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The quantum motion of a particle with dissipation in a sloping periodic potential simulating the 
dynamics of Josephson junctions is considered. The idea of band motion of a particle executing 
Bloch oscillations is valid only for finite time scales, determined by the dissipation. At  late times 
interference of the Bloch oscillations occurs. In the presence of an alternating current of 
frequency close to the Bloch-oscillation frequency w, there are no resonance singularities on the 
current-voltage characteristic. 

I. INTRODUCTION 

At the present time many authors are actively investi- 
gating dissipative quantum mechanics. l 4  In large measure 
this interest has been stimulated by progress in the prepara- 
tion of small-scale Josephson junctions, the dynamics of 
which can be described starting from ideas about a quantum- 
mechanical particle with friction. An important advance in 
the theory of these processes was made by Caldeira and Leg- 
gett,' who derived the effective action. Use of the latter has 
made it possible to make a systematic study of the interac- 
tion of a quantum particle with a thermostat. 

As is well known, the properties of a Josephson junction 
are determined by the dynamics of a quantum particle mov- 
ing in a sloping periodic potential, the slope of which is pro- 
portional to the given current across the junction. This po- 
tential, as a rule, is quasiclassical, and the ordinary 
Josephson effect corresponds to classical motion of a particle 
in this potential. Quantum effects, associated with the finite 
transmissivity of the barrier, have been confirmed experi- 
mentally5 and are in agreement with the theory of Refs. 1-3. 
The phenomenon of the discreteness of the energy levels in 
the individual wells has also been confirmed in experiments 
on the stimulation of the decay of the current state by an 
electromagnetic field.6 The data obtained are in good agree- 
ment with the theory of Refs. 7 and 8. Here, theoretical 
allowance for the normal electrons that lead to the dissipa- 
tion effects yields a correct description of the observed pat- 
tern. 

The adequacy of the description of the dynamics of Jo- 
sephson junctions by means of the well developed apparatus 
of dissipative quantum mechanics has now been reliably es- 
tablished. This gives justification for considering other - - 
quantum-mechanical effects arising in the motion of a parti- 
cle in a sloping periodic potential. One such effect is band 
motion of the particle in this potential, if the slope of the 
potential is sufficiently small that the repulsion of levels in 
neighboring wells outweighs the probability of tunneling 
between them. Of course, in this case, in order that the width 
of the band of allowed energies not be too small the potential 
should not be strongly quasiclassical. The problem of the 
band motion of a particle is ofinterest when the dissipation is 
not very great, so that the energy losses in the sub-barrier 
motion of the particle between neighboring minima are 
smaller than the distance in energy to the next band. 

In Refs. 9 and 10 it was shown that, because of band 
motion, the current-voltage characteristic (CVC) of a Jo- 
sephson junction in the limit of small current and dissipation 

possesses characteristic singularities (see also Ref. 1 1 ) . In 
addition, it is extremely interesting to study the effect on the 
physics of Josephson junctions of Bloch oscillations of a par- 
ticle in a sloping periodic potential in the presence of dissipa- 
tion. In the absence of friction, the Bloch oscillations are 
undamped oscillations of the particle velocity with a fre- 
quency proportional to the slope of the potential. '' 

In the present paper, as in Refs. 9 and 10, we consider 
the dynamics of Josephson junctions on the basis of ideas 
about the band motion of a particle. The limit of a narrow 
band and weak friction is investigated. Under the action of 
an oscillatory field of frequency equal to a multiple of the 
Bloch frequency the resonance singularities on the static 
CVC are smoothed out in a finite time. This happens because 
the motion of the particles, leading to migration of the pack- 
et through the lowest band, is effected via the high-lying 
states. Particles are thrown into these states as a result of 
incoherent interaction with the thermostat. 

In this paper we also find that the CVC of a Josephson 
junction in the low-current region under consideration has a 
substantial dependence on the magnitude of the dissipation. 

