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A theory of the wetting of a solid substrate by a dense liquid is derived by an approach 
incorporating the layered short-range order and capillary fluctuations at the boundary of the 
wetting film. At temperatures low in comparison with the capillary energy, a quasismectic 
ordering of the liquid in the film causes incomplete wetting. As the temperature rises, capillary 
fluctuations destroy the order in the film, causing a phase transition to a state of complete wetting. 
This phase transition is characterized by a large-fluctuation critical behavior. A universal 
expression for the transition temperature provides a simple criterion for complete wetting. A 
description is found for the stratified growth of liquid films. This description is used to analyze 
data on the adsorption of helium on hydrogen. Surface melting is analyzed as a complete wetting 
of the surface of a crystal by the native melt. A condition for surface melting is derived. The 
anisotropy of the effect is studied. The relationship between surface melting and the roughening 
transition is analyzed. 

1. INTRODUCTION 

In the limit in which the pressurep of a vapor in contact 
with a substrate approaches the saturation point p,, the 
thickness h of a liquid film adsorbed on the substrate may 
either remain finite or grow without bound. These two possi- 
bilities correspond to states of incomplete and complete wet- 
ting of the given substrate by the liquid. The transition 
between these two states-the wetting transition-has recently 
attracted much in te re~ t . "~  

In the case of complete wetting the first-order vapor- 
liquid transition occurs continuously (in a system with a 
substrate) and is accompanied by anomalies in surface prop- 
erties. Correspondingly, the complete wetting of some face 
of a crystal by the native melt leads to barrier-free melting of 
the crystal from that face through the formation and un- 
bounded thickening of the molten film on this face, when the 
temperature T approaches the triple-point temperature T,. 
This surface-melting phenomenon has also attracted much 

As the equilibrium line is approached, a wetting film 
can thicken either continuously or through first-order layer- 
ing transitions hJ = jd,,-hJ + ,  = ti+ 1)d,, where do is the 
thickness of a monolayer. Layered growth is characteristic 
of crystalline films (Frank-Van der Merwe epitaxyb), but it 
has recently been observed during the adsorption of liquid 
films of ethylene on graphite,' of helium on hydrogen,'r9 and 
of ethane of graphite. 

All of these effects can be characterized conveniently2 
by introducing a dimensional correction V(h) to the free 
surface energy of the wetting film: V(h) -0 as h- CC. This 
correction serves as the potential of the interaction between 
the boundaries of the film. It is easy to see that incomplete 
wetting is equivalent to the existence of negative minima of 
V(h ) (corresponding to a bound state of the boundaries). A 
wetting transition occurs when such minima disappear. The 
increase in the thickness of the film toward the equilibrium 
line (Ap-0) is determined by a minimization of 
V(h) + Apn,h, where n, is the density of the homogeneous 
liquid, and Ap is the difference between the chemical poten- 

tials of the liquid and of the coexisting phase 
[Ap = Tln(p,/p) in the case of wetting from vapor and 
Ap - T, - T in the case of surface melting, where T is in 
energy units]. Layering transitions occur if the thicknesses 
h, = jd, correspond to minima of V(h) which are separated 
by potential barriers. 

Of particular interest in wetting phenomena are effects 
of fluctuations of the film boundaries,"-" which are de- 
scribed in the case of a solid substrate by the capillary Hamil- 
tonian 

where a is the stiffness of the fluctuating boundary, x is the 
radius vector in the plane of the substrate, and the seed po- 
tential V(h) is calculated for a uniform film (cf. Refs. l ,  l l, 
16, and 17). Fluctuations give rise to some extremely unu- 
sual properties of the wetting in the Morse 
potential 

(6, is the correlation length of the bulk system), which 
arises when the liquid-vapor system is described by a Landau 
functional. ' I 3 '  Fluctuations also lead to a termination of the 
lines of layering transitions at critical points (T,,.,A,uj) of 
the Ising type.15 

In the modern theory of wetting2 it is usually assumed 
that the potential (2 )  and the contribution oflong-range van 
der Waals forces 

I;,,, (h) =A/2h2 ( 3  

exhaust the qualitative features of simple systems. It was 
recently shown that two qualitatively new types ofpotentials 
V(h) exist in film of simple liquids: a long-range attraction 
of a boundary to a substrate due to hydrodynamic correla- 
tions16 and an oscillating potential which arises in dense li- 
quids by virtue of a well-developed stratified short-range or- 
der." These correlation interactions can cause qualitative 
changes in the wetting picture near both the critical point 
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and the triple point. In particular, in a situation with a hy- 
drodynamic attraction the wetting is always incomplete in a 
sufficiently small neighborhood of the bulk critical point T, 
(Ref. 18). 

