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A theory is derived for the propagation of intense surface magnetostatic waves in thin 
ferromagnetic films. At certain angles between the wave propagation direction and the external 
magnetic field, these waves become unstable with respect to the formation of longitudinal solitons 
(envelope solitons). The regions in which they exist are found. These nonlinear waves exhibit 
bistable properties during propagation in ferromagnetic films with periodic structures. The 
threshold power level for the occurrence of this instability is determined. The properties of 
nonlinear magnetostatic Love waves in a structure consisting of a ferromagnetic film and a 
nonmagnetic half-space are analyzed. 

1. INTRODUCTION 

Nonlinear wave phenomena in thin ferromagnetic films 
have become the subject of intense research interest, primar- 
ily because ferromagnetic films are an excellent arena for 
studying the physics of spin magnetostatic waves and are 
also of applied importance. Numerous experiments carried 
out on the physics of magnetostatic waves, however, have 
shown that these waves become very nonlinear even at low 
power levels of the excited microwave signal. This nonlin- 
earity leads in turn to several new effects: an instability of the 
waves with respect to decay into new waves, self-modula- 
tion, self-focusing, and self-channeling of magnetostatic 
waves. The mechanism for the occurrence of the instability 
of magnetostatic waves involves primarily a magnetic dipole 
interaction, so there is a quadratic nonlinearity. This situa- 
tion is responsible for second-harmonic generation and for 
three-magnon decay processes. Furthermore, since the 
magnitude of the magnetic moment is conserved during its 
precession, its average projection onto the magnetizing field 
depends on the oscillation amplitude. This circumstance is 
responsible for the cubic nonlinearity. The cubic nonlinear- 
ity is responsible in turn for phenomena such as self-modula- 
tion and four-magnon scattering of waves. 

It has been established' that the range in which magne- 
tostatic waves exist in ferromagnetic films is limited by the 
frequencies 

for bulk magnetostatic waves and 

for surface magnetostatic waves ( w ,  = gHo, w, = 43rM(,g, 
g is the gyromagnetic ratio, Ho is the internal magnetic field, 
and 4rM0 is the saturation magnetization). As a result, cer- 
tain nonlinear processes involving the propagation of mag- 
netostatic waves in thin magnetic films cannot occur, be- 
cause conservation laws do not hold. For example, second- 
harmonic generation and three-magnon decays are forbid- 
den for bulk magnetostatic waves by energy and momentum 
conservation. In this connection the most interesting subject 
for a study of nonlinear properties is a surface magnetostatic 
wave. In the first place, the frequencies of these waves are 
higher than those of bulk magnetostatic waves, and in the 
case of an instability the surface waves may decay into bulk 

waves. Second, for surface waves there may also be an entire 
frequency range in which three-magnon decay processes are 
forbidden by the conservation laws. In this case these waves 
may be unstable with respect to four-magnon scattering or 
self-modulation. 

Self-modulation of surface magnetostatic waves was 
discussed theoretically in Refs. 2 and 3. Zvezdin and Pop- 
kov3 found that these waves are stable with respect to longi- 
tudinal perturbations and unstable with respect to trans- 
verse perturbations (self-focusing) . Kalinikos and Slavin4 
suggest that solitons of dipole-exchange surface magnetos- 
tatic waves might exist in thin ferromagnetic films. Envelope 
solitons of surface magnetostatic waves were seen experi- 
mentally in Refs. 5 and 6 in a regime of pulsed excitation of 
dipole-exchange waves. Three-magnon decays of surface 
magnetostatic waves were studied experimentally in Refs. 7 
and 8. TemiryazevX proposed a mechanism of decay into 
bulk magnetostatic waves followed by coalescence of these 
waves and the formation of new surface magnetostatic 
waves. A theory has recently been developedY for instability 
of surface magnetostatic waves which are propagating in 
thin ferromagnetic films with respect to three- and four- 
magnon decay processes. 

We thus have a fair body of experimental evidence now, 
which requires theoretical confirmation. Our purpose in the 
present study is thus to derive a theory for the nonlinear self- 
effects of surface magnetostatic waves propagating in thin 
ferromagnetic films. 

