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The authors investigate the kinetics and the spectrum of the density correlators for reversible and 
irreversible bimolecular processes with the participation of neutral and charged particles in 
systems in which the reagents are generated in different ways. Explicit forms are obtained for the 
intermediate asymptotic forms (mean-field solutions) and long-time asymptotic forms due to 
fluctuation effects. 

There has recently been a sharp increase in interest in 
many-particle aspects of the theory of diffusion-controlled 
reactions. This is explained, on the one hand, by the growing 
number of applications in physics, chemical physics, and 
b i ~ l o g y , ' . ~  and, on the other hand, by the fact that this has 
now taken its place among related problems in statistical 
physics in which the fluctuation behavior of the systems is 
i m p ~ r t a n t . " ~  One should also mention the large number of 
investigations of fractal systems with developed fluctuation 
~t ructure ,~ . '  in which the kinetics of the diffusion-controled 
reactions7 both determines the rate of growth and the geo- 
metrical characteristics of the systems being formed and also 
provides a specific way of investigating their topological 
properties. 

Until the appearance of Refs. 8-1 1 it was assumed that 
after a time T = L 2  /D, where L is the characteristic length 
scale of the spatial nonuniformity of the distribution of the 
reagents and D is the diffusion coefficient, a steady-state re- 
gime is established in which the kinetics of the bimolecular 
reaction does not depend on the initial conditions. In this 
approximation (the mean-field approximation, which ig- 
nores density fluctuations) the kinetics of a bimolecular irre- 
versible reaction A + B -+ C in the final stage (at  times t > t, , 
where t, = [k, n (0) ] ', k, being the effective rate constant 
of the reaction) is determined for a nonstoichiometric initial 
mixture of reagents by an exponential dependence of the 
density n ( t )  of the reacting particles on the time, and in the 
stoichiometric case by a power law 

1 

For a reversible reaction the mean-field approximation pre- 
dicts exponential relaxation of the mean density to the equi- 
librium value. 

The influence of Poisson density fluctuations on the 
long-time kinetics of a reaction involving destruction at sta- 
tionary traps ( the reaction A + B -B, in which the mean 
density of the stationary traps B is much greater than the 
mean density of A )  was investigated for the first time in 
Refs. 8 and 10. I t  was shown that in the final stage of the 
reaction the density of particles of A is determined by the 
regions with an anomalously low density of the traps B. 

For a bimolecular two-component irreversible reaction 
A + B - C in which A and B are uncharged particles diffus- 
ing in the volume, in the case when the densities of A and B 
are equal on the average ( n ,  ( t )  = n ,  ( t )  ), the presence of 
thermodynamic fluctuations of the density also leads to 

slowing down of the reaction rate in comparison with that 
predicted by mean-field approximations and at  large t the 
mean density is determined by the dependence n ( t )  a t -d '4 ,  

where d is the dimensionality of space. This result was ob- 
tained first in Refs. 9 and 10, and also in Ref. 11, and has 
been reproduced subsequently in a number of papers. 12-'"n 
the case of a one-component bimolecular irreversible reac- 
tion A + A - B (Refs. 16,17) and two-component irrevers- 
ible recombination of charged  particle^,"'^." fluctuation ef- 
fects are found to be suppressed and the long-time kinetics of 
the reactions is determined by the mean-field dependence. 
For a reversible one-component reaction A + A-B (Ref. 
20) and a reversible two-component reaction A + B-C 
(Ref. 21), small spatial density fluctuations, which can be 
assumed to be Gaussian, determine the long-time relaxation 
to the equilibrium value, and 6 n ( t )  a t P~'', in contrast to 
the exponential dependence obtained in the mean-field ap- 
proximation. 

Depending on the way in which the reagents are genera- 
ted, the reaction system is characterized by different initial 
spectra of the density fluctuations. For instantaneous gener- 
ation, when the generation time satisfies t, <t,,  the long- 
wavelength part of the fluctuation spectrum is flat, i.e., the 
initial density fluctuations are 6-correlated. The results in 
Refs. 9-1 5 were obtained for precisely such systems. Fluctu- 
ation effects are substantially enhanced in a system prepared 
by a steady-state external source.",'"f the particles of A 
and B are generated randomly and independently of each 
other, with a constant mean rate I, in the reaction volume, 
the process of the irreversible reaction leads to the appear- 
ance of correlations in the distributions of the reagents. The 
long-wavelength asymptotic form of the fluctuation spec- 
trum changes, 12.13. 1x.22 and this leads to a change of the long- 

time kinetics of the irreversible two-component reaction 
after the source is switched off: n ( t )  or t ' I 4  f o rd  = 3 (Refs. 
12,18). For one-dimensional and two-dimensional systems 
the presence of a nonintegrable singularity in the fluctuation 
spectrum signals the separation of the reaction volume into 
macroscopic regions containing only one of the rea- 
gents. 18,12,13,23 This effect has been observed in a numerical 

experiment fo rd  = 1,2 (Refs. 24,25) and for fractal systems 
in Ref. 26. 