In the present paper1' we examine the effects of smectic 
short-range order of a dense liquid and of capillary fluctu- 
ations in wetting. In particular, we show that the interplay of 
capillary fluctuations and an oscillating potential gives rise 
to a new example of a large-fluctuation wetting transition. 
We derive simple criteria for complete wetting and for sur- 
face melting for substances with strong binding. We describe 
some possible layering effects during the adsorption of a liq- 
uid. 

2. GENERAL FORM OFTHE SURFACE POTENTIAL 

It is shown in Ref. 17 that the Landau model directly 
describes a liquid only in the critical region, where the corre- 
lations are manifested in the existence of large-scale regions 
of rarefaction and compression ("bubbles" and"dropsW 
with blurred boundaries). A description of the inhomogene- 
ities by means of a term of the typeK(Vn) in the free energy 
density, where n ( r )  is the local number density of particles, 
is justified when the main peak in the linear susceptibility 
(the structure factor) G(k)  of the bulk liquid occurs at a 
wave vector k = 0. In a dense liquid, the abscissa of the main 
peak is k,  $0; this situation corresponds to a stratified 
short-range order [and to a gradient term of the type 
K 1 ( d  /dz - ik, )n 12; see the Appendix]. On a plane surface 
this order is manifested in the circumstance that the liquid 
becomes ordered in the form of quasismectic layers of thick- 
ness d, = 277/k, -d. A film with a thickness corresponding 
to a half-integer number of layers is unfavorable from the 
energy standpoint, while a film consisting of a whole number 
of layers has a specific free energy lower than that of a semi- 
infinite liquid. The free energy of a thin film thus oscillates 
around its bulk value with a period do,  decaying over the 
bulk correlation length f,, which is equal to the reciprocal of 
the half-width of the main peak in the susceptibility 17: 

This component of the free energy is manifested directly in 
pressure oscillations in films of organic liquids between solid 
surfaces.20 In the Appendix we point out a derivation, differ- 
ent from that of Ref. 15, of the expression for the correlation 
part of the potential V(h). That derivation also yields. a 
monotonic component of V(h), which arises in second order 
in exp ( - h /c, ) (there is a more rigorous discussion in Ref. 
21): 

V ,  ( h )  = b  exp(--2h/Eh), D O .  (5 )  

Qualitatively, V, is the benefit (b  > 0 )  in terms of the free 
energy of a smectic density wave which is excited by the 
substrate in the liquid. This quantity stems from suppression 
of the correlation near the boundary with the gas. Using 
G(k, ) z 3  and l, z 1.8d (Ref. 17), taking the value of the 
smectic order parameter at the interface with the substrate 
to be qa - 1, and using qo-d 3 ,  we find the natural esti- 
mate b- Td- from (A4) .  In other words, we find a value 
which is on the order of the thermal energy per atomic site at 
the surface. On the other hand, the amplitude of V, in (4 )  
and (A4) satisfies a -~ , ,b -q ,T /d2 ,  where qtO is the 

smectic order parameter at the boundary with the gas, which 
is determined over length scales -<, (i.e., to the point at 
which long-wavelength capillary waves come into play; such 
waves delocalize the boundary and cause q ,  to vanish"). It 
is reasonable to assume q, < 7, since the boundary with gas 
is more "porous" than a solid wall at all scales. We thus 
conclude a < 6. 

Far from the critical point, the constant A in ( 3 )  de- 
pends only weakly on the temperature and is less than 50 K 
in magnitude.9.20 Also taking into account the mutual can- 
cellation of the van der Waals and hydrodynamic contribu- 
tions, to first order we can ignore the long-range effect in the 
description of strong-coupling materials, for which we have 
T, % 50 K [for example, with A = 50 K, T, = 600 K, 
b = T , ~ G ~ ,  and f, = 2d,, we have a derivative V; ( h )  
> V;,(h) for h 5  lodo].  