2. NONLINEAR DISPERSION RELATION 

Surface magnetostatic waves propagate anisotrop- 
ically. It has been established that they can propagate near 
an axis running perpendicular to the external magnetic field, 
within an angle (Fig. 1 ) 

The equations which serve as our starting point for describ- 
ing the properties of these nonlinear surface waves are Max- 
well's equations in the magnetostatic approximation and the 
Landau-Lifshitz equation: 

rot H=O, div B=O 

dM/at=-g[MH,, 1, 

where H is the total magnetic field, B is the magnetic induc- 
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where tion, M = M, = SM is the total magnetization in the film 
(M, and SM are its static and oscillatory parts), He, is the 
effective magnetic field, given by 

and 2Y is the Hamiltonian of the system, which we write in 
the form 

1 
l = - J [ MH. + - MH(")] d ~ .  

2 (4)  

Here He is the external magnetic field, and H'") is the field 
produced by the magnetization. The integration is over the 
volume of the film. The Hamiltonian (4)  has been written 
neglecting the exchange energy. This simplification is justi- 
fied for dipole magnetostatic waves near the beginning of the 
spectrum." Furthermore, we are ignoring the anisotropy 
energy, as we are completely justified in doing for the real 
yttrium iron garnet (YIG) films used experimentally. We 
assume that the nonlinearity is slight, so that magnetization 
component 6M, can be written in the form 

where SM, , SM, gM,. Expressing the magnetostatic poten- 
tial in terms of the magnetic field SH = - VY, and working 
from (2),  we thus find an equation for the nonlinear poten- 
tial of a surface magnetostatic wave in a film in which the 
wave is propagating in a direction perpendicular to the exter- 
nal field: 

where ] A  / is the potential amplitude of the surface wave, 

o is the frequency of the wave, and q is the wave number. A 
general solution of (6)  can be written in the form 

y=[A  (1+L,qx) eqXf Aa(I+Lzqx) cq" .  

f AL3e-3qx+ALhe3qx]e'qu+ C . C .  ( 7 )  

FIG. 1. Geometry of the problem. The ferromagnetic film. 

La = 
4 ( ~ i + ~ a )  '(x~-xz) ai qz I A I - 

Cli M," 

The solution of Maxwell's equations in vacuum and in 
the substrate is written in the standard form. The boundary 
conditions are the continuity of the normal components of 
the induction and of the magnetostatic potential at the sur- 
faces of the film. 'As a result, after the appropriate substitu- 
tions, we find a dispersion relation for nonlinear surface 
magnetostatic waves which are propagating in the direction 
perpendicular to the magnetic field: 

where 

For the case in which a wave is propagating at an angle from 
the magnetic field, on the other hand, we will write only the 
dispersion relation; all the explanatory expressions are in the 
Appendix. The dispersion relation is 

(p,+p2s cos 0-1) (pi-pzs cos 0-1) e-pd- 

(pi-pzs cos 0+1) (pl+p2s cos 0+1) epd=F. (12) 

If there is no nonlinearity, and we have IA I Z  = 0, then we 
have G = F=O. In this case Eqs. (9) and ( 12) describe lin- 
ear surface magnetostatic ( Damon-Eschbach) waves. ' 
From Eq. ( 12) we can find the nonlinear Damon-Eschbach 
shift of the wave number, defined as Aq = q - q,, : 

Heres = cos2 6' + (sin2 6')/(1 + 4 ~ ~ ) .  
We know that solitons can arise from a longitudinal or 

transverse modulational instability. The former is manifest- 
ed as a self-modulation, and the latter as a self-focusing. The 
self-focusing of surface magnetostatic waves was analyzed 
in Refs. 2 and 3 in the limit q-0 with 6' = 0. It is interesting 
to examine the modulational instability in the case 6' # O  for 
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arbitary q. The condition for the modulational instability is 
the so-called Lighthill criterion' ' 

where 

au ld  [ A  1 '= (aqld lA 1 ') u,, 

is the nonlinear frequency shift, and (a 2 ~ / a q 2 )  , is the dis- 
persion of the linear group velocity v,,. Figure 2 shows 
(a 'w/aq2), as a function of the angle 8. We see that we have 
(a 2~/aq2)1  < 0 for arbitrary 8. Figure 3 shows the nonlinear 
shift of the wave number as a function of the angle 8. We see 
that at a certain value of 8 (smaller than the cutoff angle for 
surface magnetostatic waves, p) the nonlinear shift changes 
sign, becoming positive. Consequently, at certain angles 
(greater than 8,) the Lighthill condition begins to hold. This 
circumstance means that the original wave becomes unsta- 
ble against amplitude modulation. There is accordingly the 
possibility that envelope solitons of surface magnetostatic 
waves will exist. Let us estimate the distance over which a 
pulse of surface magnetostatic waves evolves during the for- 
mation of a soliton. This evolution distance is'' 

