of Z,, and of the interparticle inter- 
action is isotropic: Eo(P) =p'/2m when z,, is included, and the sign o f t  denotes transposition; the definitions of all 

the energy surface of the normal state has two branches the Green's functions are the same as in Ref. 3. It follows 
from Eqs. ( 6 )  and (7 )  that the Green's function of the non- 

E(*)  ( P )  = E O  ( P ) + ~ P  (2  interacting particles is 

and the Fermi surface represents two circles of radii 
pc + , z p o  + am,p, = (2  m,u) . ' I 2  The spin quantization axis G o ( i e ,  p) =fI'+' ( p )  G,!, ( i e ,  p )  ffi(-) ( p )  GP-, ( i e ,  p )  
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The operators I?' * ' represent projections onto states 
with a definite helicity. A 

In the mass operator M we retain only the off-diagonal 
terms in the particle-hole channels. The first-order contri- 
butions to the diagonal elements are (Fig. 1 ) 

d2k p-k p-k ~ 2 : )  (p) =T C j e+'p{ v a f i 1 7 p ( -  -) 
2 ' 2  

- 
p-k k-p 

VapIp: (I, 1)] G$ (ie, k) 

Using the identities 

h 

we can show that M" (p)  has a matrix structure of the form 

Comparing Eq. ( 11 ) with H, (p)  from Eq. ( 7 ) ,  we can see 
that inclusion of M"' leads to renormalization of the spec- 
trum and of the chemical potential, but does not affect classi- 
fication of the particles in accordance with their helicity. 

The spin-orbit interaction constant a occurs in two di- 
mensionless parameters. One of these parameters S = am/ 
po = apo/2p, representing the ratio of the spin-orbit energy 
to the Fermi value, is treated as being so small that all the 
powers of S in excess of the first can be ignored. The second 
dimensionless parameter x = ap,/T, is regarded as small 
only to simplify the calculations, so that all the necessary 
powers of 3~ are included. 

3. STRUCTURE OFTHE ORDER PARAMETER 

The treatment in Ref. 4 is concerned with the case when 
the interaction contains only the isotropic part of Eq. (4) ,  

where the presence of the functions u (p)  = 1 + P(p  - p,)/ 
p, allows for the possibility that the interaction force be- 
tween quasiparticles depends on the magnitudes of their mo- 
menta, whereas GP is a truncation factor which is unity for 
v,(p - p,) < w, and vanishes in all other cases. Then, the 
order parameter AaB (p)  has only the singlet component 
A, (p)gap. We show below that allowance for the anisotropy 
of Eq. (5 )  gives rise to an additional triplet term, so that the 
order parameter becomes 

FIG. I .  

where A, /A, zam/p,. 
It follows from the system ( 6 )  and the relations 

,irfI^(*'(-P)g'=Ii"' (p) ,  

that 

R ( ~ E ,  p) = [i[" '(p)~(+)(iE, p )+hi -J  ( p )~ , - , ( i e ,  p)] g, 

F,*,=A,*, (P)/[ (id2-E;*) (P) I, 

B ( ~ E ,  P) = f i (+ ' ( p )~ (+ , ( i e ,  p) +f i i - ' (p )~( - , ( i s ,  p),  ( 1 5 )  

G,,, ( i ~ ,  P) =[ie+~,, ,  (PI I /[  (~E)~-E:) (p) I ,  

These expressions describe fully the spinor structure of the 
solutions of the Gor'kov equations. We can find the func- 
tions A, (p)  and A, (p)  by substituting Eqs. ( 13) and ( 15) 
into the self-consistency equation, which yields two scalar 
equations 

For simplicity we shall assume that the anisotropic part of 
the interaction is factored 

v p ( ~ ,  k ) = h p u ( ~ )  U ( ~ ) * P * ~  (17) 

and that the functions u(p)  are the same as in Eq. (12). 
Then, assuming that 

and confining our attention only to temperatures close to T,, 
we obtain the system of linear equations 

where, to within an error amounting to 13, we have 

The condition of solvability of this system determines T,  and 
the ratio" 

The temperature of the transition is given equally accurately 
by the following expression from the BCS theory: 

Tscs= (20Dyln) exp (-nlmh,) . 
It is shown in Ref. 4 that this applies also to the function 
A, (T) .  Thus, the matrix AaB is governed entirely by one 
complex function A, (p, T), although it may contain differ- 
ent (singlet and triplet) spinor structures. 
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The main consequence of the above expressions is the 
appearance of a difference between the energy gaps on two 
Fermi circles. In the absence of the anisotropic interaction 
V, this follows from the fact that u ( p )  varies: it follows from 
Eq. (18) that 

I t  is clear from Eq. (15) that allowance for the anisotropy 
increases the difference further by 2 A , .  Therefore, to first 
order in the spin-orbit interaction the excitation energies of 
quasiparticles with different helicities are different, i.e., the 
helical symmetry is destroyed dynamically. 