The potential 

is shown schematically by curve 1 in Fig. 1. At a vapor pres- 
sure below the saturation level, we need to add a term 
Apn, h to V(h) (the dashed line in Fig. 1 ). In the absence of 
fluctuations, the liquid vapor interface localizes at minima 
of V, ( h )  which correspond to the adsorption of an integral 
number of monolayers: h, = jd,. As Ap -- 0, the film grows 
by means of a first-order layering transition, but only to a 
finite limit h , .  To determine h, within + do /2, we can re- 
place V, by the envelope of its minima: 

Vi=-a exp (-hlEb), a>O 

(curve 2 in Fig. 1 ) . Hence 

Formally, t= t, + V, is equivalent to the potential ( 2 )  
with a positive definite coefficient a. Since the attraction t, 
is of longer range than the repulsion V2 (by virtue of the 
inequality {, > {, /2),  the wetting is incomplete. Physically, 
long capillary waves are suppressed at low temperatures by 
the potential V,, and the film thickness grows only to the 
point at which the amplitude of the density wave at the gas 
boundary becomes comparable to q t O ,  i.e., comparable to the 
value of the intrinsic order of this boundary at small scale. 

FIG. 1. Potential of the correlation interaction for ( 1 ) a film of a dense 
liquid on a solid substrate. ( 2 )  the envelope of its minima before renormal- 
ization, ( 3 )  the same, after renormalization, at temperatures above the 
wetting point and in the presence of a long-range repulsion (curve 4 ) .  The 
dashed line shows A,utr,,h. 
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3. WETTING TRANSITION 

As the temperature rises, the fluctuations of the bound- 
ary grow and wash out the oscillations in potential V,. As 
the film becomes thicker, the confining potential weakens, 
so the fluctuations and this washing out become more pro- 
nounced. The fluctuations thus lead to a decrease in the de- 
cay length of V, through the renormalization a-a, <a, 
{, -g, < c,, which we will discuss below: 

A continuous wetting transition occurs (under the condition 
a, < b)  when the decay lengths of potentials V, and V2 be- 
come comparable: {, = 6, /2 (curve 3 in Fig. 1 ). Conse- 
quently, and in contrast with the wetting transition which 
was studied in Refs. 12 and 13 (which is caused by a decrease 
in the amplitude of the attractive component of the potential 
V), this transition involves a renormalization of the charac- 
teristic range of this component. 

Let us examine the fluctuations by the standard renor- 
malization-group procedure for two-dimensional systems": 
With a change A-exp( - I) in the scale A < d  - '  of the 
short-wave cutoff of the configuration integral, the potential 
is averaged over Gaussian fluctuations of the boundary: 

where the mean square fluctuation of the boundary at wave- 
lengths from A ' to A- 'el is S2(1) = IS: = l T / 2 m .  The 
fluctuations remain Gaussian over scales A-'exp(1) &,ill, 
where the correlation length of the capillary fluctuations, 
lII = A-'exp(l*), is determined in a self-consistent way 
from the equation A2=: V: (h, )/a. Here h, is the mini- 
mum of V,. . The corresponding binding energy is 
V, (h,) = V,. (h,, )exp( - 21*). 

Substituting an exponential potential of the general 
form V(h) = u,exp( -flh) into (7 ) ,  we find" 

V ,  ( h )  = v o  exp [ (2+m)1-ph] ,  ( 8 )  

where 

For V, , the parameter fl in (8 )  is equal to g, ' + ik, .  
Near the triple point'7 we have kl<, 2 10% 1, and thus 

As we will see in the discussion below, the phenomena in 
which we are interested occur in the interval 1 5 5 < 2. For 
the potential V2 we have the parameter value fl = 2/6 and 
w = T / ~ a { i  & 1. Consequently, the renormalization of V2 
is trivial: V2, -- V2. The cutoff of the potentials at h < 0, like 
the interaction with the substrate, is inconsequential I'  under 
the condition h,, > 6: 1 * 18 . A direct substitution easily 
shows that this condition always holds in the discussion be- 
low. Under this condition, the power-law potentials are re- 
normalized trivially: V a  h ' (Ref. 13). 

The equilibrium thickness h, is close to a minimum of 
the envelope, V; (h, ) =: pi, (h, ), so the curvature of the - 
monotonic part of potential V; (h, ) -- 2 V & (h, ) is smaller 
by a factor (k,  g, ) - 100 than the curvature of the bottom of 

the well of the oscillatory part. Consequently, h, is always 
close to one of the h, z j d ,  (layering transitions disappear at 
temperatures above T,,, which is the wetting point), and V2 
can be ignored in determining the correlation length: 
V; (h, ) =: V ; ,  ( h ,  ) z o A 2 .  For values of 6 which are not 
very close to two, we can thus write 