where t ,  is the half-width of the pulse. For the ordinary 
n~rmalization'~ and for an initial sechr, pulse, the value of 
T ,  is the dimensionless half-width of the pulse, ~ 2 . 6 4 .  We 
assume an initial pulse of surface magnetostatic waves of 
width 10 ns for a film with d = 10 pm, Mo = 140 G, 
Ho = 5700e,wo = 3.78GHz,and (a2q/aw2), ~ 0 . 4 ~  10-l8 
s2/cm. We then have Lev z 1 cm. The threshold power for 
the formation of a soliton of surface magnetostatic waves is 
given by l 2  

where w, = v,,aq/a [ A  12. Using the expression for the power 
of surface magnetostatic waves,9 

0, rad 
0.2 0.4 0.6 0.8 1.0 

I I I 

FIG. 2. The dimensionless dispersion of the group velocity, Q = ( a2w /  
J q 2 ) , / w , ,  d ', versus the angle 6' for surface magnetostatic waves with the 
following frequencies: a-3.78 GHz; 2-3.8 GHz; 3-3.85 GHz. 

0, rad 1 

FIG. 3. Dimensionless nonlinear shift of the wave number, N = 2Agd, 
versus the angle 6' for the frequencies in Fig. 2. 

we find that for the parameter values of the field and film 
which we are using the threshold power for the formation of 
a surface-magnetostatic-wave soliton is P z ~  mW/mm. 
This value could be lowered by using a broader initial phase. 

3. THEORY OF THE MULTlSTABlLlTY OF SURFACE 
MAGNETOSTATIC WAVES 

Let us use the results derived in the preceding section to 
study the properties of nonlinear surface magnetostatic 
waves which are propagating through a ferromagnetic film 
with a periodic structure. A theory has been derived pre- 
viously l 3  for linear surface magnetostatic waves propagating 
in ferromagnetic films with periodic structures consisting of 
a system of etched grooves. Let us assume that the upper 
surface of a ferromagnetic film has a sinusoidally varying 
region, the equation of whose surface is 

where I E I ~  is the amplitude of the variation, Q = 2n-/A, and 
A is the period of the variation. We assume lei < 1 and 
/&/Qd< 1, and we assume that the period of the structure, A, 
is approximately R /2, where A is the wavelength of the sur- 
face magnetostatic wave (this is the case of Bragg reflec- 
tion). 

The problem of the propagation of nonlinear surface 
magnetostatic waves in ferromagnetic films with a periodi- 
cally varying surface region is solved by the method of two 
coupled modes. l 4  According to this method, the solutions in 
the region of a periodic variation of the surface of a film can 
be written in the form of a Bloch function; in the Fourier 
expansion of the periodic coefficient we retain only the two 
terms corresponding to waves whose phase velocities are di- 
rected along and opposite they axis. Accordingly, the solu- 
tion for the magnetostatic potential (7)  can be written in the 
form 

The complex-conjugate quantity here stands for the reflect- 
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ed wave propagating in the opposite direction ( - y),  with 
an amplitude A -. The boundary conditions can be "carried" 
away from the varying surface to thex = d surface through a 
series expansion in the small parameter of the variation, 
I&lQd: 

The superscript ( 1 ) here corresponds to the vacuum region 
( X  > d),  (2) corresponds to the region of the ferromagnetic 
film (0 < x < d ) ,  and is the derivative of the function 6 
with respect toy. In writing (20) we need to allow for the 
circumstance that the nonlinearity must be incorporated in 
the boundary conditions. From ( 19) and (20) we find equa- 
tions for the coupled modes: 

where D + are Damon-Eschbach determinants incorporat- 
ing the nonlinearity of the medium and the variation of the 
film surface, and 

For thin films, with qd$l ,  we have 

where P, is the dimensionless power of the waves. From the 
determinant of system (21) we find a nonlinear dispersion 
relation. We denote by f l  the resonant frequency at which 
the wavelength of the linear surface wave in the ferromagne- 
tic film is equal to twice the period of the variation, so that 
D(Q /2,fl)  = 0 is the Damon-Eschbach equation. Lineariz- 
ing the determinant of system (2 1 ) for Aq 4 Q, Aw 4 0 ,  

a D a D 
D,  = iz - A q  + - Ao=rtDq16+D,' Am, 

a rr a 

and solving Eqs. (2),  we find (24) : 