In the present paper, using the method (analogous to 
that proposed in Ref. 11 ) of decoupling of fourth-order cor- 
relation functions into a product of pair correlators of the 
density, we investigate the fluctuation kinetics and the spec- 
trum of the density correlators for reversible two-compo- 
nent and one-component reactions with the participation of 
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neutral and charged reagents in systems in which the parti- 
cles are generated in different ways. 

In Ref. 27 it was shown that in problems related to those 
investigated in the present paper (systems with a bimolecu- 
lar reaction of particles present with equal mean densities, 
for which the long-time asymptotic form of the time depend- 
ence of the mean density is determined by small Gaussian 
fluctuations) the method of Ref. 11 leads to results that are 
asymptotically exact at large times. Here, in the long-time 
dependence n ( t )  = bt- ' the exponent v is determined ex- 
actly, while the coefficient b is determined to within a con- 
stant numerical factor of order unity. In the present paper it 
is shown that allowance for the singular part of the third- 
order correlators, which is due to the spatial coincidence of 
two particles of the same kind in three-particle interactions, 
leads to a renormalization of the rate constants of the for- 
ward and backward reactions in the equation determining 
the evolution of the mean density. The method of Ref. 11, 
improved in this manner, reproduces for moderate values of 
t the intermediate asymptotic forms of the Smoluchowski 
type28 (or of the Debye type,29 for charged particles) in sys- 
tems of any dimensionality. These asymptotic forms can be 
obtained in mean-field approximations (effective-medium 
theory, summation of no-loop diagrams, perturbation-theo- 
ry series, single-site t-matrix theory, and other equivalent 
approxmations) .28-32 

In this paper we obtain a number of new results on the 
fluctuational long-time asymptotic behavior for reversible 
reactions of neutral particles in systems with a stationary 
source and for reversible reactions involving charged parti- 
cles, and also find dependences describing the rates of reac- 
tions occurring on fractal structures in parallel with the gen- 
eration of particles of the reagents. 

1. EVOLUTION EQUATIONS FOR THE MEAN DENSITIES AND 
DENSITY CORRELATORS: NEUTRAL REAGENTS 

We shall consider the influence of density fluctuations 
on the kinetics of the bimolecular reversible recombination 
of classical uncharged particles undergoing diffusion. When 
particles of the reagents come within a distance a of each 
other (the reaction radius, equal to the sum of the radii of the 
reacting particles) they can recombine, with a nonzero prob- 
ability that determines the "true" rate constant k of the for- 
ward reaction. The rate of the reverse process (the dissocia- 
tion of the reaction product C into a pair of reagents A and B, 
produced at a distance a from each other) is determined by 
the rate constant k -  of the backward reaction. 

The change of the local density of the reagents as a con- 
sequence of the forward and backward reactions, and also as 
a consequence of diffusion, is determined by the equation 

Gi  ( I ,  t )  =-kyd ( a )  1 dri6 ( I  1 -a )  n~ ( r ,  t )  n~ (r1, t )  
+DiAni ( r ,  t )  +k-n, ( r ,  t )  +Ll  ( r ,  t )  , ( 1 )  

where y, = (4ra2)-I ,  y, = (277a)-', y, = 1, the index i 
takes the values A and B, and L, (r , t)  is a term describing the 
fluctuations of the diffusion ~ u r r e n t . ~  The change of the lo- 
cal density of the products C of the forward reaction obeys 
the condition of conservation of the total number of reacting 
particles in an elementary reaction event: 

Henceforth we shall consider only the case of equal diffusion 
coefficients D, = D, = D, = D /2. 

We write the densities of the reacting particles in the 
form of a sum 

where n ( t )  and n, ( t )  are averages over the volume and the 
a, are random deviations from the average. Averaging Eq. 
( 1) over the volume, for n ( t )  we obtain 

+k-nc ( t )  , ; z ( t )  +Ac ( t )  =0, ( 2 )  

where V is the volume of the system. Correspondingly, the 
equations for the change with time of the random deviations 
have the following appearance: 

ii ( r ,  t )  ='/,Dhoi ( r ,  t )  -kyd ( a )  J dr16 ( I r-ri 1 -a) 

X J droA ( r ,  t )  oB (r , ,  t )  } +ii (r l  t )  -v-' dr Li ( r j  t ) e  S 
( 3  

We define the pair correlation functions: 

where h is a d-dimensional correlation parameter. The fol- 
lowing system of equations is valid for Gij (A,t): 

where 6 ,  is the Kronecker symbol and the T,,  are third- 
order correlators. In Appendix I1 the third-order correlators 
are represented in the form of the sum of a fluctuation part - 
rrlh and a regular part T,,, Under certain assumptions about 
the structure of the fourth-order correlation functions (see 
Appendix 11) the fluctuation part of the third-order correla- 
tors is identically equal to zero. The regular part arises when 
the discreteness of the density distributions of the reagents is 
taken into account. Allowance for the discreteness leads to 
the appearance of short-wavelength pair correlations, 
which, in their turn, lead to renormalization of the rate con- 
stants of the forward and backward reactions in the equation 
(2 )  for the evolution of n( t ) :  

;z(t)  =-k.[n2 ( t )  + gAB (a ,  t )  I +k-'n, ( t )  , 

where k,  = 4rDa, k ,  = 4n-D /In(Dt / a 2 ) ,  k ,  = ( D  /n-t) "', 
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and g,, (a,t) is the fluctuation part of the pair correlator 
G A B  (a,t). 