2. QUANTUM INTERFERENCE OF BLOCH OSCILLATIONS 

In the case of a Josephson junction the role of the coor- 
dinate is played by the phase difference 2 p  across the junc- 
tion. With neglect of dissipation the Lagrangian has the form 

where the potential energy is determined by the relation 

Here the Josephson energy is EJ = Ic/2e and F = I /e, where 
I is the current across the junction. The role of the mass is 
played by the quantity m = C/e2 + 3EJ/8A2, where Cis the 
capacitance of the junction and 2A is the magnitude of the 
gap in the spectrum of the superconductor.' The potential 
V ( p )  is depicted in Fig. 1. Owing to the small transmissivity 
of the potential barriers the ground-state level forms a nar- 
row band of allowed energies in the periodic potential: 

ca 

nnk 

n=2 

which is indicated by the solid line in Fig. 2. In the limiting 
case that we are considering, the width S of the band is small 
in comparison with R, = 2(EJ/m ) ' I 2 ,  the distance in ener- 
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FIG. 1. 

gy to the next level (a, 9 E, ). In this single-band approxi- 
mation each succeeding term in Eq. ( 3 )  is smaller than the 
previous one by a factor proportional to the transmission 
coefficient of the barrier. 

In the normalization chosen in Eq. ( 3 )  the quasimo- 
mentum k may be called the quasicharge." Umklapp pro- 
cesses then correspond to passage of a Cooper pair with 
charge 2e across the junction. Taking the quantum-mechan- 
ical expectation value of the Josephson relation eV = dq, /dt 
gives for the voltage across the junction the formula 
V  = a&( k ) / a k .  The voltage can take various values, depend- 
ing on the position of I; in the Brillouin zone. For a sloping 
potential, in accordance with the quasiclassical dynamics of 
the particle, it is necessary to replace k by + It. When 
formula ( 3  ) is taken into account this yields the Bloch oscil- 
lations of the voltage: 

n6 5~7182 
V = -sin oBt + --sin 2oBt+ . . . 

2e 2e 
( 4 )  

Here we have introduced the Bloch-oscillation frequency 
w, = ?rI/e. The damping of these oscillations in the absence 
of dissipation is proportional to the magnitude of the Zener 
breakdown and can be made very small in order not to de- 
grade the oscillations over the period of the experiment. 

The total direct current I  across the junction is com- 
posed of the tunneling current between the edges of the junc- 
tion and the charge-accumulation current CdV/dt at the ca- 
pacitor. Taking Eq. (4)  into account we can obtain the time 
dependence of the charge q ( t )  passing between the edges of 
the junction: 

In the narrow-band limit the second term gives rise to small 
smooth charge oscillations. It is important to learn how the 
Bloch oscillations are reflected in the properties of Joseph- 

FIG. 2. 

son junctions in the presence of dissipation. Dissipation in a 
Josephson junction results either from shunting micro- 
short-circuits along which ohmic current can flow or from 
impregnation of the superconducting edges of the junction 
by islands ofthe normal phase. Between these islands tunnel- 
ing links occur, corresponding to the addition to the Lan- 
grangian ( 1 ) of fluctuation terms proportional to cosq and 
sinq, (Refs. 2, 3 ) .  The corrections to the Lagrangian that 
correspond to shunting short circuits do not possess period- 
icity in the phase and, from which it follows that the quasi- 
momentum ceases to be an exact quantum number. 

Terms of the cos q, type halve the Brillouin zone in Fig. 
2, making it extend from - e/2 to e/2 .  The umklapp pro- 
cesses now correspond to a jump of a normal particle of 
charge e. Correspondingly, the spectrum will be represented 
by the solid and dashed lines in Fig. 2, and coherent motion 
of the particle through the original band from - e  to e, giv- 
ing Bloch oscillations of frequency w,, becomes impossible. 
Nevertheless, coherent motion within the reduced band be- 
tween - e/2 and e/2,  corresponding to even n in formula 
( 3 ) ,  is not destroyed by a perturbation of the cos q, type. 
Accordingly, voltage oscillations with a frequency equal to 
an even multiple of w ,  become damped only when quantum 
tunneling effects are taken into account.13 For such oscilla- 
tions the harmonic of largest amplitude is given by the sec- 
ond term in Eq. ( 4 ) .  