With P = 0, Eq. (24) corresponds to the linear case, de- 
scribed in Ref. 13. We now consider the reflection and trans- 
mission of surface magnetostatic waves in a ferromagnetic 
film with a periodically varying surface region of finite 
length L. According to Ref. 13, the transmission coefficient 
of a wave through such a structure is 

E (1-R,'R,') e x p  ( i6,L) T = - =  
E, 1-R,'R,' exp[i(6,-6,)  L ]  ' 

where E,, = IA + I *  1, = , = A is the input power of the wave, 
E = jA+ 1 2 1 , =  is the output power, and 

Figure 4 shows a parametric plot of E(E,,). For example, 
curve 1 in Fig. 4a is a plot of T(  ( A ,  1 2 )  versus E, while lines 
2-4 are plots of Tversus E/EO for various values ofE,. It can 
be seen from Fig. 4a that for certain power levels E,,>E, lines 
2 and 3 cross curve 1 twice. This result means that E(E,,) is a 
double-valued function. Figure 4b shows the functional de- 
pendence E(E,,). We see that it is unstable between points B 
and A .  In this region, a filter operating on the basis of surface 
magnetostatic waves will exhibit hysteretic properties. The 
physical reason is that the nonlinearity gives rise to a fre- 
quency shift, which causes a deviation from the Bragg condi- 
tion, which in turn changes the wave reflection and trans- 
mission coefficients of the finite periodic structure. 

Multistable properties may also be manifested in a more 
complex structure, nonlinear Fabry-Perot resonator. For 
surface magnetostatic waves, such a resonator would be 
made up of two periodic gratings separated by a resonator 
cavity of length D. The transmission coefficient through the 
resonator is" 

1 T,,, I = IT12/1 1 -R+RceZ'qDIr (28) 

where R =  are the reflection coefficients at a grating of finite 
length. Figure 5 shows the transmission coefficient / T,,, ( 
versus the input power near the resonant frequency, i.e., for 
qD~ . i rn ,  where n = 0, 1, 2, ... (in our case, we have n = 1 

FIG. 4. a-Transmission coefficient of the periodic structure for surface 
magnetostatic waves versus the output power E (curve 1) and E/E,, for 
various values of El, (curves 2-4; the points at which these curves cross 
curve 1 give the values of the output power E).  b-Output power of the 
surface magnetostatic waves as a function of the input power for a grating 
withA = 1 5 0 , u m , N = 2 0 A , H 1 , =  3 8 0 0 e , M 1 , =  140G, E =O.OI,and 
d =  lOpm. 
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and qD = 0.9 a). We are also assuming IR= 1 -0.9. I t  can be 
seen from Fig. 5 that between points Eo and E, the transmis- 
sion coefficient is a multistable quantity; again in this case, a 
hysteresis may appear. 

From Figs. 4 and 5 we can easily estimate the threshold 
power required for observation of multistable states. For a 
reflecting grating with I E I  = 0.01, A = 150 p m ,  L = AN, 
N = 20 periods, d = lOpm, Ho = 380 Oe, and Mo =. 140 G, 
this power is P,,, = W. These values are lower than the 
threshold power levels for the onset of three- and four-mag- 
non decays of surface magnetostatic waves.9 Consequently, 
such effects are easily achieved experimentally. In  addition, 
the threshold power levels for multistable phenomena de- 
pend on the value of the small paramter E. If E is sufficiently 
small, i.e., if the coupling between the surface magnetostatic 
wave modes is weak, multistability cannot set in regardless 
of the wave power levels. 

4. NONLINEAR MAGNETOELASTIC LOVE WAVES 

The nonlinearity of magnetostatic waves has a substan- 
tial effect on the interactin with other possible oscillations in 
a ferromagnetic film. In this section of the paper we consider 
the interaction of nonlinear surface magnetostatic waves 
with Love acoustic waves, which can propagate in a struc- 
ture consisting of a ferromagnetic film and a nonmagnetic 
substrate under the inequalities vr2 > u,, , where v,, is the ve- 
locity of a shear bulk acoustic wave in the substrate, and u,, is 
that in the film. The propagation of linear magnetoelastic 
waves in layered structures was studied in Refs. 15 and 16. It 
was found that when the frequencies of the magnetostatic 
and acoustic waves are equal these waves begin to interact 
effectively by virtue of magnetostriction. As a result, there is 
a restructuring of the spectra, "gaps" appear in the spectra, 
there is a change in attenuation, and so forth. If one of the 
interacting waves (e.g., the magnetostatic wave) is nonlin- 
ear; the dispersion characteristics may become dependent on 
the power of this wave, with the further consequence that the 
interaction will be restructured. 