The regular and the fluctuation parts have a different 
origin and a different physical meaning. The former take 
into account the decrease of the density of one of the reagents 
near each of the particles of the other reagent. The fluctu- 
ation parts of the pair correlators take into account the de- 
pletion of particles of A (B) near parts of the system (large 
in comparison with the average spacing between the parti- 
cles) in which the continuum local density of B (A)  is larger 
than the average. 

The fluctuational long-time asymptotic forms that are 
investigated in the present paper are connected with the 
long-wavelength singularities of the spectrum of the fluctu- 
ation parts of the correlators that determine the behavior of 
the mean density (5).  The short-wavelength region of the 
spectrum of g,, (a,t), generally speaking, should be cut off 
at length scales 1 that exceed the mean interparticle spacing - 

-- l/d , which depends parametrically on the time if the 
density is changing with time. In the systems under consi- 
deration it is always possible to choose 1 so that (Dt) 'I2 

% 1 ~ 7 .  The results are then practically independent of 1; the 
corrections containing 1 are small in the gas parameter and, 
simultaneously, in the ratioT/l. Below, such corrections are 
not given, and the cutoff of the short-wavelength part of the 
spectrum is not stipulated. We note that the renormalized 
rate constants of the forward and the backward reaction- 
the so-called "observable" constants-also do not appear in 
any long-time asymptotic dependence. 

The fluctuation parts of the pair correlators of the den- 
sity obey the following system of equations, which, together 
with (5),  completely determines the kinetics of the reaction 
under consideration: 

2. KINETICS OF BIMOLECULAR REVERSIBLE REACTIONS 
A+B-Cand A+A-B WITH INSTANTANEOUS 
GENERATION OF THE REAGENTS 

We shall consider a few types of initial conditions for 
the system of equations (6) .  In the case of instantaneous 
generation of uncorrelated reagents, when particles of A and 
B (C)  are injected rapidly into the system with a constant 
mean density n(0) (n, (0)  ) and with statistically indepen- 
dent fluctuations, the initial distribution of the reagents can 
be assumed to be Gaussian &correlated: 

gij(A, 0) =n,(0) 6,6 ( A )  ; i, j=A, B, C. 

In the case of instantaneous generation of the reagents 
A and B in correlated pairs, when A and B are created at a 
fixed distance A, from each other, the initial fluctuations of 
the densities of A and B are not statistically independent and 
the fluctuation parts of the pair correlators are equal to 

~ A B ( A ,  O)=n(O) ytr(hg)fi(Il(-h8), g,i(h, 0) =ni(0)6 (A), 

This case is especially important, since, as a rule, this is pre- 
cisely the way in which defects and vacancies, electrons and 
holes, and radical pairs are generated. 

For instantaneous generation of statistically indepen- 
dent particles we obtain from (6)  the following expression 
for the Fourier transform of the pair correlatorg,, (3c,t) (we 
give only the long-time leading terms, and omit the terms 
that decrease exponentially with time) : 

where An = n(0) - n,, t,, = (2kn, + k - ) - I ,  n, is the 
steady-state solution of Eq. (5 ), and 

The expression ( 8) determines the fluctuation corrections 
(calculated previously in Ref. 18 ) to the mean-field equilib- 
rium constant. 

Correspondingly, it follows from Eq. (5)  that in the 
final stage of the reaction ( t+  co ) the relaxation of the den- 
sity of the reagents A and B to the equilibrium value n ,  is 
determined by fluctuation effects 

and is described by the power dependence 

k t n ~  
6n (t) = -(f+ k-2tAB2) An (Dt) -#I2, 

2 

whereas the mean-field approximation (Eq. (5 )  with g,, 
= O )  predicts a more rapid dependence: 

For instantaneous generation of correlated pairs of par- 
ticles the long-time relaxation of the mean density to the , 
equilibrium value is determined by the following expression: 

6n(t) = --(l+k-2tAB2) (nA-n(0) h.g2/Dt) (Dt) 
2 

We note that, depending on the relationship between 
the initial value of the mean density of the reagent A and the 
equilibrium constant k, (k, = k-/k), the density n( t)  can 
be a nonmonotonic function of the time, since for t- co we 
have Sn ( t )  < 0 independently of the value n (0). 