The splitting of the excitation spectrum in superfluid 
Fermi systems was predicted earlier (see, for example, Ref. 5 
and the literature cited there, and also a much earlier study6 
dealing with the exchange analysis of a dynamic group of 
superfluid He3). In that case and in our case the reason for 
the appearance of this effect in the final analysis is related to 
the spin-orbit interaction. The only difference is that in Ref. 
5 the system exhibited a triplet state as well as vector pairing 
when the energy of a quasiparticle could depend on the pro- 
jection of its spin along the condensate symmetry axis. In the 
situation under discussion the splitting is of different geo- 
metrical nature: it is due to the loss of spatial parity and it 
exists also for singlet pairing, when the scalar condensate 
does not have any preferred spatial direction. 

4. PARAMAGNETIC SUSCEPTIBILITY 

We now consider paramagnetic properties of the 
ground state. We begin with the spin susceptiblity x of the 
system. 

The susceptibility can be found in a homogeneous mag- 
netic field H by writing down the spin magnetic moment to 
five + order in the field: 

h 

i.e., we can find a linear correction20 the Green's function G. 
Therefore, in the mass operator M in Eq. (6 )  we must also 
include the Zeeman energy and, if it differs from zero, a 
linear correction to the order parameter: 

It is then found that x is a sum of the e u r  diagrams in Fig. 2. 
The equation for the correction A,  ,, (p, H )  is obtained 

by integration of the self-consistent condition with respect to 
the Zeeman energy, which gives the results shown in Fig. 3. 
The contribution of the first two diagrams in Fig. 3 is 

+ s , H l +  E ( p a H l  

FIG. 3. 

x C [ ii(*) (k) p B a ~ f i ( v )  (k) ~ I W ,  
La,"=(*) 

[ ( i  k ) ( i e  - - 1 (25) 

I t  is clear from Eqs. (4 )  and (5 )  that this expression includes 
terms 

g7P [h(~) (k) o13fFv) (k) z]~.,, 
{;I 

which can be calculated from the relation ,. A 

A:?' e T r  n(") (k) csin(" (k)o, 

(27) 

Hence, it is clear that the contribution made to Eq. (25) by 
the isotropic part of the interaction is governed by the traces 
( T r )  in the first line of Eq. (26) and it vanishes as a result of 
angular averaging. 

The contribution of the anisotropic part of the interac- 
tion is determined primarily by angular integration of the 
lower row of Eq. (26). If ,u = v, the expression for A p'" is 
even in k and, consequently, it drops out. If p # v, we have 

The remaining scalar part of Eq. ( 2 5  ) is then 

accurate to within corrections quadratic in S. 
A consistent allowance for the second two diagrams in 

Fig. 3 reduces to simple renormalization of the expression 
obtained in this way, so that the result is 

-(pH) (co) l;K(T), (30) 
where FIG. 2 
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rln, T g  A. 
'(')--{ ( A  J T )  (76 (3) / 4 n 3 ) ,  A . e T .  

where up to terms of order x 2  inclusive we have 

4 (E(+)-E(-))2+(A(+)-A(-))2 A x - -  
2 [ ( i e )  '-E2]' The presence of i in the above expression ensures invariance 

of the time inversion operator. 
We shall now calculate the susceptibility. In the expres- 

sion for the contribution of the diagrams a and b in Fig. 2 
- ( ~ E ) ' ( E ; + ) - E ; - ) ) ~  

[ (ie) ' - E z ] (  

and E = 6; ( p )  + A:. Therefore, the sum of the diagrams a 
and b in Fig. 2 assumes the following form in the limit T-t 0: 

+oiP ( ie ,  p) ( - 4 )  atHP+ (ie, p))  (31) 

we shall separate the matrix structure of the Green's func- 
tions using Eq. ( 15); we shall follow this by application of 
the relation (26) and carry out angular integration, which 
gives The expressions in the braces, considered in the same ap- 

proximation, is 

AaZ Eo" 
( E , + ) - h - ) )  + (A,+,-At-Jz7 E 

where 

It follows from Eqs. ( 15) and (20) that the main contribu- 
tion to the integral with respect to the parameter A , / p  origi- 
nates from the first term in Eq. (39).  