Thus, in a real Josephson junction the voltage oscilla- 
tions with a frequency equal to a multiple of w, damp in time 
with damping rate y,. However, this does not in itself imply 
that Bloch oscillations cannot affect the properties of a Jo- 
sephson junction. In a system of a large number of mono- 
chromatic oscillators with frequencies continuously distrib- 
uted about w ,  the ensemble-averaged bias damps in time 
with damping constant y,. Nevertheless, the spectral density 
of the noise, together with the response function describing 
the response to an oscillatory field of frequency w,, has a 
resonance character, with a width of the order of that of the 
distribution of the frequencies of the oscillators about w, .In 
our case, the Bloch oscillations of an individual particle in 
the band can serve as the analog of each such oscillator. In 
different language, an individual oscillator of frequency w, 

corresponds to a process of periodic accumulation of charge 
and of tunneling of a Cooper pair of charge 2e (Ref. 9 ) .  

In the present paper it is shown that resonance singular- 
ities of the noise spectral density in the steady state do not 
exist, being completely smoothed out over a time of order 
y; I .  In the limit T>S we have y, = y I ( 6 / T ) , / 2 4 .  In the 
language of the system of oscillators this corresponds to a 
well defined interaction of the phases of their oscillations 
that is established in a time y, '. In this sense we can say that 
the reason for the absence of resonance effects is quantum 
interference of the Bloch oscillations, leading to their mutual 
extinction. The effect is a quantum one in the sense that the 
relaxation time y; ' tends to infinity in the limit of high tem- 
peratures. In this case, the quasimomentum distribution 
function of the particles satisfies a differential equation of 
the Fokker-Planck type. At times t  2 y; the quasimomen- 
tum description is not correct. As we shall see, the situation 
with the Bloch oscillations differs substantially from the or- 
dinary time-dependent Josephson effect, when steady-state 
Shapiro steps are present. 
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In the following sections we shall analyze in more detail 
the general statements made here. 

3. EQUATION FOR THE DENSITY MATRIX 

The dynamics of a particle interacting with a thermo- 
stat can be described with the aid of a density matrixp(p, @, 
t )  (Refs. 14,15), which depends on the time and two coordi- 
nates. Its value at the time tf can be expressed in terms of its 
value at the time ti by means of a functional integral: 

The functional integral in Eq. (6 )  is taken over all values of 
p ( t )  and @ ( t )  in the time interval between ti and tf. The 
action A [p ,  @] is written in the form 

where 
ti 

is the action of the particle in the absence of dissipation. 
The functional A,[p, @] describes the interaction of a 

quantum particle with the thermostat. In an ideal Josephson 
junction at zero temperature there are no dissipation mecha- 
nisms, since in superconductors in this case there are no nor- 
mal excitations. In real junctions, however, as follows from 
experiment, there always exists a residual resistance. The 
reason for this may be the presence of impregnations of nor- 
mal phase in the superconducting edges or the existence of 
shunting micro-short-circuits of normal metal. In the pres- 
ence of impregnations of normal phase in the superconduct- 
ing edges the quantity A,[p, @] is given by the expression 

tt t 
n 2  

iA2[cp. B I = -  - ar d t  J dt. (X ( t - t . )  cor l c p  ( t )  - c p  ( t i )  ] 
1 ,  1' 

where a ,  = 2/n-e2RT, and the quantity R ,. is the tunneling 
resistance between regions of normal phase. The function 
K ( t )  is equal to 

x 

Shunting short circuits of normal phase lead to dissipation 
that can be described by the same expression ( 8 )  with the 
substitutions 

where R ,  is the resistance of the short circuits, and 

The expression (6)  for the density matrix, together with 
Eqs. ( 7 ) ,  ( I ) ,  and (8 )  for the action, makes it possible to 
investigate the dynamics of a quantum particle with friction. 