For an irreversible reaction A + B - C it follows from 
the above expressions for g,, (p,t) and Eq. (5)  (for k _  = 0)  
that in the case of instantaneous generation of uncorrelated 

1.14.15 

n(t) = (n (0) 12) "(Dt) 

while in the case of generation as correlated pairs 

i.e., the density correlator falls off more rapidly than the 
square of the mean-field dependence (the solution of Eq. (5)  
with gAB=O and k -  = O  has the form 5 ,  (t)-trl",  - 
n,(t) - (lnt)/t, E, ( t )  - l / t) .  Accordingly, the fluctuation 
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effects in this case are found to be suppressed, and the long- 
time kinetics of the irreversible reaction is described by the 
mean-field approximations. 

For the one-component reversible reaction 

the change of the local density of reagent A is determined by 
the equation 

+DAAnA (r, t) +k-n~  (r, t )  +LA (r, t) , 
n, (r, t) +2nB (r, t) =const. 

For the fluctuation part of the pair correlators and the 
mean density we obtain the following system of equations: 

where k, and k' are the same as for the two-component 
reversible reaction. 

In the case of instantaneous generation of A the t- 
leading terms in the Fourier transform ofg,, ( A,t) are equal 
to 

~ A A ( P ,  t) = g ~ ~ ( p )  - ~ n k - ' C ~  exp (-Dtp2), 

where t,, = (4knA + k- ) ' ,  n, is the steady-state solution 
of ( l l ) ,  and 

Accordingly, the long-time relaxation of the mean density of 
reagent A to the steady-state value is determined by the de- 
pendence 

We note that in the expression forg,, (p,t) and the cor- 
responding expression for Sn(t )  passage to the limit k- -0 
leads to an incorrect result, since in ( 13) we omitted terms 
containing the exponential factor exp( - 4knA t )  . In the 
case of the irreversible reaction A + A - B the course of the 
reaction leads to the suppression of fluctuation effects, and 
the long-time kinetics of the irreversible reaction is deter- 
mined by the mean-field dependence. For one-dimensional 
systems an analogous result has been confirmed by an exact 
calculation. " 

We shall consider the case of practical importance in 
which the particles A and B have charges q and - q, respec- 
tively. In this case, the equations for the local changes of the 
densities of A and B have the form 

~ i . ~ ( r ,  t )  =-/qd(a) Jdr16(l r-rll -a) nA(r, t )  nB(r1, t ) ,  

D A ~  +DAAnA (r, t) +k-n, (r, t) +LA (r, t) - - 
T 

x div(nA (r, t) V @ (r, t )  ) , (141) 

x div(nB (r, t) V @ (r, t) ) ; (14b) 

in which the potential cP(r,t) obeys the Poisson equation 

where E is the dielectric permittivity of the medium. 
It is easy to see that in systems with small deviations 

from the mean density, in the absence of an external field, the 
quantity VcP. Vn (r,t) is, on the average, small in comparison 
with n (r,t)AcP(r,t), since the former is quadratic in a ( r , t )  
while the latter is linear.33 For the system considered in this 
paper, at large t the relative deviations from the mean cease 
to be small, and, it would appear, there are no grounds for 
neglecting terms quadratic in a ( r , t )  (which is precisely 
equivalent to neglecting the third-order correlation func- 
tions). However, the results obtained in Ref. 27 indicate that 
as t-, the correlation functions of order I + 1 have the 
same time dependence as the correlation functions of order I, 
but are numerically small. Correspondingly, in the long- 
time asymptotic dependence Sn ( t )  = At- ' the exponent vis 
determined exactly and A is determined to within a numeri- 
cal factor of order unity. 

For the fluctuation part of the pair correlators the fol- 
lowing equations are valid: 

+2k-gAc+DAgAA-Dn (t) A6 (A), (15a) 

gAB=-2kn(t) (gAB+gAA) +2xn( t) (gAA-gAB) 

wherex = 4m-Djlo, jlo being the Onsager radius. The equa- 
tions determining the evolution of the correlators g,, and 
gcc coincide with Eqs. (6c) and (6d). The change of the 
mean density is described by the equation 

where 

ksq=2nDho [ I+ cth (hO/2a) 1, 

The value of k,, was obtained in Ref. 29. 
For instantaneous generation of statistically indepen- 

dent particles, from ( 15) and ( 16) we obtain 

where 
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The expression ( 17) determines the fluctuation corrections 
(i.e., the corrections due to the spatial nonuniformity of the 
distribution of reagents) to an equation of the Saha type 

nA2/nc=k, ( T )  +Ak,, 

where k, (T) = k / k ,  is the mean-field ionization-equi- 
librium constant, and 

@ kp a-nc-' j @ exp ( i$) gAB ( p q )  1 
For instantaneous generation of correlated pairs of charged 
particles, for the t- cu leading terms in g,, (p,r) we obtain 

Correspondingly, the long-time relaxation to the equi- 
librium value of the density is determined by the power de- 
pendence 

Ankck-ZtABz 
6 n ( t )  = ( D t )  

2 (2kcnA+k-) 
for generation of independent particles, and by the power 
dependence 

kck-Zt,BZ 
6 n ( t ) = - .  (nA-n (0)kPlDt)  ( D t )  

2 (2kcnA+k-) 

for generation as pairs. 
We note that, as in the case of uncharged reagents, Sn ( t )  < 0 
for t + co , irrespective of the value of n (O), and n ( t )  can be a 
nonmonotonic function of time. 