- - 
V,, (h,) ,-- - a  (a/o)w't'(Z-W' exp 1-2h/(2 - 3) E,], ( 11 ) 

At sufficiently small values of a, the renormalized amplitude 
is a, =:a2/a< b, and the continuous wetting transition oc- 
curs at the point 

We wish to stress that, in contrast with the corresponding 
expression for the roughening t e m p e r a t ~ r e , ~ ~  the quantity a 
in ( 13) is not renormalized in the limit T- T,, and must be 
set equal to the surface tension of the macroscopic melt. This 
wetting transition is a limiting point of the infinite sequence 
of layering transitions h, -+h, + , . On the average, the thick- 
ness increases in accordance with 

and the correlation length is described by 

gIl a exp [In (b /aR)  / 2 t ]  =exp [ c o n s t t - ' I  , (15) 

where t =  (T, - T)/T,,. We actually have h = h, in the 
temperature interval in which ( 14) yields 1 h - hj I <do /2. 
On layering-transition lines we have g,, = m . In finite sys- 
tems with defects, the layering transitions are smeared, and 
singularities may be observed in physical quantities (cf. Ref. 
9 and Sec. 6 below). Near a transition the binding energy of 
state j is 

and the contact angle satisfies 0 a t"2[ ,l I. The height of the 
barrier for the jth layering transition, 

does not have a factor o f t  in front of the exponential func- 
tion. 

Within logarithmic corrections, expressions ( 14) and 
( 15) are the same as those in the strong-fluctuation regime 
( W  > 2 )  of a wetting transition for nonoscillating potential 
( 2 )  (Refs. 12 and 13). On the other hand, the qualitative 
difference between the renormalized potentials in this study 
and in Refs. 12 and 13, combined with the existence of a 
universal expression for the temperature of this transition, 
( 13), allows us to speak in terms of a new type of continuous 
wetting transition. 

4. CRITICAL POINTS OF LAYERING TRANSITIONS 

Lines of layering transitions in the T, Ap plane can be 
found crudely from the condition 
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We have 

where Apy oc exp ( - 2hLJ /C, ) . 
For T >  T, , the potential V2 is of longer range than the 

renormalized potential V,, by virtue of the relation 
CR <{, /2. At sufficiently large values of h, the positive cur- 
vature V;' > 0 is thus dominant, and there are no free-energy 
barriers between hJ and h, + , (Fig. 2).  In this region we have 

1*=/2'-1/21n [aA2/Vz" ( h )  ] -h/Ea+'/2ln (oAzta214b). ( 17) 

Near the critical point for the layering transition (TLc,, 
ApL,- ), wecannot use the linear approximation (7) ,  but this 
point is itself determined by the crossing of lines ( 10) and 
(17):  I:(hL, ) = IT(hLJ ) (it is in this sense that the calcula- 
tions of Ref. 15 for a crystalline film are valid). For large 
values of j we find TL, = T, ( 1  + const.C,/h, ). Since at 
T ?  T,, the curvature satisfies I V ;  / > / V 1 ,  we have a 
slope / V; / > / V ;, I, and the film thickness is determined by 
minimizing V, + Apn,,h: 

The critical points thus lie on the curve 

Ap a exp [-const (T-T,) -'I. (19) 

On the other hand, the condition for the applicability of the 
linear renormalization group is that 1: in ( 10) be positive. 
Throughout the range of applicability of our analysis, the 
layering-transition lines terminate at 25 < 2 [the value 25 = 2 
corresponds to a transition to a rough state of the boundary, 
which fluctuates in the weak uniform potential cc cos(k,  h ) ;  
Ref. 221. The inequality 

is therefore a qualitative condition for the observability of 
layering transitions. 

5. LONG-RANGE EFFECTS 

At sufficiently large thicknesses, the long-range repul- 
sion V,, dominates thestructural contribution V, + V2 , so 
we have V >  0 and V" > 0. In this case, ( 1 ) a barrier for wet- 
ting transitions arises (curve 4 in Fig. 1 ), so in the presence 
of a long-range effect a first-order wetting transition always 
occurs below the temperature T,, given by ( 13) (cf. Ref. 2) ;  
( 2 )  only a finite number of layering transitions occur at any 
temperature. The shift of the wetting-transition tempera- 
ture, T,, - T,, ( 1  - t ,  ), can be estimated by equating the 
binding energy to the van der Waals energy: 

Hence 

t,a [In ( T I A )  +ln In ( T I A )  + . . .I-' 

