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We investigate the electrodynamics of a thin film with account taken of retardation effects. We 
show that for a two-dimensional conductivity a >  c / 2 ~  there exist weakly damped plasma waves 
at the lowest frequencies. We calculate the reflection, transmission, and absorption coefficients of 
obliquely incident light. 

1. The conductivity a of a film has units of velocity. The be sought in the form A = (k/k)A + [k X 1, ]A,. Express- 
question in the title is therefore meaningful and calls for an ingp, j, and g, with the aid of ( 1 ), (2),  and (3)  in terms of A, 
exhaustive answer. Conductivity governs the character and we obtain the dispersion relation. The transverse-wave spec- 
rate of Maxwellian relaxation of the excess charges. In bulky trum is given by the equation 
conductors the excess charge density p(r,t)  relaxes without 'la 2no, 0 ( )  -ice= 
changing the initial distribution p(r,O) and with a decre- 0, ( 5  

ment 4n-u3: in which account is taken of the frequency dispersion of the 

p (r, t )  =p (r, 0) exp (-$noat). conductivity 

According to  electrostatic^,"^ charges relax by spreading 
with an effective velocity 2 m .  This velocity becomes com- 
parable with that of light if the film sheet resistance is 188 R. 
An electrostatic approach to relaxation in films with so high 
a conductivity is inadequate, and account must be taken of 
retardation, with the field described by the complete set of 
Maxwell equations. 

Maxwellian relaxation corresponds to dissipative dy- 
namics of the charges at low frequencies, w r g  1, where r is 
the carrier free-path time. Nondissipative dynamics pertains 
to plasma oscillations whose spectrum takes the form 
w, (k )  = (2n-eZn, k / m )  ' I 2  in the two-dimensional ( 20 )  
case (Ref. 3 ). We calculate in this paper the spectrum of the 
plasma oscillations in the dissipative and nondissipative re- 
gions, with allowance for retardation effects. 

2. Consider a 2 0  layer with conductivity uperpendicu- 
lar to the z axis. The complete set of Maxwell equations for 
the vector and scalar potentials d = (A,A, ) and g, and the 
material equations are 

The dispersion equation for the longitudinal waves is 

Equations (5)  and (6)  contain a characteristic parameter 
x = 2m/c. Analysis of Eq. (5)  shows that the transverse 
mode is purely relaxational 

The longitudinal mode can either be purely relaxational or 
correspond to weakly damped plasma oscillations. The real 
and imaginary parts of w, ( k )  are shown in Figs. la and lb  
for x < 1 and x > 1, respectively. If x < 1, then Re w ,  ( k )  
differs from zero at k > kc, where 

1 - 6 ~ ~ - 4 ~ ' +  (1+2x2) ( I + ~ X ~ ) ' ~  
2 

I"=. ( 8 )  

If k< k c ,  the spectrum is purely relaxational: 

and corresponds as k- cu to ordinary plasma oscillations: 
(2)  

The continuity equation 
dp/dt+div j=O 

follows from Eqs. ( 1 ) and (2).  (4) 

We seek the natural oscillations in the system described 
by Eqs. (1)-(3) in the form of a wave exp(i k . r - iwt) 
(where k is a two-dimensional wave vector) propagating 
along the 2 0  layer of the wave and having a field localized 
near the layer. The potentials A, A,, and g, are therefore 
proportional to exp( - xz) where 

It follows from ( 1 ) that A, = 0 and the vector potential can 

FIG. 1 .  Longitudinal-wave spectrum in a film with conductivities a <  c/ 
27~ ( a )  and a >  c /2n  (b) .  The coordinates nondimensionalized with the 
collision time T,  are the 2 0  wave vector Q = ckr  and the plasma-oscilla- 
tion frequency f2 = 07. The threshold wave vector Q, and Im R ( 0 )  van- 
ish at the point 2 ? ~ a / c  = 1 .  
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Asx - 1 the threshold value of kc + 0 and the plasma-oscilla- 
tion spectrum at x = 1 and k 4 l /cr assume the form 

For 0 < x - 1 ( 1 the spectrum ( 1 1 ) is conserved in the re- 
gion ( x  - 1 ) 3 ' 2 / ~ ~ ( k (  l/cr, and the longest-wavelength 
oscillations obey the dispersion law 

If x - 1 2 1, the intermediate asymptotic value ( 11 ) is not 
realized and the plasmon dispersion law can be described by 
Eq. 12 for all k < l/cr. It is seen from(l2) that these long- 
wave oscillations attenuate weakly. The reason is that the 
wave field is concentrated in a region of thickness 6 = 1/ 
Re x - k - 2  much larger than the thickness of the k - ' region 
in which the dissipation takes place. The transition from the 
purely relaxational spectrum (9) to the plasma oscillations 
( 12) can be tracked by examining the character of the field 
distribution near the layer. For x < 1 the damping rate x is a 
real number and as x -* 1 we have 6 -. 0, i.e., the region in 
which the field is concentrated becomes infinitesimally thin. 
For x > 1 this region broadens, and the field manages to os- 
cillate many times over the thickness 6, which is determined 
in this case by the frequency dispersion of a,. 

3. The velocity at which a signal can be propagated by a 
wave with a dispersion w(k) can be determined by investi- 
gating the evolution of the wave packet. For example, the 
wave intensity $(r,t) is determined by the integral 

Evaluating the integral, we find 

g(r, t) -exp[ik,r-io (k,) tlexp 1 -7 Z (  r - - ~ t t ) 2 / 2 ] ~  
from which it follows that v = 8w/d k. 