For an irreversible reaction involving charged particles 
the fluctuation effects are found to be suppressed, and the 
long-time kinetics is determined by the mean-field depen- 
d e n c e ~ . ~ . ' ~ . ' ~  Fluctuations of opposite sign-regions deplet- 
ed or enriched in particles of one kind-create electric fields 
that, together with diffusion, facilitate uniformization of the 
initial spatial nonuniformity. Fluctuations for which the de- 
viations from the mean density for A and for B have the same 
magnitude and sign can only accelerate the relaxation of the 
mean density to zero in the case of irreversible recombina- 
tion, but for a reversible reaction A + BttC, for which the 
quantity n, (r,t) + n, (r, t)  + 2n, (r,t) is conserved, or for 
a system with no reaction,33 such fluctuations give rise to a 
power-law relaxation of n ( t )  to its equilibrium value. 

3. GENERATION OF PARTICLES OF THE REAGENTS BY AN 
EXTERNAL SOURCE 

We shall consider a situation that arises in the study of 
chemical reactions by radiation methods. In a system in 
which a reversible reaction A + Bt tC  involving neutral or 
charged reagents occurs, an external source acts that decom- 
poses the product of the forward reaction into a pair of rea- 
gents created at a distance A, from each other. For a two- 
component reversible reaction involving neutral particles 
and proceeding in parallel with the action of the external 
source, the system of equations determining the behavior of 
the fluctuation part of the pair correlators has the following 
form: 

where i is the mean intensity of the external radiation. 
From ( 18) we obtain the steady-state value g,, (p,A, ) 

with an external source acting: 

(20) 

where g,, (p)  is given by formula (8)  and I(p,A, ) is the 
Fourier transform of the function 

For A, - cu the expression (20) has a nonintegrable (in low- 
dimensional systems) singularity of the type p - 2  as p+O, 
and this leads to the separation of systems with d<2 into 
macroscopic domains of particles of the same kind; the mean 
density of the reacting particles increases without bound as 
the generation time increases. Such effects have been ob- 
served in a numerical experiment for the irreversible reac- 
tion A + B+ C for d = 1,2 (Refs. 24,25), and for fractal 
systems in Ref. 26. After the external-generation processes 
have ceased, the relaxation of g,, (p,t) to the steady-state 
value (8)  is determined by the dependence 

In the three-dimensional case, for Sn(t)  as A, - cu we 
obtain 

while for finite values of A, Eq. (20) has a flat spectrum as 
p-0 and the long-time relaxation of the mean density to the 
equilibrium value is determined (for arbitrary d )  by the de- 
pendence 

6n (t) [ ( 1+k-2tAB2)inch,2/2D-tABknA2(l+k-tAB) 
t+k-2tAB2nc] (Dt)-d'z- 

In the case of charged reagents A and B the steady-state 
value g,, (p,A, ) is equal to 

where g,, (p,q) is determined by formula ( 17). After the 
external-generation processes are switched off, the relaxa- 
tion of g,, (p,t) to the equilibrium value ( 17) is determined 
by the expression 

gAB ( p ,  t )  =gAB ( p ,  q )  - [ k-'tAB2( nc + + *) DP" 

11 57 Sov. Phys. JETP 68 (6), June 1989 



For A, - w we obtain 

and, correspondingly, 

li,tABZk-2inC 
6n ( t )  = (a21Dt) '". 

4nDa (2kcnA+ k- )  

For finite values of A, the expression (21 ) is the inter- 
mediate asymptotic dependence, and for t -  the relaxa- 
tion of n ( t )  to its equilibrium value is determined by the 
dependence 

For the reversible reaction (9), proceeding in parallel 
with the action of external radiation, the fluctuation part of 
the pair correlators of the density satisfies the following sys- 
tem of equations: 

gAA=-4kn ( t )gAA+ 2k-gAB+DAgAA-Dn ( t )  A6(h) 
+2inB(t)  [6(h)+'fd(ka)6(  lhl-kg) 1, 

gBB=2kn ( t )  g A B - k g B B  -I-DAgBB-DnB(t) A6(h) + inB( t )  6 ( h ) ,  

gAB=kn ( t )  (gAA-2gAB) +k- ( g B B - ' / * g ~ ~ )  

+DAgAB--2 inB(~)  6 ( h ) ,  (22) 

n ( t )  = - k . [ n Z ( t ) + g A A ( a ,  t )  ] + ( k - + i ) n B ( t ) ;  

nA( t )  +2nB(t)  =O. 