Below, we shall confine ouselves to treating the physi- 
cally most interesting limiting case of a narrow allowed band 
with a width 6 much smaller than the plasma frequency 0,. 
For the low-lying allowed bands the frequency R, is equal to 
the spacing between the bands. 

4. EQUATION FOR THE DENSITY MATRIX IN THE 
REPRESENTATION OF QUASILOCALIZED STATES 

In the potential V(p)  determined by Eq. (2 )  quasiloca- 
lized states appear (see Fig. 1 ). The lifetime of such states is 
long in proportion to the smallness of the Zener tunneling 
into the neighboring band. The presence of friction also re- 
duces the lifetime of these states. 

The wavefunctions of the quasilocalized states satisfy 
the equationI2 

w h e r e ~ ( k )  is the spectrum of the lowest allowed band, given 
by Eq. ( 3  1; here, for convenience, we have changed to the 
quantity k = k /e, which varies between the limits - 1 and 
+ 1. The wavefunctions Y, ( p )  can be represented in the 

formI2 
1 

i 
x exp [ i n k ( n - N )  - F j  dk ,e  (k,) 1, ( 13) 

0 

where the Wannier functions w ( p )  are normalized to unity, 
and, in the narrow-band approximation, 

w (cp) = (rnQ,ln)'L esp ( -mQ, , (p2 /2) .  

We expand the density matrixp in the eigenfunctions $, 

As is well known, the magnitude Vof the voltage across 
a tunnel junction is proportional to the rate of change of the 
phase p .  In our case the corresponding quantum-mechanical 
formula acquires the form 

where the angular brackets denote the quantum-mechanical 
expectation value. Below we shall neglect the dissipation 
mechanism associated with shunting short circuits. 

To obtain the equation for the density matrixp we make 
use of the standard method of expanding the exponential in 
Eq. ( 6 )  in powers of A ,  [ p ,  @].  As a result, in first order in 
the quantity a ,  we obtain16 

m 

As is well known, in the expansion of the exponential in 
Eq. ( 6 )  in powers of A? [p ,  @], in first order in the interac- 
tion constant there appear not only the terms that lead to Eq. 
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( 16) but also the so-called incoherent terms,4 which, at suf- 
ficiently low temperatures, decay by a power law at times 
S- ' < t,. - ti g (a,S) ' and exponentially at times 
t,. - ti % ( a , 6 )  - '  (Ref. 14). As well as the incoherent terms, 
terms of the from a, [exp(i~Ft,.) - exp(irFt i ) ] ,  oscillat- 
ing with the Bloch frequency w,, appear. The question arises 
as to how these oscillating terms behave at large times. To 
answer this question it is necessary to sum all the terms in the 
expansion of the right-hand side of Eq. (6 )  that are propor- 
tional to a", '(t,. - ti)"exp(irFtLi ). 

We shall confine ourselves to investigating the simplest 
case of sufficiently high temperatures TSS. In this tempera- 
ture range the incoherent terms damp with time as T -', and 
we shall not consider them below. The oscillating terms of 
interest are obtained by standard expansion of the right- 
hand side of Eq. (6)  in powers of A,[p,  @]. As a result of 
rather long calculations, keeping only the terms proportion- 
al to a; (t,. - t, ) "  and a", ' (tf - ti ) "  we obtain 

x exp (-inFt,)  - I 

Equation (6)  is reduced to a differential equation only when 
terms of the latter two types are neglected. 

The relaxation rate y, for arbitrary temperatures is de- 
termined from Eq. ( 16) : 

In Eq. (17), corresponding to the high-temperature limit 
TpS, will have y ,  = 2aaTT.  In the same limit we obtain for 
the quantity y, the expression 

Thus, the damping of the nondiagonal elements of the den- 
sity matrix is determined by two times: y; ' and y; '. 