[we have made use of condition (15) and the relations 
a - b - Td -2]. The first-order wetting point transition gives 
us the origin of the line of first-order transitions from a thin 
film to a thick film at nonzero Ap: prewetting transitions.' 
At small values of Ap, the equilibrium of a thick film is deter- 
mined exclusively by van der Waals forces, so its thickness 
h = (A /Ap) - 'I3 is large. Correspondingly, we have an en- 
ergy - Ap213, and the prewetting transition line touches the 
Taxis: t  - t ,  a Ap213. With increasing Ap, a thick film goes 
into a region in which the layering transition occurs [the 
ratio V;k/V';w, which determines the existence of the 
layering transition, contains the factor (k ,h l2 ,  which is 
large in comparison with the ratio v;, /V  ;,, which deter- 
mines the prewetting effect], and the prewetting transition 
becomes a layering transition hj -+ hj + , with k > 1. With a 
further increase in the temperature, k decreases, and for 
t -  [In(T/A) + 31n ln(T/A) ] - '  the prewetting transition 
merges with one of the layering-transition lines ( k  = 1). 

The results of this and the preceding sections of the 
paper are summarized in Fig. 3. Turning on the long-range 
effect alters the topology of the phase diagram in Fig. 3. This 
perturbation may be thought of as a cut along the line of 
prewetting transition T,M, followed by a counterclockwise 
rotation of the right edge around the point T,. The unper- 
turbed wetting point along with a small neighborhood of this 
point which contains an infinite number of layering transi- 
tions is invisible. At T> A, however, the points T,, and M are 
close to the unperturbed T ,  (25 = 1 ), and the perturbation 
affects only a small region of the diagram. 

6. LAYERING EFFECTS ON HELIUM FILMS 

As we have already mentioned, the large factor ( k ,  h )  * 
in the ratio V;', / V ;, makes the region in which layering 
effects are observed quite wide, actually not limted to high 
temperatures. The mobility of a classical two-dimensional 
electron gas above the surface of a film of superfluid 4He on a 
hydrogen substrate undergoes oscillations as the film thick- 
ness increases, with a period - d  (Refs. 8 and 9)  at T S  1 K. 
With increasing temperature, these oscillations are 
smoothed over, and their number decreases. To describe the 
effect we note that V, is inconsequential in this temperature 
range (according to the data of Ref. 9, A = 20 K>) T )  . Equat- 

FIG. 2. The potential ( 1 ) below and ( 2 )  above the line of critical points of 
layering transitions. 

FIG. 3. Phase diagram of the adsorption ofa dense liquid from a gas onto a 
solid substrate. L,-Lines of layering transitions; LC,-their critical 
points; T,, -point of wetting transition; T,, M-line of prewetting transi- 
tion. 
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ing 17 from ( l o )  to I *,, = 1n(oA2h '/3A)/2 for values o f j  
such that hj/f,, 41njS 1, we find 

Substituting in u = 0.35 erg/cm2 (Ref. 23), k ,  -22.15 A - '  
(Ref. 24), and 6, /do = 1.G2.1 (Ref. 9 ) ,  we find 20-30 
layering transitions at T = 0 K, T,,, ~ 0 . 5 - 0 . 7  K, and T ,,, 
-0.7-0.9 K. These estimates can be compared with the ob- 
servation of the maximum-ninth-oscillation in the mobil- 
ity at T-0.6 K (Ref. 9; in the experiments of Ref. 9, the film 
was grown by cooling a chamber initially filled with gaseous 
4He; the paths of the system in the T, A p  plane correspond- 
ing to various amounts of the substance in the chamber are 
shown by the dot-dashed lines in Fig. 3) .  The fifth oscillation 
disappears at T=: 1 K [since the first two layers are appar- 
ently crystalline, expression (21 ) holds only qualitatively at 
j= 51. 

ForT> T,,., the parameter I * = I *,, is finite, and the 
second derivative of 

- 
V I R  = exp (--1*O) lJ1  - h-20 exp (-l i /Eb) cos (k lh )  

continues to oscillate. Since the square of the frequency of a 
capillary wave (ripplon) contains a term oc V", we would 
expect that electron-ripplon scattering would lead to smooth 
oscillations in the mobility even above T,, . Below T,, , the 
ripplons are unstable on a layering-transition line, and the 
mobility has a singularity (cf. the curves in Ref. 9) .  For 'He 
the surface energy is ( ~ ~ 0 . 1 5  erg/cm2 (Ref. 25), so we have 
& Z 3 at T = 1 K, and layering effects are suppre~sed .~  We 
wish to stress that quantum effects are unimportant for the 
long-wavelength (f,,  A > 1 ) phenomena which we are dis- 
cussing here.22 