For the steady-state value of the Fourier transform of 
the correlator g,, we obtain 

whereg,, is determined by the expression ( 12) and nB is the 
steady-state solution of Eq. (22). After the generation pro- 
cesses are switched off, the relaxation ofg,, (p,t) to its equi- 
librium value ( 12) is determined by the dependence 

z ( p ' M  ) exp (-Dtpq , gAA ( P ,  t )  =gAA ( P )  -k-~**'(  n - n ~  + - 
Dp2 

where n, and n are the steady-state solutions of Eqs. (11) 
and (22). For the one-component reversible reaction ( 9 ) ,  as 
for the two-component one, the equilibrium spectrum of the 
fluctuations has a nonintegrable singularity for d<2 and 
A, - w . This implies that the diffusion processes do not suc- 
ceed in smoothing out the fluctuations generated by the ex- 
ternal radiation; correspondingly, the complete spectrum of 
the fluctuations in low-dimensional systems diverges. In the 
three-dimensional case, for A, - w , 

while for finite values of A, we obtain for Sn(t )  from ( 11 ) 

4. CONCLUSION 

We have investigated the fluctuation kinetics of reversi- 
ble bimolecular reactions occurring in systems in which 
charged and neutral particles are generated in various ways. 

To describe the kinetics of the reactions in such systems we 
propose a method similar to that of Ref. 11, based on the 
decoupling of fourth-order correlators into a product of pair 
correlators. As a result of such decoupling, the third-order 
correlators, after subtraction of the singular part, turn out to 
be identically equal to zero. Allowance for the singular part 
of the correlators leads to renormalization of the rate con- 
stants of the forward and backward reactions in the equation 
determining the evolution of the mean density of the reacting 
particles. The solution of the resulting diffusion-kinetic 
equations leads to the following results. 

In the early stages of the reactions the intermediate 
asymptotic behavior obtained by Smoluchowski (or by De- 
bye, for charged particles) in systems of any dimensionality 
is reproduced. 

For reversible reactions of (neutral) particles of the 
same kind or of different kinds the results of Refs. 20 and 2 1 
are reproduced. For instantaneous generation of the rea- 
gents as correlated pairs the long-time kinetics of a reversible 
two-component reaction involving neutral reagents is also 
determined by a power law, but, depending on the relation- 
ship between the initial density of the reagents A and B and 
the equilibrium constant,the relaxation of the density to the 
equilibrium value be a nonmonotonic function of time. 

For reversible two-component reactions involving 
charged particles the Coulomb interaction leads to effective 
neutralization ofthe charge, i.e., in the limit t- co the fluctu- 
ations of the densities of A and B become strongly correlated 
(the regions of depletion in particles of A and the regions of 
enrichment in particles of B, or vice versa, coincide, in con- 
trast to the case of systems of neutral particles). The relaxa- 
tion of the density to its equilibrium value at large values oft, 
as for systems with neutral reagents, is determined by an 
algebraic dependence on the time, and, in the case of instan- 
taneous generation of correlated pairs of A and B, can be a 
nonmonotonic function of the time. 

We have investigated the kinetics of reversible reactions 
proceeding in parallel with the action of an external source 
that decomposes the product of the forward reaction into a 
pair of reagents that are produced at a distance A, from each 
other. For A, - w the fluctuation spectrum has a singularity 
of the f ~ r m p - ~  asp -0, and this leads to separation of low- 
dimensional systems into macroscopic domains containing 
only one kind of particle. In three-dimensional systems the 
long-time relaxation of the density after the external source 
is switched off is determined by the dependence 
Sn ( t )  a t "'. We have investigated the corresponding laws 
for the case of charged reagents. 

The results obtained make it possible to make a number 
of generalizations. The fluctuation singularities of the kinet- 
ics and the structures of the equilibrium state in the reactions 
investigated are due to the presence of linear combinations of 
local densities of reagents that do not change during the 
course of the reaction, such as, e.g., the sum of the local 
densities of the reagents and products of the reaction, or the 
total density of clusters containing various numbers of parti- 
cles in processes of the reversible-coagulation type. Since the 
law of conservation of matter is valid for any set of consecu- 
tive and parallel reactions, at least one such combination 
exists for all reversible transformations; consequently the 
long-time asymptotic behavior of the relaxation to equilibri- 
um for all reversible reactions with diffusion is diffusion- 
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controlled and is described by power laws (in contrast to the 
exponential laws that are obtained in approximations of the 
mean-field type). The exponent is determined by the fluctu- 
ation spectrum of the initial or the equilibrium distribution 
of the reagents. 

In low-dimensional systems, in which the external 
source decomposes the products of any reactions into uncor- 
related pairs of reagents, diffusion processes do not succeed 
in smoothing out the fluctuations generated by the source. In 
such systems, despite the fact that the equation for the mean 
density has an equilibrium solution, fluctuation effects be- 
come strong and the equilibrium is destroyed. 

The authors are deeply grateful to A. S. Mikha'ilov, V. 
Ya. Krivnov, and S. P. Obukhov for fruitful discussions of 
the results of the paper. 