Equations ( 17) and ( 19) were obtained with the use of 
the high-temperature expansion of the kernel (9) :  

The relaxation rate y, arises from the third term in formula 
(20). 

Thus, the odd nondiagonal elements Zp{ + ,, + , of the 
N 

density matrix damp exponentially in time with damping 
times y;  ' and y; '. The damping of the even nondiagonal 

elements Zp< + ,, is due (in the absence of micro-short-cir- 
N 

cuits) to intraband-tunneling effects. '" 
To calculate the voltage across the junction we shall 

need the transition-matrix elements of the quantity p 
between states Nand M. Using Eqs. (3)  and ( 13) we obtain 

From Eqs. ( 15) and (21') we find the rate of change of the 
coordinate p: 

cc 

To first order in the parameter a,, using Eq. ( 16) we obtain 

It follows from Eqs. ( 17) and (22) that in the absence 
of a shunt resistance and with neglect of interband transi- 
tions undamped oscillating components can appear in the 
voltage across the junction. Only the even harmonics of 
e V(t), proportional to 

sZN cos ( 2 n N F t )  -6 ( m 6 )  2N-' cos ( 2 n N F t )  

can be weakly damped. In the narrow-band case that we are 
considering the effect is relatively small in the transmissivity 
of the barrier. 

In the leading approximation we find from Eqs. (22) 
and (23) the value of the velocity'": 

i.e., in this approximation the velocity of the particle is inde- 
pendent of the temperature and inversely proportional to the 
magnitude of the slope of the periodic potential. 

The approach developed in this section is based on per- 
turbation theory in the parameter a,. The spacing rF 
between neighboring levels of quasilocal states in this ap- 
proach should exceed the width of these levels, which is pro- 
portional to the quantity y,. From this follows the region of 
applicability of Eq. (24): y ,  gF. In addition, there exists a 
bound on the region of applicability of Eq. (24) on the side of 
high slopes F (high current). This is due to the fact that for 
large slopes of the potential the transmissivity of the barrier 
begins to depend on the quantity F. Allowing for this, the 
region of applicability of Eq. (24) is" 

5. THE DENSITY MATRIX IN THE BAND APPROXIMATION 

The above use of quasilocalized states made it possible 
to obtain results in the region of moderate values of the pa- 
rameter F (the slope of the potential). In the region of small 
values of the parameter F such an approach becomes incon- 
venient because of the necessity of summing all the terms of 
the perturbation theory in the parameter y , /F.  
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To avoid these difficulties we shall make use of another 
method, based on the use of the quasimomentum representa- 
tion. The spectrum of the lowest band is given by Eq. ( 3 ) ,  
and the Bloch wavefunctions, normalized to 2 d ( k  - k  '), 
are determined as 

vk(rp) =n'" s ( l p - n ~ )  exp   ink^). 
N 

The density matrix p in this representation takes the 
form 

I 

dk dk ,  
p ( t . g , t ) =  5-i;;-Pk.l(t)%(v)cp*,.(@) 

- 1  

Substituting the expression ( 2 6 )  for the density matrix into 
Eq. ( 1 5 ) ,  for the magnitude of the velocity we obtain the 
expression 

To obtain an equation for the density matrix pf ,  we expand 
the quantity exp(iA) in Eq. ( 6 )  in powers of A, and FSpdt .  
As a result, in first order in both these parameters we ob- 
tain" 

m 

1 - k-sgn k ] + p k S , .  . .K(-2& ( k )  ) x [ 2.2 ( k , )  -&-iv 2e ( k )  -e+iv 

x e x ~ [ 2 i t , ( & ( k ) - e  ( k t ) )  I - exp[2 i t i ( c  ( k )  -e ( k , ) )  ] 
2i( i , - t i )  [ E  ( k ) - E  ( k , )  ] 