We thus obtain 
The quantity A can be reduced to 

We can show that the contributions of the diagrams c and d 
in Fig. 2 are small in terms of the weak coupling parameter 
mA, g 1. Since Eq. (40) is derived by the linear response 
method, it is valid if the Zeeman energy u,H is less than all 
the other characteristic energies, including the spin-orbit 
energy ap,. 

An analogy with Ref. 7 should be pointed out here: it is 
shown in Ref. 7 that in the case of ordinary superconductors 
with an undisturbed spin degeneracy an allowance for the 
spin-orbit scattering by impurities also makes the spin sus- 
ceptibility finite. 

The third term in Eq. (33) can be dropped, because it is 
canceled out in summation over the frequency, whereas the 
second term leads to 

5. VELOCITY-SPIN CORRELATION FUNCTION 

Another paramagnetic property of the system in ques- 
tion is the contribution of the Zeeman interaction to the su- 
perfluid current. The velocity operator 8 (p )  in this case is 
not a polar vector: it also has a spin (axial) component - (ie)"E?+) - Ef-)I2 

[ ( i ~ ) ~  - E;+J2 [(ie)' - E:-)12 

Since 
To first order the magnetic field the average electron veloc- 
ity 

we can see that the contributions of the first and second 
terms in Eq. (34) disappear separately in the limit T-0. 
Therefore, they can be omitted in calculating the susceptibil- 
ity of the ground state. 

For the same reason the contributions of the second and 
third terms to the function B tend to zero. Thus, in the limit 
T-0, Eq. (3  1) is asymptotically equal to 

is given by the sum of the four diagrams in Fig. 4, which are 
analogous to the diagrams in Fig. 2. The contribution of the 
diagrams a and b is 
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FIG. 4. 

If we simplify Eq. ( 4 3 )  by retaining only the first term in the 
velocity operator, it then follows from 

Tr n("' ( p )  oHn(" ( p )  =6(") sign p ( [&I H) ( 4 4 )  

that the expression in the square brackets in Eq. ( 4 3 )  occurs 
in the response only i f p  = v. I t  follows from Eq. ( 3 5 )  that at 
low temperatures this contribution tends to zero and, conse- 
quently, only the contribution bf the spin part v ( p )  remains 
in Eq. ( 4 3 )  and this contribution can be expressed in an 
obvious manner in terms of the spin susceptibility 

We can show that the contributions of the diagrams c and d 
at all temperatures is less than the contribution of the dia- 
grams a  and b  in terms of the parameter mil, (< l .  

We can conveniently calculate the contribution of the 
diagrams a  and b  near T, by using the following circum- 
stance. I t  follows from Eq. ( 4 5 )  that the response does not 
vanish when the gaps A, + , and A, coincide, so that in the 
lowest-order approximation in S we can assume that 
u ( p )  = 1 ,  A, = 0.  Then, Eqs. ( 1 5 )  yield the following identi- 
ty 

a ~ ( i e ,  p ) / a p = ~ ( i ~ ,  p ) i ( p ) ~ ( i ~ ,  p )  
+ F (ie, P)';t  ( - p )  PC (-ie,  p )  . ( 4 6 )  

I t  follows from it that, apart from the total derivative with 
respect to the mcmentum, the two terms in Eq. ( 4 3 )  are 
equal and, consequently, 

Hence, it follows directly that the velocity-spin correlation 
vanishes in the normal phase. Using the inequalities ( 2 7 )  
and ( 4 4 ) ,  we can simplify this expression to 

which is convenient for an analysis of the limit A, < T,. In 
the integrals of the first two terms we have to go over to new 
integration variables {, + , which shows that the parameter 
a enters in them through S, whereas in the third integral it 
enters through x. The terms linear in x cancel out, so that we 
obtain 

The paramagnetic contribution to the current does not 
mean that there is a constant current in the ground state. 
Since there is also the usual contribution proportional to the 
gradient of the condensate phase, it follows that in an infinite 
singly connected system the total current remains zero, but 
the condensate acquires a constant phase gradient. 