APPENDIX l 

The kinetics of reactions on fractal structures 

In Ref. 34 it was stated that the solution of the diffusion 
equation s = DAS on fractal structures has the following 
form: 

S(h,  t )  = (Dt)-dt'dwf (A/ (D t )  l'dw), lim f=const, (A1 ) 
i-. or 

where d, is the fractal dimension of space and d,, is the ran- 
dom-walk dimension. This statement, taken together with 
the method given in this paper for describing the kinetics of 
bimolecular diffusion-controlled reactions, makes it possi- 
ble to obtain, without any additional assumptions, a closed 
description of both the mean-field and the fluctuation kinet- 
ics of reactions occurring on fractal structures. Below we 
give the results of these calculations. 

If the kinetias of the reaction under consideration in 
compact (with d, = d )  systems is determined at large times 
by fluctuation effects and at moderate times by a mean-field 
intermediate asymptotic dependence of the Smoluchowski 
type (as is the case, e.g., in a two-component irreversible 
reaction or in bimolecular reversible reactions), on a fractal 
structure fluctuation effects turn out to be significant from 
the very earliest stages of the reaction, and the intermediate 
asymptotic behavior is absent. If, however, in the corre- 
sponding system the fluctuation effects are small for any t, 
the kinetics of the reaction on the fractal structure is deter- 
mined by the solution of an equation of the type ( 5 ) ,  in 
which the diffusive reaction-rate constant calculated by the 
method of the present paper is equal to k, = ( ~ t ) , " ~ " t  - I .  

In the case of a two-component irreversible reaction the 
fluctuation part of the pair correlator of the density has the 
following time dependence: 

and, accordingly, at large times the mean density decreases 
with time in accordance with the law n ( t )  a t - d~'2dc,, which 
is determined by fluctuation effects. For reversible reactions, 
both one-component and two-component, involving 
charged or uncharged particles, from the systems of equa- 
tions ( 6 ) ,  ( lo), and ( 15) we obtain for the fluctuation part 
of the pair correlator the result 6gA, a at -d~'d", and, thus, 
the mean density is determined by a power-law dependence 
on the time: 

The coefficient a depends on the type of reaction and has 
been calculated in Secs. 2 and 3 of this paper. 

If the fractal structure on which the reaction is proceed- 
ing is homogeneous'5236 the ratio d,. /d, is equal with good 
accuracy to 3 (this is the so-called Alexander-Orbach hy- 
pothesis; the valued,. /d,, = + is an exact result for "Cayley 
trees"). Correspondingly, for an irreversible two-compo- 
nent reaction we obtain n( t )  a t  -"? This result was first 
obtained in Ref. 7 from dimensional arguments and was 
called by the authors a superuniversal law, since ford > 1 the 
power the power of the time does not depend on the dimen- 
sionality d of space. In the case of reversible reactions pro- 
ceeding on homogeneous fractal structures we obtain 
&( t )  a t  - 2 1 3 .  

In the case of a one-component irreversible reaction or a 
two-component irreversible reaction involving charged par- 
ticles fluctuation effects turn out to be suppressed and the 
density is determined by the mean-field dependence 
n( t )  oct - 2 1 3 .  

For regular fractal structures, e.g., "Serpinski gaskets", 
the fractal dimension is d,. = ln(d + l)/ln2 and the ran- 
dom-walk dimension is d, = In (d  + 3)/ln2 (Ref. 35). Ac- 
cordingly, formal application of the methods of this paper 
leads to the following dependences. For a two-component 
irreversible reaction and for a one-component irreversible 
reaction the decreases of the density follow the laws 

For reversible reactions the relaxation of the density to its 
equilibrium value is determined by fluctuation effects and is 
described by the following dependence: 

For a reaction A + B - C proceeding on a fractal struc- 
ture in parallel with the action of external radiation generat- 
ing correlated pairs of particles of A and B, produced at a 
distance A, from each other, the steady-state spectrum of the 
correlator g,,, unlike that in the previous cases of dense 
systems, is not flat at small values of the wave vector: 

Ih,' 
gAB ( p )  = - - p2-dw + I 

I=inc. (A3) 
2 0  Dpd-+4knA ' 

It is clear that this difference is due to the suppression of 
geminal recombination-particles created in a single pair can 
be found on different branches of the fractal structure, and, 
despite the fact that the pair radius is equal to A,, the "chem- 
ical" path between the particles of the pair will be consider- 
ably greater. The relaxation of the correlatorg,, ( p , t )  to the 
steady-state value (A3) when an external source is acting 
occurs in accordance with the law (for t- w ) 

d,+2-d, 
gAB (a, t )  =gD ( a )  [ 1-  (ad-lDt)  '1, v = 

dw 

Accordingly, the kinetics of the approach to equilibrium is 
described by the dependence 

n ( t )  =, + .kgA'(a) (ad-/Dt)  v. 
2k,nA+i 

After the generation processes have ceased the decrease 
of the density of the reacting particles occurs more slowly 
than by the law (A2): 
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n (t) = (111,2/2D) '" (Dt) - ' I2.  

Similar behavior is found for reversible reactions: 

If for a certain time t, the external source is generating 
the particles of the reagents in a statistically independent 
manner, the growth of the mean density in the system occurs 
as follows: 

As t, - cc the fluctuation effects become strong, the equilib- 
rium is destroyed, and the density increases without bound, 
as was proved in the numerical experiment of Ref. 26. 