In the absence of a nonlocal part of the action A,, ac- 
cording to Feynman and Hibbs,15 in the derivation of the 
equation for the density matrix we can take the initial time t, 
and final time tf to be infinitesimally close. Then we obtain 
an exact differential equation for the density matrix. How- 
ever, because of the nonlocality of the action A,, in the quasi- 
momentum representation, as in the representation of quasi- 
localized states, it is not possible, in the general case, to 
derive a closed differential equation. Inasmuch as in Eq. 
( 2 8 )  we have not taken into account relaxation processes 
occurring with rate y,, the equation obtained from it for the 
diagonal part of the density 

a a nZaT k - s g n  k (- at  + P - ) p l ( t ) = - - [ ~ k - s r n k ~ ( - 2 e ( k ) ) -  dk 2 

is valid only for a limited time interval t g  y; I .  

At  high temperatures T S S  the relaxation rate y ,<yl  

and Eq. ( 19) can be used to calculate the static part of the 
CVC. At lower temperatures this equation gives the correct 
results in two cases: large potential slope F$a ,S ,  and small 
slope F<a ,S .  

I t  follows from Eq. ( 2 8 )  that it is possible to write a 
closed equation for the diagonal part of the density ma- 
t r i ~ . ' ~ . "  

In the limit F - 0  the relaxation rate y, also tends to 
zero, while the rate of the relaxation processes determined 
by Eq. ( 2 9 )  remains finite, which makes it possible to use 
Eq. ( 2 9 )  to find the CVC. For F$a,S ,  Eq. ( 2 9 ) ,  as will be 
shown below, permits one to obtain the correct answer (for- 
mula ( 2 4 )  for the CVC. 

According to Eq. ( 2 7 ) ,  to find the velocity of the parti- 
cle it is necessary to know also the nondiagonal part of the 
density matrix. The equation for this part can also be ob- 
tained from Eq. ( 2 8 ) ,  and as a result the expression ( 2 7 )  for 
the velocity takes the form 

where the renormalized spectrum E(k )  is determined by the 
expression 

rn 

T ( k )  = E  ( k )  exp -n2aT - 
-m 

[ ' d: r 2 - 4 e 2 ( k )  

Equation ( 2 8 )  permits one to obtain in the expression ( 3 0 )  
only the term of first order in a ,  in the expansion of the 
exponential in ( 3  1 ) . 

Thus, the term linear in t in  the expression ( 2 8 )  for the 
velocity has been cancelled, and, with logarithmic accuracy, 
Eq. ( 3 0 )  coincides with the usual expression for the current, 
in which the renormalized expression for the spectrum now 
appears. 

Henceforth it is convenient to go over to the new func- 
tions 

k - s g n  k I - a g n  k 
w k ( t )  = ~ k k ( t )  +pk-sgn k ( t )  Y k ( t )  = ~ k k ( ~ ) - p k - s g n  k ( t )  

I t  follows from Eq. ( 2 9 )  that W, ( t )  is an arbitrary function 
of the variable k - Ft: 

This property of the function W is destroyed by intraband- 
tunneling quasimomentum-umklapp process.I3 Taking the 
terms proportional to a;., a..F, and F' into account gives the 
expression for Y,  ( t )  given in the Appendix. 

We shall express the density matrix p i ,  ( t )  in terms of 
the matrix p;. Comparing the two representations for the 
density matrix (Eqs. (14) and ( 2 6 ) ) ,  we find 

i 
Xerp[ inF(N-B) i+ink ,M- inkN - - j d k 1 e  ( k ' )  1. 

k !  
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From this we obtain an expression for the function Y, ( t ) :  

(35) 

As was shown above, the quantities in the curly brackets in 
Eq. (35) damp exponentially in time with damping con- 
stants y, and y,, and this demonstrates once more the inap- 
plicability of the quasimomentum approximation (Eq. 
(29) ) at large times. 