We demonstrate how this occurs in the simplest situa- 
tion when A, 4 T, and A, = 0. The presence of a phase gra- 
dient implies pairing with a nonzero momentum Q,  i.e., for- 
mation of a Cooper pair from electrons with quantum 
numbers ( p  + Q / 2 ,  i ~ )  and ( p  + Q / 2 ,  - i ~ ) .  Suitable 
modification of the Gor'kov scheme and linearization of the 
self-consistency equation for the order parameter 
Aa8 (H,Q)  = A (H,Q)ga8 yields the condition for the ap- 
pearance of a nonzero solution A ( H ,  Q )  in the form 

where 

The right-hand side of Eq. ( 5 0 )  need be calculated only to 
first order in H and to second order in Q .  The perturbations 
will be assumed to be the Zeeman energy W ,  and part of the 
kinetic energy W, : 

The graphical representation of these perturbations can be 
found in Fig. 5 .  Using Eqs. ( 8 )  and ( l o ) ,  we can represent 
the expansion of the right-hand side of Eq. ( 5 0 )  in the form 
of a sum (Fig. 6 )  

Comparing Eq. ( 5 2 )  with Fig. 4  and with the inequality of 
Eq. ( 4 3 ) ,  we find that 

where V, ( a  + b )  is found from the diagrams in Fig. 4  by 
replacing the perturbation W ,  with W,, and calculating all 
the diagrams near T, to within 1 A, 1 2 .  Sinceil, > 0, it follows 
that the sign of Q2 on the right-hand side of Eq. ( 5 0 )  is 
negative. Consequently, an instability of the normal state 

FIG. 5 
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FIG. 6. 

occurs primarily for those values of Q for which R QH + R Q >  

has a minimum. Setting the derivative with respect to Q to 
zero, we obtain the following equation for the determination 
of the function Q(H) near T,: 

which is expressed in diagram language in Fig. 7. 
We can easily understand that the contribution to the 

average velocity made by the phase gradient is induced spe- 
cifically by the interaction WQ, i.e., it simply represents 
VQ (a + b ) .  Therefore, Eq. (54) means precisely that the 
total current vanishes. To lowest order in a we find from Eq. 
(54) near T, 

Since u,,Q /p, H- 6?r2 < 1, we can ignore the influence of WQ 
on the spin susceptibility. 

A similar investigation of the general case of arbitrary 
temperatures allowing for the triplet part of the condensate 
is outside the scope of the present paper. 

It should be mentioned that in the case of the spin sus- 
ceptibility and the condensate phase the presence of the trip- 

FIG. 7 

let part of the order parameter and the splitting of the energy 
gap are unimportant. 

6. CONCLUSIONS 

The above results can be applied to a two-dimensional 
defect, to a thin film when the central symmetry breaks 
down because of the van der Waals interaction with the sub- 
strate, or to a layer crystal with a noncentrosymmetric crys- 
tal symmetry group. If the unit cell contains an even number 
of conducting planes, as is true of the recently discovered 
high-temperature superconductors, this condition is not 
necessary because antipyroelectricity can be observed even 
in the presence of an inversion center. For example, the Cu- 
0 planes in the superconducting compound Ba,YCu,O, - 6 

are surrounded on one side by yttrium atoms and on the 
other by barium atoms. Although this feature of the com- 
pound in question has been the reason for the proposal of the 
model described above, certain difficulties may be encoun- 
tered when the results obtained are applied specifically to 
Ba,YCu,O, , . The hypothesis of a weak tunnel coupling 
between two Cu-0 layers is supported also by the experi- 
mental observation that replacement of the yttrium atoms 
separating such adjacent layers by magnetic gadolinium 
atoms has no significant influence on the critical tempera- 
t ~ r e . ~  Evidence against this hypothesis may be the relatively 
small distance between the oxygen atoms in the two nearest 
layers and the directional nature of their valence orbitals. 

I t  therefore follows that only a comparison of the ex- 
perimental results with various consequences of the pro- 
posed model can determine the degree of its validity in the 
case of specific materials. An investigation of the possibility 
of the influence of pyroelectricity and ferroelectricity on su- 
perconductivity is moreover of intrinsic theoretical interest. 

"It is always assumed that A, < /A,/2/, so that the condensate is mainly of 
singlet nature. We can show that in the case of a weak interaction char- 
acterized by d,,, ( 1 the relationship (2 1 ) remains valid at all tempera- 
tures. 
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