7. SURFACE MELTING 

In the case of the surface melting of a crystal of a dense 
substance, the van der Waals potential has an additional 
small factor - AE- An 5 10- I, where AE and An are the dif- 
ferences between the dielectric constants and densities of the 
crystal and the melt. To analyze surface melting we need to 
incorporate fluctuations in both z,, the position of the melt- 
gas interface (with a surface tension a" ), and z ,  , the atomi- 
cally rough (more on this below) crystal-melt interface, 
with a stiffness u ,  . 

Since the interplanar distance in the crystal along the 
normal to the surface, d, , is generally l 7  not equal to the peri- 
od of the density oscillations in the melt, do ,  the phase of the 
layered-ordering wave excited in the melt at the interface 
with the crystal depends on the position of this interface with 
respect to the crystal lattice (Fig. 4 ) .  Therefore, the oscilla- 
tory component of the potential is no longer a function of 
h = z, - z,, alone (the crystal occupies the region z > 0 ) .  A 
general expression for this component follows from symme- 
try considerations: 

h z -z i z  v.= r, a,, "4- x) cos{?n [y -- +I}. 
,/=-m 

where the amplitude a,, does not exceed a o r b  from (4 ) ,  as is 
easily verified in the very simple model of continuous match- 

FIG. 4. Profile of the density at a crystal-melt interface for various posi- 
tions of the boundary, z ,  , with respect to the crystal. 

ing, at the point z = z, , of the density waves in the crystal 
[ a cos ( 277z/d, ) ] and in the melt [ cc cos (277z/ 
do)exp( - z/{, ) 1. Over length scales from A- ' to f , ,  , the 
boundaries fluctuate in a manner independent of each other. 
Accordingly, each of the terms in (22) is transformed in 
accordance with (8) ,  where we have - Iw z IG,, and this 
quantity is equal to the mean square fluctuation of the argu- 
ment of the cosine determined at these scales: 

In ignoring V,,  for the complete wetting of a given face of 
the crystal by the melt, we must require that the potential V, 
be of longer range than V,, , i.e., that the relation 5,, > 1 hold 
for all n .  We thus write 

and TI > T,,, is the condition for surface melting. We would 
usually have al/oOS lo- ' .  In crystals of simple substances, 
on the other hand, we would have a maximum value d, z d , ,  
(Ref. 17). Consequently, T,,, is much higher on close-packed 
faces (d, is approximately equal to d, ) than on other faces. 
For example, for an fcc lead crystal we have a " ~ 4 4 0  
erg/cm2 (Ref. 23), u,-233 erg/cm2 (Ref. 6) ,  
d , , ~ d , ,  , , , =: 2.9 A, and T, -2 600 K. The relative positions of 
T,, (d, ) and TI are shown in Fig. 5. For the ( 11 1 ) face we 
have T,,, =: 1.4T,, while for the (100) face we have T,,. 
2 1.1 TI, and surface melting should not occur. On the ( 1 10) 
face we have T,, z0 .2Tl ,  so surface melting does occur on 

FIG. 5. Wetting temperatures for the wetting of various faces of a lead 
crystal by itsown melt with respect to the triple point (T,z600.5  K ) .  The 
temperatures T,<,, from (26) are also shown. 
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this and on less closely packed faces. 
Faces which make a small angle 8 with the singular 

orientation warrant a special analysis. Such (vicinal) faces 
consist of region of singular orientation of large width 
1 = d, /B(d, characterizes a singular face), separated by 
monatomic steps6 If the singular face does not undergo sur- 
face melting, it will be characterized at Ap = 0 ( T = T, ) by 
a finite correiation length 6 ,, . If lII I, the statistical proper- 
ties of the vicinal face are determined over scales shorter 
than those at which its nonuniformity is manifested. Conse- 
quently, surface melting does not occur in the angular inter- 
nal A8- d, /l , ,  around the singular direction. As T- T,,, , we 
have cl I  -+ CD and A8-0. 