6. DEPENDENCE OFTHE VELOCITY ON THE SLOPE OF THE 
POTENTIAL 

As we noted above, to find the static part of the CVC it 
is possible to make use of expression (30) in the quasimo- 
mentum representation. In this expression the diagonal part 
of the density matrix satisfies the equation 

X {Yh[K(2c(k))+K(-2% ( k ) )  l + K ( 2 a ( k ) ) - K ( - 2 e ( k ) ) ) ,  

(36) 
given in the Appendix. Solving Eq. (36) and substituting its 
solution into Eq. (30), we obtain 

1 

dk ,  - S ( k 1 )  

where the function F ( k )  is defined by the formula 
k 

~ ( k ) =  erp{-% d k l [ ~ ( 2 r ( k , ) ) + ~ ( - 2 r  ( k , )  I}. (38) 
0 

The expression (37) differs from the corresponding result of 
Ref. 16 only in that Eq. (37) contains the renormalized spec- 
trum. 

At zero temperature and small values of the slope F, 
values of k  and k ,  lying in a narrow neighborhood of the 
point 4 are important. The integral J determining the renor- 
malization of the spectrum, equal to 

diverges logarithmically at large values of the energy E and 
must be cut off by a value E = w, - R, . For T = 0, 

e  de 
I=! - 

1 
- --In 1 

e2-4e2(k)  n2 6 cos ( n k )  

From Eqs. ( 3 1 ) and (40) we find the renormalized value of 
the spectrum: 

Substituting the value found for the spectrum E(k )  into Eq. 
(37) and taking into account that the quasimomenta k  and 
k ,  are close to the value 4, we obtain 

nZaT6 n6 aT 

x e x p  - [ 2F ( I+  aT/2)  (c) ( z  I Z 1 '+a,-z 

(42) 

Calculating the integrals appearing in this formula, we find 
the value of the velocity: 

where C = 0.577 is the Euler constant. 
Thus, allowance for the terms of the next orders in a, 

leads to a change of the dependence of the velocity on the 
magnitude of the slope F and to replacement of the band- 
width S by its renormalized value 8: 

For large values of the slope of the potential, in the re- 
gion a,$ coth (&/TI g F, the velocity can be found from Eq. 
(36) by perturbation theory: 

-=-- 2naT j dk,r ( k , ) ,  a Y k  

dk  F o  

With logarithmic accuracy, allowance for the terms of the 
next higher orders in a ,  leads to the replacement of the 
bandwidth 6 by its renormalized value 8. 

7. EFFECT OF THE DISSIPATION MECHANISM DUE TO 
SHUNTING SHORT CIRCUITS ON THE DYNAMICS 

The presence of short circuits of normal metal shunting 
the Josephson junction can be taken into account using the 
action A ,  [Eq. (8)  1,  in which one must make the substitu- 
tions ( 10) and ( 1 1 ). When only this dissipation mechanism 
is present, in the representation of quasilocalized states the 
equations for the density matrix have the form 

Summing over N in the right- and left-hand sides of this 
equation with a fixed difference N - M, we obtain 

The quantities Ep: tL ,  determined by Eq. (47), damp ex- 
N 

ponentially in time, and this leads, according to Eq. (20), to 
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damping of the oscillatory part of the voltage. From Eqs. 
(20) and (46) we find the velocity: 

From comparison of Eqs. (22) and (48) it can be seen 
that in the region of large slopes of the potential the two 
dissipation mechanisms give the same dependence of the ve- 
locity on F. The same result was obtained in Refs. 9 and 10. 
For the dissipation mechanism considered here both the odd 
and the even elements of the density matrix damp in time. 

8. EFFECT OF A HIGH-FREQUENCY FIELD ON THE 
DYNAMICS OF A QUANTUM PARTICLE 

The action of a high-frequency field on a quantum par- 
ticle can be described by means of an extra term 

in the potential ( 2 ) ,  where F, = I,/e, I, being the amplitude 
of the alternating current. 