The equations which serve as the starting point for a 
description of the magnetoelastic interaction are Eqs. ( 2 )  
and the elasticitiy equation 

a2u, 
(29) 

~a 
E,,, 10 -5W 

FIG. 5. Transmission coefficient of a nonlinear Fabry-Perot resonator for 
surface magnetostatic waves versus the input power. 

wherep, is the density of the ferromagnet, eZi are elements of 
the stress tensor, Re is the Hamiltonian of the elastic sub- 
system, and the summation is over i = x ,  y. In addition, the 
magnetoelastic energy must be added to expression (4)  for 
the Hamiltonian. 

We write a solution of Eqs. (2 )  and (29) for the poten- 
tial of the surface magnetostatic wave, taking the magneto- 
elasticity into account: 

where q,, is solution ( 7 ) ,  b is the magnetostrictive constant, 
and the elastic displacement is given by 

u,=B(cos xx+q sin xx) eiqU, (31) 

where B is the amplitude of the elastic displacement, 

Here c::' and c::' are the elastic moduli of the ferromagnet 
and the substrate, andp, is the density of the substrate. 

Solutions in the substrate and in vacuum are written in 
standard form. The boundary conditions are the continuity 
of the magnetostatic potential and of the normal component 
of the magnetic induction, the absence of elastic stresses at 
the ferromagnet-vacuum interface, and the continuity of 
these stresses at the ferromagnet-substrate interface. Calcu- 
lations lead to the following dispersion relation for nonlinear 
magnetoelastic waves: 

A,,A, = b * @ / M i  + AiN, + N, , (32) 

where 

N,= (y,-p2-1) [L, (l+2qd)eqd+L2e-9d 

A,, is the Damon-Eschbach determinant, and A, is the 
Love-wave determinant, given by 

(1) 
C44 x 

A, =cos ( x d )  - -- sin (xd) . 
c(') r 

44 

For thin ferromagnetic films we have 
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where P i s  the dimensionless power of the surface magneto- 
static wave. 

Expanding the determinants AD, and A, in small de- 
viations of the wave numbers and frequencies near a crossing 
point of the dispersion curves for the waves, we find a linear- 
ized dispersion relation. We are interested in studying this 
relation in two cases. 

1 )  Aq = 0: 

We see that even with Aq = 0 the quantity Aw has two val- 
ues. In the absence of a nonlinearity ( N ,  = N,=O) the 
expression in the radical is greater than zero. This result 
means that with Aq = 0 the dispersion branches for the 
acoustic and magnetostatic waves repel each other. Under 
the conditions N,,N,#O, and at  high power levels of the 
magnetostatic wave, the expression in the radical in (37) 
may go negative; i.e., the expression for Aw may become 
complex. 

2)  Aw = 0: 

Here again, for a single frequency ( Aw = 0 )  we can find two 
distinct values of Aq. Figure 6 shows a plot of A q d r S  versus 
P (for Aw = 0 )  and of the dimensionless frequency fl versus 
P for Aq = 0. We see from these results that the wave power 
restructures the wave repulsion regions and changes the 
group velocities of the waves. In principle, the waves may be 
bistable again in this case, and we may observe effects similar 
to those described in Sec. 3. 

5. CONCLUSION 

A theory has been derived here for the propagation of 
nonlinear surface magnetostatic waves in thin ferromagnetic 
films. The dispersion relation of these waves has been de- 
rived. It has been found that under certain conditions a 
change in the angle between the wave propagation direction 
and the external magnetic field may be accompanied by a 
change in the nonlinear frequency shift, which may change 
sign at certain angles. This effect leads in turn to conditions 

FIG. 6. a-The dimensionless quantity S = Agd versus the dimensionless 
power P ( A w  = 0 ) ;  b-the dimensionless frequency fL versus the powerp 
( A q  = 0).  

corresponding to the existence of longitudinal solitons of 
surface magnetostatic waves (envelope solitons). 

A nonlinear surface magnetostatic wave propagating in 
a ferromagnetic film with a periodic structure has bistable 
properties. The threshold power levels for the onset of this 
instability depend on the small parameter of the periodic 
structure and may be lower than the threshold power levels 
for the three-magnon decay of the wave. The propagation of 
nonlinear Love magnetoelastic waves has also been ana- 
lyzed. 