These predictions of the theory agree with the observa- 
tion of surface melting on a ( 110) face' and on less closely 
packed faces. They also agree with the absence of surface 
melting on the ( 11 1 ) and ( 100) faces and in a certain inter- 
val of orientations around these f a c e ~ . ~ ~  At T 3  T,,,, the po- 
tential V,  is unimportant, and the film thickness (if h is not 
too large) diverges logarithmically [see ( 18) ] in accordance 
with Refs. 3 and 26. In this limit our model is equivalent to 
the model of a disorder induced by the ~ur face .~ '  

8. TRANSITION OF A MELTED FACE TO A ROUGH STATE 

The temperature T,,, is always higher than 2u,df / r r  
which is the temperature of the transition to a rough state of 
an isolated crystal-melt boundary.22 We have in fact made 
use of this relation. When surface melting occurs, and if the 
temperature is sufficiently close to T, ,  the surface of the 
crystal is replaced by two weakly coupled interfaces, the 
crystal-melt and melt-vapor interfaces, each of which is sep- 
arately rough. Nevertheless, for any temperature T< TI 
there exists a finite liI : the correlation length of fluctuations 
in the film thickness. Over scales larger than 11, the film 
fluctuates as a single boundary with a tension u z u O  + u,  . 
The criterion for a transition of a macroscopic face of a crys- 
tal to a rough state below T, is thus the inequality 

This condition holds for lead faces with d<d, , ,  , , (Fig. 5 ) .  
On the (1  10) face, on the other, the transition to a rough 
state merges with the triple point. 

9. CONCLUSION 

We have thus shown that incorporating the actual cor- 
relations in a liquid which are not present in the Landau 
model leads to a qualitative change in the picture of wetting 
in the region of high densities (in particular, near the triple 
point). Capillary fluctuations of the boundary between the 
wetting film and the gas are exceedingly important here. 

The quasismectic short-range order in a dense liquid 
gives rise to order in an adsorbed film in the form of layers 
parallel to the surface. Consequently, even if the liquid is 
strongly attracted to the substrate, the interaction V, of the 
film-gas interface with the smectic-order wave makes a wet- 
ting film of finite thickness preferred from the energy stand- 
point: The wetting is incomplete. In this case the smectic- 
order parameter rl falls off monotonically toward the 
interface with the gas, to a value on the order of 77," (curve 1 
in Fig. 6) .  In this case, however, capillary fluctuations of the 
film-gas interface are suppressed. Accordingly, if the tem- 

perature T i s  high in comparison with the characteristic en- 
ergy u d  :, an unbounded thickening of the film will be pre- 
ferred (the smectic structure will melt in the central part of 
the film; see curve 2 in Fig. 6).  This unbounded thickening 
will result in free fluctuations of the interface; i.e., in this 
case the wetting is complete. . 

The two regimes described here are separated by a sec- 
ond-order wetting transition, studied here for the first time, 
with strong divergences ( 14) and ( 15).  This transition oc- 
curs at the temperature T,,, given by the universal relation 
( 13). Unfortunately, this wetting transition is like the sec- 
ond-order wetting transition which has been discussed pre- 
viously in the Morse potential,'' ( 2 )  (in real systems with a 
long-range effect, in which a first-order wetting transition 
occurs at T <  T,,, ) in that it can occur only at an isolated 
point on the phase diagram of the two-component system, at 
which the low-range component of the potential vanishes 
(as a result of, for example, a cancellation of the van der 
Waals and hydrodynamic interactions). This second-order 
wetting transition can be studied, however, by the Monte 
Carlo method on a lattice modelZX with an antiferromagnetic 
interaction of the type discussed in Ref. 29. 

For substances with strong binding ( T I  3 5 0  K ) ,  the 
influence of the long-range effect on the qualitative charac- 
teristics of the adsorption is limted to a small neighborhood 
of the wetting point (Fig. 3 ) .  Accordingly, the adsorption of 
liquids with a triple-point temperature which satisfies condi- 
tion (20) is described by the phase diagram in Fig. 3 in the 
region of high densities. Estimating d,, in terms of the atomic 
radii, we find that for inert gases we have 

and layering effects are unobservable (in agreement with the 
data of Ref. 30). In metals, on the other hand, we have 
5, 5 1: In particular, in such low-melting metals as mercury 
and gallium we have 5, 5 0.3-0.4, and in alkali metals we 
have 5, -0.9. Melts of silicon and germanium have 
5, -- 1.7-1.8 i.e., values close to the upper limit on the obser- 
vability of layering adsorption. Consequently, the theory de- 
rived above may be thought of as a general description of the 
wetting of solid surfaces by molten met el^.^' 

We wish to stress that the electron component of the 
surface potential can play a substantial role in the adsorption 
of metals." Note also that the condition T >  T,,, with T,,, 
given by ( 13) is a necessary but generally not sufficient con- 
dition for complete wetting, since the free energy of a mono- 
layer, for example, can be substantially lower than that 
which would follow from asymptotic expression (4 )  (cf. 
Ref. 32). 