A surface-wave packet evolves not only along the plane 
but also in a transverse direction, and is determined by the 
dispersion of w (k )  and x (k ) .  In the case of interest to us we 
have x = x ,  + ix2 with x ,  (x2. Just as above 

q(x, I, t) - ) (dk) A. (k-k,) expiila-io (k) t-x (k) I z I 1 
ax, --exp[ihx-io(ko)t-x(k) la1 l e x p { - 3  X ~ - ~ ~ - - ( I I X  
dk 

ao ax, x=x--t-- ak akIz19 r<xl. (13) 

We need not fear the last term, which increases as Izl - w , in 
the argument of the exponential. It stems from the fact that 
far from thez = 0 plane the field is determined by the packet 
component that is least attenuated. No such growth occurs if 
Ik - k,,l is bounded. The second term in the exponent is of 
similar origin and causes the phase of the wave to be different 
for equal x and t but different z. This implies bending of the 
packet's wave front. The first term in the exponent describes 
the time evolution of the packet, viz., the packet contracts as 

it propagates along the surface. The energy density in the 
(x,z) plane is then transported along a vector 
v = ( 1, - 8x2/d k )  at an angle 8 to the normal: 

cos e=[ l+  (axz/ak)"-", (14) 

the signal propagation velocity along the plane is therefore 

The field distribution in a surface plasma wave Eq. ( 12) 
is shown for x > 1 in Fig. 2. The Poynting vector S makes an 
angle 0 with the normal, 

cos 0=c/2no. (14a) 

The normal part of S is connected with the transport of the 
field energy w to the 2 0  layer in which the dissipation takes 
place. The tangential component determines the energy 
transported by a plasmon with velocity 

S 
u=-  (x" -1) " 

sin 0=c 
W x 

The phase velocity u = w/k is determined by the velocity of 
the point where the phase front crosses the 2D-layer plane: 

C x 
u=-=c 

sin 0 (3'-1) '" 
The velocity ( 15b) is not observable as a signal-transport 
velocity, but the spectrum w = uk can apparently manifest 
itself in Raman scattering of light. At short wavelengths 
k % l /cr the regime ( 12) is replaced by the usual dispersion 
law of plasma oscillations ( lo) .  

4. The surface-wave dispersion law determines the 
poles of the coefficients of reflection ( R )  and absorption 
( P ) ,  by a 2 0  layer, of a wave incident at an angle f l  to its 
normal. To calculate these coefficients we have solved the 
system ( 1 )-(3) with boundary conditions corresponding to 
incident, reflected, and transmitted waves. The transmission 
and reflection amplitudes'' t and r, as well as the absorption 
coefficient P for the polarization corresponding to the inten- 
sity E of the electric field lying in the incidence plane, are 
given by 

r , , = x c o s ~ l ( l + x c o s ~ ) ,  t , , = l l ( l+xcos~ ) ,  
(16) 

P,,=I-(r,, 1'- I t,, I2=2x cos @/(l+x cos 8)'. 

FIG. 2. Field distribution in a long-wave plasma oscillation in a film of 
conductivity f f >  c/2ir. The solid lines show the constant-phase surfaces. 
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FIG. 3. Absorption coefficient of a wave polarized in the incidence plane 
PI, vs the angle of incidence or different values of the parameter x. 

Figure 3 shows the P I ,  ( P )  dependence for wr = 0.1 at var- 
ious values of x.  If a wave of frequency w and wave vector 
( k , q )  is incident on the film, the amplitudes ril and t have a 
pole at the unphysical values q = itc(w,k), where w and k are 
related by Eq. ( 6 ) .  For x > 1 the angular dependence P ( P )  
has at cos = l / x  a maximum that meets the condition that 
the incident wave be in resonance with the surface plasmon 

o=ukl ,= (u lc )  o sin p. 

In high-mobility samples, when x &  1, these resonance con- 
ditions are met for almost grazing incidence. 

For another polarization of the incident wave, when E 
is perpendicular to the plane of incidence, the quantities r, , 
t , ,  and P, can be obtained from ( 16) by following the rule 

L = I  tl(x)=r,, (llx), 

PL (x) =PI, (11~). 

Therefore when natural light is incident on the film the 
transmitted light is predominantly polarized in the inci- 
dence plane. For normal incidence of the wave we have 

r l  = r, and t = t ,  . The results obtained from ( 16) with 
cos f i  = 1 agree with the answer to problem 5 in $86 of Ref. 
4. 

5. It is natural to compare the electrodynamics of a thin 
film with the electrodynamics of a thin wire. The wire con- 
ductivity has the dimension of the diffusion coefficient, and 
at low frequency the relaxation spectrum is of the form 
w( k )  = - 2iu,k (Ref. 1 ) .  At high frequencies, without 
allowance for retardation, we have w, = (2ne2 /m)  It2k. If 
f = 2ne2/mc2 > 1 ,  however, the complete set of Maxwell 
equations must be solved. Such scattering leads to a disper- 
sion law 

In the low-frequency region we obtain for k < k ,  = (1 /  
2cr) [ f (  1 + f )  ] - I t 2  the known result w = - 2iu,k ', while 
for k > k ,  we have 
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"We have defined rand  t as the ratios of the electric field intensity in the 
reflected (transmitted) wave to that in the incident wave. 
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