In  summary, this paper predicts the existence of some 
new effects, which have not been recognized previously, for 
nonlinear surface magnetostatic waves. Future experiments 
should resolve the validity of this theory. This effort may in 
turn involve further research in such an interesting field as 
the physics of nonlinear magnetostatic waves. 

APPENDIX 

F=FI1 ( p i - p z s  cos 0 - 1 )  e-pd+ F,' ( p 1 + p 2 s  cos O + l ) e p d  
+F3'(p1-p2s  cos 0 + l )  +F , ' (p1+pZs  cos 0 - I ) ,  ( A l )  

F3'=pILI '  ( l + p d )  epd+pI (3Lp'e3pd-3L,'e-3pd) 
+ p z s  cos 0 ( ~ ~ ' ~ d e p ~ + L ~ ' e - ~ ~ ~ + L , ' e ~ ~ ~ )  +LI'pdepd 

+ ( ~ , ' e - ~ p ~ + L , ' e ~ ~ ~ + L ~ ' e - ~ ~ ) ,  (A41 

F,'=pI L2' ( I - p d )  e -pd+p2s  cos 0L2'pde-pd-L2'pde-pd. (A5)  

Here L ,  - L, are complex functions which depend on IA I', 
k, , k,  ,0, and other parameters and which were found in Ref. 
17; 

p2=k2 cos2 0+k2  sin2 0 / ( 1 +  4 ~ x 0 ,  k,=k cos 0 ,  k,=k sin 0 .  

"Department of Pure and Applied Physics, University of Salford, Salford, 
England. 

' R .  W. Damon and J. R. Eschbach, J. Phys. Chem. Solids 19,308 ( 1961). 
'V. P. Lukomskii, Ukr. Fir. Zh. 23, 134 (1978). 
'A. K. Zvezdin and A. F. Popkov, Zh. Eksp. Teor. Fiz. 84, 606 (1983) 
[Sov. Phys. JETP 57, 350 (1983)l .  

'B. A. Kalinikos and A. N. Slavin, Fiz. Tverd. Tela (Leningrad) 26,3456 
( 1984) [Sov. Phys. Solid State 26,2077 ( 1984) 1. 

'B. A. Kalinikos etal . ,  Pis'ma Zh. Eksp. Teor. Fiz. 38,343 ( 1983) [JETP 
Lett. 38, 413 ( 1983)l. 

"B. A. Kalinikos, N. G .  Kovshikov, and A. N. Slavin, Zh. Eksp. Teor. 
Fiz. 94(2) ,  159 (1988) [Sov. Phys. JETP 67, 303 ( 1988)l. 

7A. N. Mednikov, Fiz. Tverd. Tela (Leningrad) 23, 136 (1981) [Sov. 
Phys. Solid State 23, 76 (1981)l .  

'A. G. Temiryazev, Fiz. Tverd. Tela (Leningrad) 29, 313 (1987) [Sov. 
Phys. Solid State 29, 179 ( 1987) 1. 

"A. D. Boardman and S. A. Nikitov, Phys. Rev. B 38, 11444 (1988). 
"'T. Wolfman and R. E. De Wames, Solid State Commun. 9, 171 ( 1971 ) .  
"V. I. Karpman, Nelineinye volny v dispergiruyushchikh sredakh (Non- 

linear Waves in Disaersiue Media, Pergamon, Oxford, 1975), Nauka, 
MOSCOW, 1973, p. i j 3 .  

- 
"A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T.  P. Shen, Phys. 

Rev. B 34, 8273 (1986). 
"Yu. V. Gulyaev, S. A. Nikitov, and V. P. Plesskii, Fiz. Tverd. Tela 

(Leningrad) 23, 1231 (1981) [Sov. Phys. Solid State 23,724 ( 1981)l; 
Radiotekh. Elektron. 26, 2282 (1981 ) .  

"H. Kogelnic and C. V. Shank, J. Appl. Phys. 45,2327 (1972). 
"H. Mattews and H. van der Vaart, Appl. Phys. Lett. 15, 373 ( 1969). 
'"R. E. Carnley, J .  Appl. Phys. 50, 5272 (1979). 
I7A. D. Boardman el al.,  Jpn. J. Appl. Phys. 37, L237 (1988). 

Translated by Dave Parsons 

1243 Sov. Phys. JETP 68 (6),  June 1989 Boardman etal. 1243 