Expanding the right-hand side of Eq. (6)  in I, as well, 
in analogy with Eq. (16) we obtain 

The last term in Eq. (50) describes the resonance effect of a 
high-frequency field on the dynamics of a quantum particle. 
In a potential with a floor this term leads to a resonance at 
frequencies w close to TF. In our case, however, the summa- 
tion between infinite limits leads to the disappearance of this 
effect. '' 

In the same way that we obtained Eq. ( 17) as an exten- 
sion of Eq. (16),  we can obtain the extension of Eq. (50). 
Without taking into account the relaxation occurring with 
rate y,, we obtain 

I-(-1IL + inLF, cos wt ] p:+, 
2  N 

+pcL+l exp (-inFt) I .  (51) 

Equation (5 1 ) is valid in the approximation T s  S and over 
times t <  y; ' .  The undamped right-hand side in Eq. (51) 
leads to a resonance effect of the oscillatory field on the 
CVC, and also to a resonance in the spectral density of the 
correlation function of the voltage."' However, over times 
t 2 y; ' all these effects vanish exponentially with time be- 
cause of the damping of the right-hand side of Eq. (5  1 ). 

We note that this phenomenon is essentially related to 
the infinite extent of the periodic part of the potential energy 
(2) .  This does not occur in problems pertaining to a Stark 

ladder (Fig. 1)  in real crystals," near the boundaries of 
which the present approach is inapplicable. 

9. CONCLUSION 

We have investigated the dynamics of a quantum parti- - 
cle interacting with a thermostat. We have found that the 
equation of motion (29) for the density matrix, obtained in 
first order in the parameters F and a,, is valid only over a 
restricted time interval. This equation gives an incorrect de- 
scription of the behavior of the system at large times, since it 
does not contain the relaxation rate y,. At large times t 2 y; ' 
the nondiagonal elements of the density matrix damp expon- 
entially in time, and this leads to the disappearance of the 
resonance singularitie's on the CVC. 

In a time y; ' restructuring of the kinetics of the system 
occurs. The flux of particles through the lowest allowed 
band (the first term in the right-hand side of Eq. (27) ) van- 
ishes at times t > y; '. The total particle flux involves pro- 
cesses of transition to higher-lying states, represented by the 
wavy lines in Fig. 1. These processes occur on account of 
incoherent interaction with the thermostat and ensure the 
effective motion of the particle density through the lowest 
band. 

APPENDIX 

When e ~ p { i A [ ~ ,  @ I )  in Eq. (6 )  is expanded in powers 
ofA, and F, terms of two types arise: incoherent terms that 
decay by a power law over times tf - t ,  4 (max{a,.S;T)) 
and decay exponentially at large times, and terms regular in 
tf - ti. Some of the latter reduce to a renormalization of the 
spectrum ~ ( k ) .  Omitting the incoherent terms and perform- 
ing the renormalization of the spectrum, after rather lengthy 
calculations to second order in the parameters a, and F w e  
obtain, besides Eq. (32) for the function W, ( t ) ,  an equation 
for the function Y,  ( t )  : 

x { Y k ( t t )  [ K ( 2 &  ( k ) )  +K(-2e ( k ) )  I 
+wh( t i )  LK(2e(k))-K(--2e ( k ) ) ] }  

2 
{ Y k ( t i )  [ K ( ~ E :  ( k ) )  +K(-28  ( k ) )  l 2  

n2aT + W,(t , )  [K2(2& ( k ) )  -KZ(-2e ( k ) )  I )  + - F (+ti)' 
2 

X { % [ ~ ( 2 e  ( k ) )  +K (-2i  ( k )  ) ] 

+ a wk(t') [ K  (2, ( k )  ) -K (-2i  ( k )  ) 1 
ak 

a a  ( k )  
+ Y k ( t i ) p  

dk 
[K' (2e ( k ) )  -K' (-2e ( k ) )  ] 
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where K ' ( x )  = dK /dx. 
In the present model, with viscous friction but without a 

shunt resistance, the process of interaction with the thermo- 
stat changes the quasimomentum k by k - sign k. As a re- 
sult, the symmetric combination W, ( t )  is insensitive to the 
relaxation processes, and W ,  ( t )  = W( k - Ft) . 
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