APPENDIX II 

We shall represent the density of the reacting particles 
in the form of a sum" 

where p, and R, are the position vectors of the nth particle 
of type A and the mth particle of type B. Then the third- 
order correlators that appear in the system of equations (4 ) ,  
e.g., T,,,, can be written as 

T,,. (A, t) = y r  (a) V-' jjj dr dr, dr28 (r-rl-l) ) 8 ( Iri-ra 1 -a) 

n 

We denote the first term in the curly brackets by FAA, and 
call it the regular part of the correlator T,,,; the remaining 
terms will be called the fluctuation part of the third-order 
correlator. 

The regular part of T,, arises when account is taken of 
the fact that the distribution n(r , t)  possesses discreteness 
arising from spatial coincidence in the positions of two parti- 
cles of the same kind in three-particle interactions. Direct 
calculation shows that, to within the small gas parameter the 
regular part of T,,, is equal to the number of AB pairs,mul- 
tiplied by a delta function: 

while the regular part of the correlator TAB, is equal to zero. 
Using (3 ) ,  for the fluctuation part T,, of T,, we obtain 

the following system of equations: 

where the H,,,, are fourth-order correlators. 
We represent HA,,, in the form 

Then, by virtue of the fact that rijk 1 ,  = =O independently of 
the way in which the reagents are generated, the system of 
equations determining the evolution of the fluctuation part 
of the third-order correlation functions will have no nontri- 
vial solutions. We shall write G,, in the form of a sum 

wheregij is the fluctuation part of the pair correlators and G, 
is the regular part. Using ( 4 )  and (6 )  in the first approxima- 
tion in the gas parameter a we obtain quasistationary solu- 
tions for G,, (a, t) ,  f o r d  = 1,2,3, respectively: 

GAB(a, t)  ='/,fi (t) (nt/D)Ih, 

Because of the presence of terms of the type kn ( t )  G,, in Eqs. 
(4)  and (6 ) ,  the regular parts of G,, (h , t )  decrease expon- 
entially with distance for values of A much greater than the 
mean spacing between the particles. The physical cause of 
this behavior of the regular part of the correlators is the ef- 
fective screening of a given particle by other particles of the 
same reagent. However, in the above values of GAB (a , t )  the 
exponential factors are omitted because of the small value of 
the gas parameter. 

Substituting the values obtained for c,, (a , t )  into Eq. 
(2 ) ,  we obtain the desired equation (5 )  determining the evo- 
lution of the mean density. It can be seen by comparing Eqs. 
(2 )  and ( 5 )  that allowance for T a n d  G, i.e., allowance for 
the discreteness of the density distribution of the reagents, 
leads to a decrease of the true rate constant of the reaction 
and to its replacement by an effective rate constant, which, 
for various systems, has been calculated previously in Refs. 
28-32 by means of methods that ignore fluctuation effects. 
We note that the value obtained for the effective rate con- 
stant of the reaction does not appear in the expressions for 
the fluctuational long-time asymptotic forms. 

The decoupling of the fourth-order correlators does not 
guarantee the correctness of results pertaining to the long- 
time asymptotic forms. However, in Ref. 27 it was shown 
that in a number of systems analogous to those investigated 
in the present paper ( a  bimolecular irreversible reaction 
A + B + C  in which the initial distribution of the reagents is 
perturbed by small thermodynamic fluctuations) the long- 
time kinetics of the reaction is determined by Gaussian equi- 
librium fluctuations of the density and the approximations 
obtained by means of such decoupling are asymptotically 
exact. 

We note also that the study of such systems with the aid 
of quantum-field r n e t h ~ d s ' ~ , ' ~ , ~  1e ads to the same results 
as this decoupling. Calculation of higher-order correlators 
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leads to the conclusion that their time dependence is not 
more singular than that for pair correlators, in contrast to 
systems with second-order phase transitions near a critical 
point. It is obvious that this difference is due to the fact that 
the structures determining the long-time kinetics of diffu- 
sion-controlled reactions (macroscopic regions containing 
only one of the reagentsi0) are not fractal, unlike the struc- 
tures that arise near a critical point. 

The indicated decoupling leads to incorrect results in 
the description of systems whose fluctuation kinetics is con- 
centrated in the nonequilibrium deviations from the mean 
that occur, e.g., in the reaction A + B-B,  where B are sta- 
tionary traps and A are particles diffusing in the volume. In 
this case the long-time asymptotic form of the survival prob- 
ability is determined by the presence of the improbable fluc- 
tuational zones that are free of traps of type B. 

"Formally, the diffusion equation is not valid for unsmoothed functions 
n(r , t ) .  All the conclusions of the paper pertain to average densities or 
correlators obtained by averaging over the initial distribution n ( r ,  0)  or 
over the volume of the system. Despite this, the discreteness of the distri- 
bution exerts an important influence on the short-wavelength region of 
the spectrum of the correlators. 
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