Nevertheless, the date available on the surface melting 
of lead agree with our estimates. Note that it has now become 

FIG. 6. Profile of the layering-order parameter in a wetting film. 1- 
T<T,,.;2-T> T,,.,; 4,-g, ,  In ( 7 1 , ~ , / 7 7 , , , ) ,  h,>h, , .  
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possible to determine the mean square fluctuation of the sur- 
face of a crystal, (z:), by x-ray structural methods." Such 
studies might make it possible to determine the role played 
by layering effects during surface melting and the interrela- 
tionship between surface melting and surface roughness. Ac- 
tually, the capabilities of the theory derived here are broader 
than we stipulated above (as was demonstrated in the exam- 
ple of the analysis of the adsorption of helium). The diagram 
in Fig. 3 is qualitatively similar to date on the adsorption of 
ethylene on graphite,' although in the latter case ( G I >  3 )  
the layering effects during the adsorption of the melt are 
limited to a small neighborhood of the triple point, where 
two-dimensional melting effects are important. Most typi- 
cally, a generalization of the analysis to molecular liquids 
will require incorporating electrical and liquid-crystal ef- 
fects. 

After this paper had been prepared for publication, a 
paper'0 by Nham and Hess appeared with a report of an 
ellipsometric study of the critical points of layering transi- 
tions during the wetting of a graphite substrate by liquid 
ethane. The observed phase diagram corresponds to Fig. 3 
(with T,,, < TI ); the authors assert that nine observed criti- 
cal points conform well to a curve described by expression 
( 19) (which had been published in the brief version l 9  of the 
present paper). 

We wish to thank E. B. Kolomeiskii for useful discus- 
sions and V. L. Pokrovskii and D. E. Khmel'nitskiifor over- 
all discussions of this study. 

APENDIX. FREE ENERGY OFSMECTIC DENSITY WAVES IN A 
THIN FILM OF DENSE LIQUID 

The free energy of a small density perturbation of the 
liquid in a film bounded by structureless surfaces is1' 

T 
AF{An} = - 1 l n  ( z , )  A n ( z z )  G-' (r , -r , )  d'r,  d3r2. (A1 ) 

2 

In a dense liquid, G ( k )  has a well-expressed peak at point k  , , 
of half-width 6 ,  I, where k , [ ,  - 10% 1. The Fourier density 

I.e., we of the perturbation is thus localized near k  = f k ,  ; ' 
have 

where ~ ( z )  is a wave oc etX1' with an amplitude which varies 
comparatively slowly. The expansion 

is equivalent to a transformation of ( A l )  to local form (cf. 
Ref. 21): 

Furthermore, associated with each boundary of the film is an 
additional energy 

where the index j = s, i corresponds to the substrate and to 
the boundary with the gas (z, = 0 and zi = h, respectively). 
The complex surface fields u, can be expressed in terms of vj,, 

exp(i$, ), which are the equilibrium amplitudes of the den- 
sity waves at the isolated boundaries (h  - cc ) .  In the present 
analysis, these quantities, like the extrapolation length A,, 
are phenomenological constants. The first term in (A3)  
stems from the violation of the translational symmetry of the 
liquid at  the given boundary. l 7  I t  performs a phase selection 
among the smectic fluctuations present in the liquid in ther- 
mal equlibrium, thereby exciting a static density wave. The 
second term stems from the absence of an interaction of the 
density wave with its continuation in the region outside the 
film. A general solution of the variational problem for (A2)  
is 

q = e s p ( i k , z ) { q .  exp(-z /Elr)  + q i  e s p  [- (h-z) lEbl} .  

Substituting this solution into (A2)  and integrating, we find 

AFb=TG-'(kl)noEb( lqs12+l q J 2 )  [I-esp(--2hlEb)  I .  

Minimizing AF, + AF, + AF, with respect to 7 ,  and rli, we 
find, to within terms -exp( - 2h / { ,  ), 

Omitting the phase of the cosine, which is of no importance 
here, we find ( 4 )  and (5 ) .  It is physically natural to find a 
situation in which correlations are weakened near a surface 
because the average number of neighbors of a surface atom is 
smaller than that of a bulk atom. This situation corresponds 
to i l  < {, and thusb>Oin  ( 5 ) .  
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